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Abstract

Multi-view representation learning attempts to learn a rep-
resentation from multiple views and most existing methods
are unsupervised. However, representation learned only from
unlabeled data may not be discriminative enough for fur-
ther applications (e.g., clustering and classification). For this
reason, semi-supervised methods which could use unlabeled
data along with the labeled data for multi-view representation
learning need to be developed. Manifold information plays
an important role in semi-supervised learning, but it has not
been considered for multi-view representation learning. In
this paper, we introduce the manifold smoothness into multi-
view representation learning and propose MvDGAT which
learns the representation and the intrinsic manifold simul-
taneously with graph attention network. Experiments con-
ducted on real-world datasets reveal that our MvDGAT can
achieve better performance than state-of-the-art methods.

Introduction
Multi-view data are ubiquitous in real-world applications,
such as the text content and hyperlink in webpage classifi-
cation (Du et al. 2013; Jing et al. 2017); the local patterns,
the local shape descriptors, and the spatial-temporal contexts
in object re-identification (Zhao et al. 2018; Zhou, Liu, and
Shao 2018). The data from different views usually provide
complementary information, and utilizing the information
from multiple views together can improve the performance.

To deal with multi-view data, a baseline approach is
simply concatenating the multiple views into one fea-
ture vector and adopting traditional single-view learning
paradigms (Xu, Tao, and Xu 2013). However, this intrin-
sically goes against the nature of the distinct views and
often leads to little improvement over single-view learn-
ing. Therefore, many multi-view learning methods are de-
veloped to achieve better performance (Blum and Mitchell
1998; Hotelling 1936; Sindhwani, Niyogi, and Belkin 2005).
Generally, these multi-view learning methods can be cat-
egorized into three groups (Xu, Tao, and Xu 2013): 1)
co-training (Blum and Mitchell 1998), 2) multiple kernel
learning (Lanckriet et al. 2004) and 3) subspace learn-
ing (Hotelling 1936). Subspace learning assumes that the
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multiple views are generated from a latent subspace, and the
goal is to recover the representation in the latent subspace
(Yin, Huang, and Gao 2020; Wang et al. 2015; Zhen et al.
2019; Li et al. 2019a), e.g., Canonical Correlation Analy-
sis (CCA) (Hotelling 1936) projects different views onto one
common space by maximizing the correlation between pair-
wise views. In this way, subspace learning is also part of the
multi-view representation learning.

Multi-view representation learning aims to learn a good
representation that extracts heterogeneous useful infor-
mation from each view for developing prediction mod-
els (Li, Yang, and Zhang 2018). In the past decades, there
have been many methods developed to deal with multi-
view representation problem. However, most existing meth-
ods focus on the unsupervised setting. For example, Ker-
nel CCA (KCCA) (Akaho 2006) extends CCA to learn
nonlinear projections, and Deep CCA (DCCA) (Andrew
et al. 2013) is a parametric model that can scale to large
datasets. Deep Canonically Correlated AutoEncoders (DC-
CAE) (Wang et al. 2015) consider the reconstruction error
and correlation of two views simultaneously to achieve bet-
ter performance. In general, purely unsupervised represen-
tation learning methods could not utilize information in la-
beled data, and thus may not be sufficiently discriminative
in downstream tasks such as classification or clustering. To
tackle this, Noroozi et al. (Noroozi et al. 2018) recently pro-
posed the first deep semi-supervised representation learning
model Multi-view Discriminative Neural Network (MDNN)
for multi-view problem, which could be viewed as a combi-
nation of Deep Linear Discriminant Analysis (DLDA) (Dor-
fer, Kelz, and Widmer 2016) and DCCA (Andrew et al.
2013). However, MDNN did not incorporate the manifold
information to maintain the smoothness over the data. How
to capture the manifold structure is an important topic in
semi-supervised learning and multi-view learning (Belkin,
Niyogi, and Sindhwani 2006; Sindhwani and Rosenberg
2008; Wang and Zhou 2010; Zhou et al. 2003; Zhu 2005;
Zhu, Ghahramani, and Lafferty 2003).

In this paper, we present a framework for semi-supervised
multi-view representation learning and propose our Multi-
view Discriminative Graph Attention Network (MvDGAT),
which considers the empirical risk and view consistency in
the objective function and embeds the manifold smooth-
ness information with graph attention network to learn the
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intrinsic manifold of the original data distribution. Experi-
ments conducted on the real-world datasets reveal that our
MvDGAT can achieve better performance than state-of-the-
art multi-view representation learning methods.

In the following, we first briefly review some related
works. Then we present the preliminaries and our method.
After the experiments compared with the baselines, we make
a conclusion.

Related Works
Multi-view representation learning (Li, Yang, and Zhang
2018) can be categorized into alignment-based methods and
fusion-based methods. The alignment-based methods usu-
ally assume the multiple views are generated from a com-
mon latent subspace and learn the transformation mapping
from each view onto a common subspace. Canonical Cor-
relation Analysis (CCA) (Hotelling 1936) is the first sub-
space learning method, which explores basis vectors for the
examples in two views by mutually maximizing the cor-
relation between the projections onto these basis vectors.
Kernel CCA (KCCA) (Akaho 2006) extends CCA to learn
nonlinear projections, but the nonlinearity is limited and
the kernel trick makes it difficult to scale to large datasets.
DNN-based models have been introduced into multi-view
representation learning. Deep CCA (DCCA) (Andrew et al.
2013) is a parametric method that uses deep neural net-
works to learn nonlinear transformation; Deep Canonically
Correlated AutoEncoders (DCCAE) (Wang et al. 2015) si-
multaneously consider the reconstruction objective function
of two autoencoders and the correlation of paired feed-
forward networks to enhance the performance. Nonethe-
less, CCA, KCCA, DCCA, and DCCAE are unsupervised
representation learning methods, and they cannot exploit
the supervised information during the training process. The
representation they learned lacks class discriminativeness
that is critical to the success of some tasks, i.e., classi-
fication and clustering. Recently, Noroozi et al. (Noroozi
et al. 2018) proposed the first deep semi-supervised repre-
sentation learning method Multi-view Discriminative Neu-
ral Network (MDNN) for multi-view problems. MDNN ex-
tends DCCA by considering both the correlation of all the
data and the Linear Discriminant Analysis (LDA) objective
function to maximize between-class separations and mini-
mize within-class variations. In this way, MDNN simultane-
ously utilizes unlabeled and labeled data. However, MDNN
does not incorporate the manifold regularizer to maintain the
smoothness in each view.

The manifold information plays an important role in semi-
supervised learning. The main assumption is that the distri-
bution of the data follows an intrinsic manifold, which usu-
ally implies two examples that are close in the original space
should be close after the transformation. In applications, it
is usually assumed that a weight matrix W is the indication
about the adjacency of examples and consequently implies
the potential similarity of the learned representations. Pre-
vious graph-based methods mainly focused on classification
task (Belkin, Niyogi, and Sindhwani 2006; Zhou et al. 2003;
Zhu 2005; Zhu, Ghahramani, and Lafferty 2003). Among
these methods, manifold regularization (Belkin, Niyogi, and

Sindhwani 2006) was introduced to exploit the geometry of
the marginal distribution. Recently, a line of works on Graph
Neural Networks (GNNs) (Scarselli et al. 2009) provide an-
other possibility for the utilization of graph-structured data.
Graph Convolutional Network (GCN) (Kipf and Welling
2017) is a spectral convolution method that restricts spec-
tral filters to operate in a 1-step neighborhood around each
node, which can improve scalability and classification per-
formance. An analysis of GCN (Li, Han, and Wu 2018)
brought deeper insight and addressed that GCN is actually a
special form of Laplacian smoothing and the vertices in the
same cluster tend to be densely connected. A more recent at-
tention mechanism was introduced into GNNs by Graph At-
tention Network (GAT) (Velickovic et al. 2018), and it can
adaptively consider the significance of edges, which is ef-
fective when the observed graphs are inaccurate or noisy.

The manifold regularization was also extended to the
multi-view setting (Sindhwani, Niyogi, and Belkin 2005;
Sindhwani and Rosenberg 2008), which adds a Laplacian-
style regularizer in co-regularization. Co-regularization
shares similar intuition with co-training. Co-training was
proposed by (Blum and Mitchell 1998), which learns two
classifiers with initial labeled data on the two views respec-
tively and lets them label unlabeled data for each other to
augment the training data. The development of co-training
is supported by a series of theoretical analyses (Balcan,
Blum, and Yang 2004; Blum and Mansour 2017; Blum and
Mitchell 1998; Wang and Zhou 2010). Among these anal-
yses, Wang and Zhou (Wang and Zhou 2010) revealed that
the process of co-training could be viewed as the label prop-
agation process on a combinative graph, where the classifier
trained in each view can utilize the cross-view structural in-
formation from the other view. This analysis also inspires us
to utilize the neighborhood information from the combina-
tive graph in multi-view learning.

Preliminaries
In the multi-view setting, examples are described with sev-
eral disjoint sets of features. Most multi-view representa-
tion learning methods focus on two views (Akaho 2006; An-
drew et al. 2013; Hotelling 1936; Noroozi et al. 2018; Wang
et al. 2015), we also discuss the two-view setting here. For
a two-view problem, we can denote the data matrices on the
two views as X1 and X2, respectively. For the v-th view
(v ∈ {1, 2}), we have Xv = [x1

v,x
2
v, ...,x

l
v,x

l+1
v , ...,xnv ]>,

where n is the number of data. We let l denote the number of
labeled data and u denote the number of unlabeled data (i.e.,
n = l+u). For the labeled data, let yl = [y1, y2, ..., yl] ∈ Rl
be the labels. We denote |C| as the number of classes and
Civ = {xjv|yj = i}.

In modern representation learning (Bengio, Courville, and
Vincent 2013), the representations are usually learned by
neural networks. We denote fv(Xv; Θv) as the neural net-
work on the v-th view where Θv = {Θ(1)

v ,Θ
(2)
v , ...,Θ

(Kv)
v }

are its parameters and denote Kv as the number of layers in
fv . H

(k)
v = [h

(k)
v(1),h

(k)
v(2), ...,h

(k)
v(n)]

> ∈ Rn×d(k)
v denotes the

v-th view’s representation in the k-th layer, d(k)
v is the di-
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mension of the representation, and specifically H
(0)
v = Xv .

For simplicity, we denote Zv as the final representation
H

(Kv)
v . In multi-view representation learning, it is usually

assumed that the learned representations of two views are
similar or highly-correlated.

Our Method
As mentioned above, most existing multi-view representa-
tion methods focus on the unsupervised setting, which re-
sults in a lack of discriminativeness in the learned space.
Adding a set of labeled data and learning in a semi-
supervised way would help to tackle this problem. Previous
works on semi-supervised learning have indicated that man-
ifold information is important, e.g., label propagation (Zhu,
Ghahramani, and Lafferty 2003) and manifold regulariza-
tion (Belkin, Niyogi, and Sindhwani 2006).

To utilize manifold information, we would like to first in-
troduce manifold regularization, which allows us to exploit
the geometry structure. Let H be the hypothesis space and
f∗ ∈ H denote the hypothesis to learn, then manifold regu-
larization is formulated as

f∗ = argmin
f∈H

V (X,yl, f) +G(X,W, f),

where V is the loss function to evaluate the empirical loss on
labeled data and G is the manifold regularizer. In real-world
application, V is usually formed as

V (X,yl, f) =
1

l

l∑
i=1

(f(xi)− yi)2,

for classification tasks. This method can be generalized into
the representation learning, in which V is usually based on
Deep Linear Discriminant Analysis (DLDA) (Dorfer, Kelz,
and Widmer 2016; Wu, Shen, and Van Den Hengel 2017)
to increase the discriminativeness. We denote f(X; Θ) as
the neural network and Θ are the parameters to learn, then
DLDA is formed as

Θ∗ = argmax
Θ

Tr(
SB(f(X; Θ))

SW (f(X; Θ)) + r1I
),

where r1 > 0 is a positive constant to make the matrix
positive definite. We denote Z as the final representation
f(X; Θ) for simplicity and denote mi

v as the average vector
for class i in the v-th view, then

SW (Z) =
1

l

|C|∑
i=1

∑
zj∈Cj

(zj −mi)(zj −mi)>

is the within-class scatter matrix, where Cj is the set of rep-
resentation of labeled data from class j. We denote

SB(Z) =
1

2l2

|C|∑
i,j=1

lilj(z
j −mi)(zj −mi)>

as the between-class scatter matrix, where li is the number
of labeled data from class i. The term G(X,W, f) usually

considers the loss of adjacency matrix W intrinsic manifold
smoothness, which is usually formulated as

G(X,W, f) =
n∑

i,j=1

‖f(xi)− f(xj)‖2 Wij . (1)

Wij are edge weights in the adjacency graph. G(X,W, f)
encourages similar examples to get closer after the transfor-
mation to maintain the manifold smoothness.

When the data have two views, the view consistency is
usually calculated by CCA objective function. Then the
multi-view learning can be formulated as

(Θ∗1,Θ
∗
2) = argmin

Θ1,Θ2

2∑
v=1

Vv(yl, fv(·; Θv))

+ λG

2∑
v=1

Gv(Xv,Wv, fv(·; Θv))

+ λΓΓ(X1,X2, f1(·; Θ1), f2(·; Θ2)).

(2)

Besides the empirical loss and manifold regularizer, the term
Γ evaluates the view consistency, e.g., Γ(X1,X2, f1, f2) =
(f1(X1; Θ1) − f2(X2; Θ2))2 is used in co-regularization.
Under this setting, unlabeled data are proved to be help-
ful because it can reduce the hypothesis space (Balcan and
Blum 2010). It is worth noting that though the forms of
view-consistency and manifold regularizer are sometimes
similar, they represent the cross-view and within-view con-
straints respectively. In representation learning, the term Γ
usually considers the correlation of the representation for the
two views, which is based on Deep Canonical Correlation
Analysis (DCCA) (Andrew et al. 2013) that maps multiple
views of data into a space with deep neural network where
the paired examples are highly correlated. DCCA is formu-
lated as

(Θ∗1,Θ
∗
2) = argmax

Θ1,Θ2

corr(f1(X1; Θ1), f2(X2; Θ2)).

To find (Θ∗1,Θ
∗
2), we follow the gradient of the correla-

tion objective function estimated on the training data. Let
Z̄v = Zv − 1

nZv1 be the centered matrix and define Σij =
1
n Z̄iZ̄

>
j + r2I where r2 > 0 is a positive constant to make

Σij positive definite. The total correlation of the top k com-
ponents of Z1 and Z2 is the sum of the top k singular val-
ues of the matrix T = Σ

−1/2
11 Σ12Σ

−1/2
22 . Then we have

corr(Z1,Z2) = Tr(T>T)1/2 as the sum of the singular val-
ues and the goal is to maximize it.

A problem of the above manifold regularization is that
we usually cannot get in touch with the intrinsic manifold
smoothness Wv but an inaccurate observation W̃v(v =
1, 2). In this paper, we solve this problem by using graph
neural networks and attention mechanism. We apply the
shared attentional mechanism a : Rd(k)

v × Rd(k)
v → R to

calculate the attention coefficients

αij = a(Θ(k)
v h

(k)
v(i),Θ

(k)
v h

(k)
v(j))

that indicate the importance of node j’s representation to
node i. The function a is usually formed as a single-layer
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View 1
Space

View 2
Space

Latent
Space

f1
<latexit sha1_base64="BZqwz6C361yJqVrSQmvMfMSwMxU=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9RH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/A1jY4=</latexit><latexit sha1_base64="BZqwz6C361yJqVrSQmvMfMSwMxU=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9RH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/A1jY4=</latexit><latexit sha1_base64="BZqwz6C361yJqVrSQmvMfMSwMxU=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9RH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/A1jY4=</latexit><latexit sha1_base64="BZqwz6C361yJqVrSQmvMfMSwMxU=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9RH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/A1jY4=</latexit>

f2
<latexit sha1_base64="EhgoIcdngRZ62TNDIgUrlHkxJGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+GgNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/G5jY8=</latexit><latexit sha1_base64="EhgoIcdngRZ62TNDIgUrlHkxJGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+GgNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/G5jY8=</latexit><latexit sha1_base64="EhgoIcdngRZ62TNDIgUrlHkxJGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+GgNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/G5jY8=</latexit><latexit sha1_base64="EhgoIcdngRZ62TNDIgUrlHkxJGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+GgNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/G5jY8=</latexit>

Combinative
Graph

Figure 1: MvDGAT structure for two views. The hollow
circles and squares are labeled examples with different la-
bels. The black circles are unlabeled data. On the left side
of the figure, the examples are represented in their origi-
nal input space in the two views, respectively. After passing
them through MvDGAT, the latent feature space is obtained,
which is depicted on the right side of the figure.

neural network with LeakyReLU as nonlinearity. For the
sake of simplicity, we denote Ni as the neighborhood set of
the i-th example. To make the coefficients easily compara-
ble across different nodes, a normalization process is applied
across all choices of node j using the softmax function

W̃ij = softmax(αij) =
exp(αij)∑

k∈Ni
exp(αik)

.

Then we need to get the neighborhood set Ni. We define
Ni = {j|Wc(ij) 6= 0} inspired by the combinative graph
Wc used in previous multi-view learning analysis (Wang
and Zhou 2010). The regularizer in Equation (2) can be
simplified into the form with a combinative graph. Con-
sidering that the representations from multiple views are
projected into a common subspace where they are highly
correlated, we assume that f1(xi1) ≈ λff2(xi2), and let
λff

i = f1(xi1) ≈ λff2(xi2). The manifold regularizer with
observed W̃1 and W̃2 could be written as

n∑
i,j=1

(
∥∥f i − f j∥∥W̃1(ij) +

∥∥λf (f i − f j)
∥∥W̃2(ij))

=
n∑

i,j=1

∥∥f i − f j∥∥ (W̃1(ij) + λfW̃2(ij)),

where the combinative graph W̃c = W̃1 + λfW̃2.
In practice, to stabilize the learning process of self-

attention, we also use the multi-head attention mechanism
like GAT (Velickovic et al. 2018), then the feedforward pro-
cess of each layer is formulated as

h
(k+1)
v(i) =

P

‖
p=1

σ(
∑
j∈Ni

α
(p)
ij Θ(k,p)

v h
(k)
v(j)),

where ‖ represents the concatenation and P is the number of
heads. For the output layer, we employ averaging and delay

Algorithm 1 MvDGAT

Input: Two views X1,X2, adjacency matrices W̃1,W̃2,
and yl.
Parameter: T1, T2, λf and η.

1: Construct the combinative graph W̃c = W̃1 + λfW̃2;
2: for v = 1 to 2 do
3: for t = 1 to Tv do
4: Forward Xv on fv(·; Θv, αv) with W̃c;
5: Calculate the gradient of fv with the loss func-

tion in Equation (3);
6: Update αv and Θv in fv with learning rate η;
7: end for
8: end for
Output: f1(X1) and f2(X2).

applying the final nonlinearity as

h
(Kv)
v(i) = σ(

1

P

P∑
p=1

∑
j∈Ni

α
(p)
ij Θ(Kv−1,p)

v h
(Kv−1)
v(j) ).

We call the method Multi-view Discriminative Graph At-
tention Network (MvDGAT). Instead of using manifold reg-
ularizer like Equation (1), we consider to use state-of-the-art
graph neural networks to incorporate the manifold informa-
tion, and the loss function is formulated as

LMvDGAT =−
2∑
v=1

Tr(
SB(fv(Xv))

SW (fv(Xv)) + r1I
)

− λΓ corr(f1(X1), f2(X2)).

(3)

Let fv(Xv,Wc; Θv, αv) denote the GAT model trained
with combinative graph Wc in the v-th view. We summa-
rize the process of our method in Algorithm 1.

Experiments
In order to evaluate our MvDGAT, we test its performance
for clustering and classification tasks compared with other
multi-view representation learning methods. We also vi-
sualize the learned representation to show that MvDGAT
can learn better representation by exploiting the manifold
smoothness.

Dataset n |C| dv

Course 1051 2 3447, 427
Ads12 983 2 457, 495
Ads13 983 2 457, 472
Ads23 983 2 495, 472
FOX 1523 4 996, 5477
CNN 2107 7 996, 7989

NoisyMNIST 70000 10 784, 784

Table 1: Statistics of the seven datasets. n represents the
number of examples, |C| is the number of classes, and dv
is the number of attributes of each view.
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Course Ads12 Ads13 Ads23 FOX CNN NoisyMNIST

CCA 0.851 0.860 0.865 0.865 0.625 0.328 0.668
KCCA 0.781 0.860 0.865 0.865 0.617 0.336 -
DCCA 0.914 0.860 0.866 0.860 0.612 0.262 0.632
DCCAE 0.876 0.860 0.880 0.864 0.599 0.269 0.476

MDNN(5%) 0.782 0.862 0.862 0.873 0.505 0.289 0.655
MvDGAT(5%) 0.924 0.862 0.870 0.876 0.665 0.481 0.844

MDNN(10%) 0.794 0.861 0.876 0.875 0.542 0.308 0.664
MvDGAT(10%) 0.928 0.866 0.874 0.901 0.716 0.490 0.866

MDNN(15%) 0.815 0.868 0.883 0.879 0.543 0.366 0.679
MvDGAT(15%) 0.931 0.871 0.900 0.889 0.718 0.484 0.893

Table 2: Clustering results in terms of Purity on seven datasets. Results are averaged over 10 trials. (γ%) represents the perfor-
mance of trained representation by using γ% labeled data. - represents that the KCCA cannot scale to large datasets.

Course Ads12 Ads13 Ads23 FOX CNN NoisyMNIST

CCA 0.379 0.011 0.088 0.033 0.232 0.075 0.550
KCCA 0.125 0.015 0.088 0.088 0.276 0.112 -
DCCA 0.484 0.029 0.098 0.031 0.212 0.040 0.477
DCCAE 0.486 0.024 0.106 0.088 0.171 0.049 0.420

MDNN(5%) 0.473 0.047 0.131 0.104 0.102 0.079 0.563
MvDGAT(5%) 0.553 0.077 0.142 0.157 0.471 0.295 0.579

MDNN(10%) 0.530 0.053 0.163 0.121 0.115 0.087 0.603
MvDGAT(10%) 0.560 0.088 0.167 0.189 0.479 0.295 0.594

MDNN(15%) 0.588 0.062 0.174 0.157 0.118 0.117 0.632
MvDGAT(15%) 0.591 0.090 0.308 0.229 0.482 0.300 0.634

Table 3: Clustering results in terms of NMI on seven datasets. Results are averaged over 10 trials. (γ%) represents the perfor-
mance of trained representation by using γ% labeled data. - represents that the KCCA cannot scale to large datasets.

Datasets
The experiments on several real-world multi-view datasets
are conducted to demonstrate the effectiveness and superi-
ority of our proposed method. A summary of the datasets is
presented in Table 1.

Course dataset is a webpage classification dataset, which
contains 1,051 home pages collected from web sites of Com-
puter Science departments of several universities, and has
two views. These pages are manually labeled as course or
non-course, each with a full-text view and an in-links view.

Advertisement dataset contains 983 images and is de-
scribed in 5 views, i.e., the text information like image prop-
erties, the image caption and words occurring in the image
source URL, the words occurring in the affiliated web page
URL and the words occurring in the image anchor URL.
Each example describes an image on the web, and the im-
ages are manually labeled as ads or non-ads. By using the
texts from different views, we create datasets named Ads12,
Ads13 and Ads23.

FOX and CNN datasets are crawled from FOX and CNN
web news. The category information extracted from their
RSS feeds is considered as their class label. Each instance

is represented in two views: the text view and image view.
Titles, abstracts, and text body contents are considered as the
text view data (view 1), and the image associated with the ar-
ticle is the image view (view 2). These datasets are named
FOX and CNN respectively.

MNIST dataset is generated from the MNIST dataset and
we adopt the setting used in (Wang et al. 2015). Specifically,
we use the original dataset as view 1 and randomly select
within-class images with additive noise as view 2. Each im-
age consists of 28 × 28 grayscale digits. Thus, we obtain a
two-view dataset named NoisyMNIST consisting of 70,000
samples.

Settings
The performance of MvDGAT is compared with sev-
eral multi-view representation learning methods, i.e.,
CCA (Hotelling 1936), KCCA (Akaho 2006; Sun, Dong,
and Liu 2020), DCCA (Andrew et al. 2013; Zhen et al.
2019), DCCAE (Wang et al. 2015; Hu et al. 2019) and
MDNN (Noroozi et al. 2018). For each method, 10 trials
are performed and the average performance is reported. The
hyperparameters are chosen according to the validation per-
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γ Course Ads12 Ads13 Ads23 FOX CNN NoisyMNIST

5%

CCA 0.874 0.860 0.867 0.862 0.612 0.285 0.760
KCCA 0.785 0.860 0.860 0.860 0.623 0.289 -
DCCA 0.899 0.864 0.872 0.851 0.631 0.280 0.785
DCCAE 0.912 0.842 0.890 0.866 0.627 0.273 0.812
MDNN 0.903 0.882 0.906 0.924 0.665 0.304 0.852
MvDGAT 0.940 0.886 0.909 0.941 0.721 0.609 0.904

10%

CCA 0.930 0.859 0.880 0.865 0.671 0.306 0.769
KCCA 0.930 0.859 0.919 0.864 0.682 0.303 -
DCCA 0.923 0.860 0.903 0.862 0.644 0.309 0.793
DCCAE 0.924 0.857 0.891 0.863 0.633 0.311 0.799
MDNN 0.933 0.897 0.934 0.931 0.670 0.328 0.871
MvDGAT 0.951 0.904 0.948 0.949 0.762 0.652 0.922

15%

CCA 0.928 0.890 0.881 0.889 0.686 0.316 0.777
KCCA 0.896 0.897 0.873 0.883 0.697 0.308 -
DCCA 0.932 0.909 0.904 0.883 0.647 0.316 0.798
DCCAE 0.927 0.909 0.891 0.892 0.644 0.314 0.808
MDNN 0.941 0.921 0.950 0.926 0.673 0.354 0.901
MvDGAT 0.953 0.929 0.945 0.936 0.776 0.670 0.947

Table 4: Accuracy of the methods with γ (γ = 5%, 10%, 15%) labeled data. Results are averaged over 10 trials. - represents
that KCCA cannot scale to the large datasets.

formance in the first trial and then fixed.
For MvDGAT, we first construct k-nearest-neighbor

graph for each view with exp(−d(xv(i),xv(j))

σ2 ) for differ-
ent distance metrics, k ∈ {1, 3, 5, 7, 9}, d(xv(i), xv(j)) is
set to be Euclidean distance or cosine distance, and σ ∈
{10−2, 10−1, 1}, v = 1, 2. For each dataset, we randomly
sample 10% data as the validation set, randomly sample
γ (γ = 5%, 10%, 15%) of the remaining data as the labeled
data, and use the rest data as the unlabeled data. In the exper-
iments, each transformation fv(Xv) in MvDGAT consists
of two hidden layers and an output layer, which is similar to
the setting in (Velickovic et al. 2018). The final dimension
of each output layer is selected from {5, 10, 20, 50, 100} ac-
cording to the performance of the first view on the validation
set. In the training process, we use dropout rate p = 0.3 and
use ReLU as the activation function in each graph attention
layer, and the softmax activation function is used in this out-
put layer. The size of the hidden layer in each view varies ac-
cording to the dimension of feature in the view, i.e., 128 and
128 for Course, Ads12, Ads13, Ads23, FOX, CNN, 256 and
256 for NoisyMNIST. f1 and f2 are trained for a maximum
of 200 epochs using Adam (Kingma and Ba 2015) and early
stopping with a window size of 5, i.e., we stop the training
process when the validation performance does not increase
for 5 consecutive epochs. For Course, Ads12, Ads13, Ads23,
FOX, CNN, the whole datasets are used to evaluate the loss
function. For NoisyMNIST, the dataset is split into 10 fold
according to the proportion of each class.

For the baselines, we consider the regularization param-
eters chosen from {0.1, 1, 10} in CCA and KCCA. Es-
pecially, we use RBF kernel (σ ∈ {0.1, 1, 10}), polyno-
mial kernel (d ∈ {2, 3, 4}) and linear kernel in KCCA.

The dimension of the representations generated by CCA
and KCCA is selected from {5, 10, 15} for all datasets. For
DCCA, the projection network has one hidden layer, whose
size is chosen from {25, 26, 27, 28}. For DCCAE, both en-
coder and decoder network also have one hidden layer and
the setting of the hidden layer is the same as that in DCCA.
The dimension of the representations generated by DCCA
and DCCAE will also vary in {5, 10, 15}. All the parame-
ters and kernel types mentioned above are chosen according
to the performance on the validation set.

Clustering
Clustering aims to group a set of data points, the data in
the same cluster are as similar as possible, while the data in
the different clusters are dissimilar to each other. We mea-
sure the separation in the learned feature space by cluster-
ing the projected view 1 inputs into several clusters and
evaluate how well the clusters agree with the ground-truth
labels by using k-means algorithm. We learn representa-
tion with different labeled and unlabeled data for 10 tri-
als. For MvDGAT, we train MvDGAT representation with
γ% (γ = 5, 10, 15) labeled data. For k-means, different
initialization methods are considered, i.e., k-means++ and
random. We measure clustering performance with two cri-
teria, i.e., purity score (Purity) and Normalized Mutual In-
formation score (NMI) (Li et al. 2019b; Nie, Cai, and Li
2017). Purity is a simple and transparent evaluation measure,
but cannot be used to trade off the quality of the clustering
against the number of clusters. NMI can be information-
theoretically interpreted, which measures the normalized
mutual information between the distribution of clustering la-
bels and that of true labels. The clustering results are shown
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in Tables 2 and 3. It can be found that MvDGAT can achieve
the best performance on most datasets and its performance
is increasing with more labeled data.

Classification

Given the representation, one would expect that the factors
are related to each other through simple, typically linear de-
pendencies, so simple machine learning algorithms could
achieve good performance, e.g. linear classifier (Liu et al.
2018). We implement the linear classifier with one-versus-
one linear SVMs on the projected labeled data, and eval-
uate the performance on the projected unlabeled data (us-
ing the validation set for selecting the hyperparameters of
SVMs, and the regularization parameter C is selected from
{0.001, 0.01, 0.1, 1, 10}).

The evaluated performances on the representation of all
trials are averaged for each algorithm. The results of the first
view are shown in Table 4, which shows that MvDGAT can
achieve the best performance on most datasets and its per-
formance is increasing with more labeled data.

(a) Original Representation

(b) MvDGAT Representation

Figure 2: Visualization of NoisyMNIST dataset and its
learned MvDGAT representation.

Subspace Analysis
We also compare the representation learned by MvDGAT
with the original feature space on NoisyMNIST dataset. We
visualize the representation of the dataset with 15% labeled
data, and 1000 instances of the samples are randomly se-
lected to be visualized. These instances are visualized by
using a dimension reduction algorithm called t-distributed
stochastic neighbor embedding (t-SNE) (Maaten and Hin-
ton 2008), which is a representation learning method widely
used for visualizing features in a low-dimensional space. It
learns mappings from the given feature space to a new space
in which the similarity of samples is preserved as much as
possible. We reduce the dimension of representation to be 2
by using t-SNE and then visualize it.

For NoisyMNIST, its original representation is shown in
Figure 2a and the learned representation is shown in Fig-
ure 2b. We can see that the different classes are drawn apart
after the transformation, which further demonstrates the use-
fulness of our MvDGAT for learning a good representation.

Conclusion
In this paper, we present a deep neural network model
MvDGAT for multi-view representation learning, which can
utilize labeled and unlabeled data simultaneously to en-
hance the discriminativeness of the learned representation.
Experiments conducted on both the synthetic and real-world
datasets reveal that our MvDGAT can achieve better perfor-
mance than state-of-the-art representation learning methods.
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