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Abstract

Gradient-based adversarial training is widely used in improv-
ing the robustness of neural networks, while it cannot be eas-
ily adapted to natural language processing tasks since the
embedding space is discrete. In natural language processing
fields, virtual adversarial training is introduced since texts are
discrete and cannot be perturbed by gradients directly. Alter-
natively, virtual adversarial training, which generates pertur-
bations on the embedding space, is introduced in NLP tasks.
Despite its success, existing virtual adversarial training meth-
ods generate perturbations roughly constrained by Frobenius
normalization balls. To craft fine-grained perturbations, we
propose a Token-Aware Virtual Adversarial Training method.
We introduce a token-level accumulated perturbation vocab-
ulary to initialize the perturbations better and use a token-
level normalization ball to constrain these perturbations per-
tinently. Experiments show that our method improves the
performance of pre-trained models such as BERT and AL-
BERT in various tasks by a considerable margin. The pro-
posed method improves the score of the GLUE benchmark
from 78.3 to 80.9 using BERT model and it also enhances
the performance of sequence labeling and text classification
tasks.

Introduction

Neural networks are proved vulnerable to crafted adversarial
samples. Recent works have shown that adversarial training
is helpful in constructing robust neural networks (Goodfel-
low, Shlens, and Szegedy 2014; Madry et al. 2018) against
adversarial samples. During adversarial training, gradients
are collected from the clean samples to generate small per-
turbations. The gradients are collected and constrained by
a normalization ball, then added to the original samples to
create adversarial samples. Then these adversarial samples
are used in the training process to improve the robustness
against gradient-based adversarial attacks.

However, in the natural language processing fields,
gradient-based adversarial attack and adversarial training
methods cannot be easily adapted since the embedding space
is discrete and gradients cannot be applied directly to form
a perturbation. Traditional methods used to generate adver-
sarial samples for adversarial training usually incorporate
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substitution-based methods such as Ebrahimi et al. (2017);
Alzantot et al. (2018); Jin et al. (2019); Cheng, Jiang, and
Macherey (2019); Li et al. (2020), which use synonyms or
similar words/characters to replace the original ones in the
sequence. The process of these methods is inefficient since
finding proper substitutions requires massive calculations.

In most cases, it is not necessary to craft substitution-
based adversarial samples during the adversarial training
process. Instead, Miyato et al. (2017) propose a virtual ad-
versarial training method that generates gradient-based per-
turbations on the embedding space as virtual adversarial
samples, which can help improve the generalization abilities
of NLP models in various tasks (Miyato, Dai, and Goodfel-
low 2016; Miyato et al. 2017; Zhu et al. 2020).

Despite the success of virtual adversarial training in NLP
tasks, the perturbations generated from the virtual adversar-
ial training method are rather rigid. The most obvious prob-
lem is two-fold:

(A) Initialization Problem:

During the virtual adversarial training process, the pertur-
bations are randomly initialized in every mini-batch. Unlike
the computer vision fields where pixels in an image do not
possess information across instances, tokens in languages
possess similar information in different sequences. There-
fore, randomly initializing the perturbations on the same to-
kens in different sequences may neglect the fact that tokens
could possess the same information and possible gradient di-
rection across instances, which could be very helpful in gen-
erating fine-grained perturbations. That is, random initial-
ization of the perturbations could cause unnecessary noise
during the virtual adversarial training.

(B) Constraint Problem:

On the other hand, traditional virtual adversarial training
method constrains the perturbations with normalization balls
which are usually Frobenius normalization. Such a con-
straint generates an instance-level perturbation: the normal-
ization ball acts on the embeddings of the entire sequence.
Therefore the constraint is not sensitive to different tokens in
the sequence. In natural languages, some of the tokens in the
sequence play more important roles whiles others are rela-
tively trivial in contributing valuable information to the task.
Therefore it is intuitive to construct token-level constraints
to construct foken-level perturbation rather than sentence-
level constraints on the entire embedding space.



So in this paper, we propose a Token-Aware Virtual
Adversarial Training method that tackles the rigid perturba-
tion construction used in previous virtual adversarial train-
ing methods.

To find a better initialization of the virtual perturbations
of different tokens, we establish a global perturbation vo-
cabulary to accumulate the perturbations of the same tokens
and use them as the perturbation initialization of the corre-
sponding tokens. In this way, we can avoid the noise caused
by randomly initializing the perturbations of the same token
in different sequences. Therefore the perturbations are more
pertinent in a global scale of the entire training samples of
the given task.

To overcome the rigid Frobenius constraint used in the
traditional virtual adversarial training process, we constrain
the perturbations in the token-level. We allow tokens with
larger gradients to have a larger perturbation bound while
tokens with trivial gradients are more tightly constrained. In
this way the perturbations are fine-grained and more perti-
nent to different tokens.

Compared with substitution-based adversarial training
methods, virtual adversarial training methods do not need
to find the substitutes to replace the original sequences, so
there are fewer constraints to keep the adversarial samples
imperceptible. Therefore, virtual adversarial training meth-
ods are much efficient. Our TA-VAT method has no over-
head compared with traditional virtual adversarial training
method while generates fine-grained token-aware perturba-
tions.

We construct extensive experiments to evaluate the effec-
tiveness of these fine-grained token-aware virtual adversar-
ial samples. Results show that TA-VAT can boost the over-
all score of GLUE benchmark from 78.3 to 80.9 using the
BERT-base model and from 89.9 to 90.9 using ALBERT
xxlarge model. It is also helpful in sequence labeling tasks
such as Conll 2003 and Ontonotes5.0 NER tasks.

To summarize our contribution: we explore the detailed
process of virtual adversarial training method used in NLP
tasks and construct a fine-grained perturbation generation
strategy named TA-VAT. The proposed method has no over-
head compared with previous virtual adversarial training
methods while further improves the performances of NLP
models in various kinds of tasks.

Related Work
Adversarial Learning

Adpversarial attack (Goodfellow, Shlens, and Szegedy 2014)
finds imperceptible perturbations to mislead neural net-
works. In the computer vision field, adversarial attacks are
extensively explored (Carlini and Wagner 2017) since it is
easy to apply gradients over the continuous space in images.
Derived from gradient-based adversarial attacks, adversarial
training (Goodfellow, Shlens, and Szegedy 2014) uses the
generated adversarial samples to train the model against ad-
versarial attacks. The PGD-algorithm (Madry et al. 2018)
is widely used in defense against adversarial attacks. The
PGD-algorithm process includes multiple projected gradient
ascent steps to find the adversarial perturbations. Then these
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perturbations are used to update the model parameters. Later
developments such as Shafahi et al. (2019); Zhu et al. (2020)
focus on finding better adversarial samples while maintain-
ing a low calculation cost. That is to find adversarial pertur-
bations and update the model parameters simultaneously in
each gradient ascent step.

In the NLP fields, gradient-based methods would face a
major challenge: texts are discrete, so gradients cannot be
applied to the discrete tokens directly. Instead of using gra-
dients to craft perturbations, most common methods usu-
ally replace the original texts based on certain rules such as
replacing words with semantically similar words (Alzantot
et al. 2018; Jin et al. 2019; Li et al. 2020). Besides replacing
words, character-level and phrase-level adversarial samples
are also introduced. Ebrahimi et al. (2017) proposes a pertur-
bation strategy that can apply character insertion, deletion,
and replacement. Jia and Liang (2017) proposes a human-
involved phrase generation method to mislead machine read-
ing comprehension tasks. These methods face a major chal-
lenge that finding the optimal solution in the massive space
of possible combinations is hard.

Gradient-based methods such as Ebrahimi et al. (2017);
Papernot et al. (2016); Cheng, Jiang, and Macherey (2019)
used in generating adversarial samples in the texts domains
usually find the substitutes that are similar to the gradient-
based perturbations. These replacing strategies cannot use
normalization methods to constrain the perturbation imper-
ceptible, so they use additional rules like synonym dictionar-
ies or language models to measure whether the found pertur-
bations are similar to the original samples. These methods
help improve the robustness of NLP models (Ebrahimi et al.
2017; Alzantot et al. 2018; Jin et al. 2019), or improve the
performances of some NLP tasks such as machine transla-
tion (Cheng, Jiang, and Macherey 2019; Cheng et al. 2020).
However, finding a proper adversarial sample in the mas-
sive space of combinations through a trial and test process
is usually costly when language models are involved in con-
straining the perturbation quality. So these methods are less
efficient compared with the virtual adversarial training pro-
cess.

Virtual Adversarial Training Methods

Virtual adversarial training methods (Miyato, Dai, and
Goodfellow 2016; Miyato et al. 2017) generate virtual ad-
versarial samples in the embedding space as well as virtual
labels, so these methods are helpful in tasks that do not re-
quire substitution-based adversarial samples. The virtual ad-
versarial training methods generate the perturbations based
on gradients and constrain them with normalization balls
on the embedding space, so the perturbations do not need
to represent words/chars which are the so-called virtual ad-
versarial samples, therefore these virtual adversarial training
methods are different from gradient-based adversarial train-
ing methods such as Cheng, Jiang, and Macherey (2019).
Virtual adversarial training methods help improve the per-
formances in semi-supervised text classifications (Miyato
et al. 2017) and help improve the generalization ability of
pre-trained language models in downstream tasks (Zhu et al.
2020).



Token-Aware Virtual Adversarial Training

In this section, we first introduce the details of the gradient-
based adversarial training/virtual adversarial training pro-
cess, then we will illustrate the Token-Aware VAT method.

Gradient-Based Adversarial Training

Normally, adversarial training aims to optimize parameter
0 to minimize the maximum risk of misclassification when
adding perturbations to the original inputs. The perturbation
0 is usually constrained by a norm ball e:

maz L(fo(X + 6),y)
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min E(x )
where y is the label of input X and L is the loss function of
parameter §. When it is a virtual adversarial training process,
the input sequence X is the embedding output of the input
sequence. Normally we use Frobenius norm to constrain 4.

As pointed out by Madry et al. (2018), in Equation 1, the
outer minimize function is non-convex, while the inner max-
imize function is non-concave. A possible perturbation ¢ can
be found through multiple steps of gradient ascent. So in the
PGD-algorithm, the perturbation ¢ is calculated by multiple
steps of gradient ascent.

At step t:
_ (0: + ag(dy))
el 1 P 19(82)[[ @
9(8¢) = Vs L(fo(X +d¢),y) 3

Here HH 5| . <e Tepresents the process that projects the per-

turbation onto the Frobenius normalization ball.

After multiple steps of gradient ascent, we acquire the per-
turbation ¢ and add it to the original inputs to train the given
model.

Token-Aware Virtual Adversarial Training

As illustrated above, current virtual adversarial training
methods craft virtual adversarial samples rigidly. In NLP
tasks, adversarial samples should be pertinent to different
tokens since tokens in a sequence of natural languages may
play different roles. Considering the two major omissions of
current virtual adversarial training methods: randomly ini-
tialized perturbations and instance-level perturbation con-
straint, we propose the token-aware virtual adversarial train-
ing method to craft fine-grained token-aware virtual ad-
versarial samples. The virtual adversarial training concept
we use represents that the adversarial samples are virtual,
slightly different from Miyato et al. (2017).

Token-Level Perturbation n’

The token-level perturbation is mainly two-fold: (1) ini-
tializing from a global perturbation vocabulary to avoid the
noise caused by randomly initialization within the mini-
batch; (2) constraining the perturbations at the token-level
instead of a rigid normalization ball over the entire sequence.

e Global Perturbation Vocabulary:

We create the global accumulated perturbation vocabulary
V € RV*P where N is the vocabulary size and D is the
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hidden dimension of the word embedding. In each mini-
batch, the token-level perturbation n{, of word i is initial-
ized by the corresponding perturbation from the global
accumulated perturbation V. After K steps of gradient
ascent, the corresponding words in the global accumu-
lated perturbation V is updated by n’.. Therefore, in the
next minibatch of the virtual adversarial training process,
the perturbations can be initialized from the accumulated
perturbation to avoid the unnecessary noise caused by the
randomly initialized perturbations.

e Token-Level Constraints:

After the initialization, we use gradients to update the
perturbations and constrain them in a small normaliza-
tion ball to keep the perturbations minimum. However, the
perturbations act on the embedding space which is token-
level while they are normalized as an entire sequence in
the previous virtual adversarial training process. To bridge
the gap between the token-level perturbation generaliza-
tion and the instance-level perturbation constrain, we pro-
pose a token-level constraint. It is intuitive that different
tokens play different roles in a sequence and some to-
kens may be vital to the task. Therefore, we allow tokens
with larger gradients to have larger perturbation bounds
and restrict tokens with smaller gradients to have smaller
bounds. Instead of using the Frobenius norm to normalize
the entire perturbation, we normalize perturbations over
separate tokens. Then we introduce a scaling index to al-
low larger perturbations on tokens with larger gradients.
We calculate the scaling index n‘ by finding the maximum
token-level perturbation in the sequence and set a scaling
index according to that:

ni = ||77§HF

maa(|f] )

(4)

Finally, we still apply a Frobenius normalization over the
scaled perturbation. Therefore the token-level normaliza-
tion constraint is formulated as:

nivy = i 5 (Tt 09010))
o gl p)
N1 = H\InIIFiemt)

In this way, the perturbations are flexible and pertinent to
different tokens.

(&)
(6)

Instance-Level Perturbation ¢

We adopt the instance-level perturbation in our token-
aware virtual adversarial training algorithm as a comple-
mentary. We use § to denote the instance-level perturbation
which is the same used in illustrating the adversarial training
process. We calculate the instance-level perturbation § using
the adversarial training method illustrated in Equation 1, 2
and 3.

Overall Process

We illustrate the entire process in Algorithm 1. We adopt
the virtual adversarial training framework based on FreeLB
(Zhu et al. 2020). We first initialize the perturbation vocab-
ulary. Instead of randomly initializing the perturbation, we



Algorithm 1 Token-Aware Virtual Adversarial Training

Require: Training Samples S = {(X = [wo, - ,w;, -
adversarial step size «, model parameter 0

75

1

2: forepoch=1,---,do

3: for batch B C S do

4: 0g 75

5: fort=1,--- , K do

6:

7: Update token-level perturbation 7:

8: gy« Vi L(fo((X + -1 +1m,_1),9)
9: ny 0t (ni +a-gy/llgyll )
10: M < I <c ()
11: Update instance-level perturbation d:
12: g5 < Vs L(fo((X + 611 +m;1),9)
13: 0, < Ijjs)),<c (i1 + - g5/llg5 )
14: end for
15: V [w;] < n% //Update perturbation vocabulary V
16: 0 < 0 — gk //Update model parameter 0
17: end for
18: end for

-],y)}, perturbation bound e, initialize bound o adversarial steps K,

: V e RVXP « —LU(—0,0) // Initialize perturbation vocabulary V

L+ U(~0,0),n} + V]w;], gy + 0 //Initialize perturbation and gradient of 6

g, < 9,1+ %E(Xw)eB[V(;L(fg(X +dt-1 +m,_1),y)] //Accumulate gradients of 6

initialize the token-level perturbation 7’ of the i'" token us-
ing the corresponding token-level perturbation in the pertur-
bation vocabulary V. During the training process, we calcu-
late the gradients based on both instance-level perturbation
4 and token-level perturbation 7% as seen in line 7. We then
calculate the gradients of token-level perturbation of the i*"
token 7° and the gradients of the instance-level perturbation
0 correspondingly. We constrain the perturbations using the
token-level normalization constraint with the scaling index.

Finally, we update the perturbation vocabulary as well as
the model parameters after the inner loop of gradient ascent
steps.

Experiments

To evaluate the proposed TA-VAT, we construct extensive
experiments over common NLP tasks: text classification,
natural language inference, and named entity recognition.
We test on widely-used datasets: GLUE benchmark (Wang
et al. 2019), ConLL2003 NER dataset (Tjong Kim Sang and
De Meulder 2003), Ontonotes5.0 NER dataset (Weischedel
et al. 2011), IMDB dataset and AG’s NEWs dataset.

Datasets

GLUE Dataset

GLUE dataset is a collection of natural language under-
standing tasks, namely Multi-genre Natural Language Infer-
ence (MNLI (Williams, Nangia, and Bowman 2018)); Quora
Question Pairs (QQP '); Recognizing Textual Entailment

"https://www.quora.com/q/quoradata/First-Quora-Dataset-
Release-Question-Pairs
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(RTE (Dagan, Glickman, and Magnini 2005); Question Nat-
ural Language Inference (QNLI (Rajpurkar et al. 2016));
Microsoft Research Paraphrase Corpus (MRPC (Dolan and
Brockett 2005)); Corpus of Linguistic Acceptability(CoLA
(Warstadt, Singh, and Bowman 2018)); Standard Sentiment
Treebank (SST-2 (Socher et al. 2013)); Semantic Textual
Similarity Benchmark (STS-B (Agirre, Marquez, and Wi-
centowski 2007). All tasks except STS-B are formulated as a
classification task. STS-B is formulated as a regression task.

NER Dataset

Since our approach focuses on adversarial training con-
cerning discrete tokens, we believe that such a method
would improve the performance of sequence labeling tasks.
Therefore, we run NER task using CoNLL2003 dataset
(Tjong Kim Sang and De Meulder 2003) and Ontonotes
dataset (Weischedel et al. 2011). The CoNLL 2003 dataset
contains 12K training samples with 4 types of entities. The
Ontonotes dataset contains 60K training samples with 18
types of entities.

Text Classification Dataset

In the GLUE dataset, only SST-2 is a standard text clas-
sification task. We further run several popular classification
datasets consists of news-genre classification and movie re-
view classification which are longer sequences. We use AG’s
NEWS dataset that predicts the news-type containing 112K
training samples. And we use the IMDB dataset 2, a polarity
sentiment classification task containing 45K training sam-
ples with an average length of 215 words.

*https://datasets.imdbws.com/



Model RTE QNLI MRPC CoLA SST STS-B  MNLI-m/mm QQP

Acc  Acc Acc/fl Mcc Acc P/S Corr Acc Acc/f1
BERT-BASE

BERT (Devlin et al. 2018) - 88.4 -/86.7 - 92.7 - 84.4/- -

BERT-Relmp 63.5 91.1 84.1/89.0 54.7 92.9 89.2/88.8 84.5/84.4  90.9/88.3

FreeAT-Relmp 68.0 91.3 85.0/89.2 575 93.2 89.5/89.0 84.9/85.0 91.2/88.5

FreeLB-Relmp 70.0 91.5 86.0/90.0 589 934 80.7/89.2 85.3/85.5 91.4/88.6

TA-VAT (ours) 74.0 924 88.0/91.6 62.0 93.7 90.0/89.6 85.7/85.8 91.6/88.9

ALBERT-xxlarge-v2

ALBERT-xxlarge-v2(Lan et al. 2019) 89.2 95.3 -/90.9 71.4 96.9(96.5) 93.0/- 90.8/- 92.2/-

FreeLLB(Zhu et al. 2020) 89.9 95.6* -/92.4 73.1 97.0 93.2/- 90.9/- 92.5/-

TA-VAT (ours) 90.3 95.7 -/93.4 74.1 96.8 93.4/- 91.1/- 92.6 /-

Table 1: Evaluation results on the development set of GLUE benchmark. QNLI* in FreeLB is formed as pairwise ranking task.

Model RTE QNLI MRPC CoLA SST STS-B MNLI-m/mm QQP
Acc Acc Acc/fl Mcc Acc  P/S Corr Acc Acc/fl
BERT-BASE(Devlin et al. 2018) 66.4 90.5 88.9/84.8 52.1 935 87.1/85.8 84.6/83.4 71.2/89.2
FreeLLB(Zhu et al. 2020) 70.1 91.8* 88.1/83.5 545 93.6 87.7/86.7 85.7/84.6 72.7/89.6
TA-VAT (ours) 71.0 917 88.9/84.5 559 945 86.8/85.7 85.2/84.7 72.8/89.5

Table 2: Evaluation results on the test set of GLUE benchmark. Results use the evaluation server on GLUE website. QNLI* in

FreeLB is formed as pairwise ranking task.

Implementations

We implement our TA-VAT method with PyTorch based on
Huggingface Transformers . All models are trained using
NVIDIA TitanXP GPUs. We re-implement results of BERT,
FreeAT, and FreeLB methods based on their open-released
codes.

We implement our approach based on hyper-parameters
used in the standard fine-tuning process and the FreeLLB ad-
versarial training process.

Parameters such as the running epoch, learning rate, batch
size and warmup step settings are the same as used in the
standard fine-tuning process of BERT # and ALBERT . As
for hyper-parameters such as the adversarial training step K,
the constrain bound of the perturbation e, the initialization
bound ¢ and the adversarial step size o, we adopt parameters
the same as used in FreeLLB © for a fair comparison. We adopt
the same parameters when using the ALBERT-model, but
we truncate some long sequences to save the GPU memories
so the performances may be affected.

In the GLUE benchmark, we use the vanilla implementa-
tion of the original pre-trained language models. We do not
use the MNLI fine-tuned model to fine-tune the RTE task
(Zhu et al. 2020); We formulate the QNLI task as a standard
text classification task rather than a pairwise ranking task as
a trick proposed by Liu et al. (2019). In the NER tasks, we
use the cased BERT model (Devlin et al. 2018).

3https://github.com/huggingface/transformers
*https://github.com/google-research/bert
Shttps://github.com/google-research/albert/blob/master/
Shttps://github.com/zhuchen03/FreeLB
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Experiment Results

As seen in Table 1, 2, 3, our Token-Aware Virtual Adversar-
ial Training algorithm improves the fine-tuned models by a
large margin.

Generally, TA-VAT lifts the evaluation dataset perfor-
mance of the BERT-base model from 79.3 to 80.9. The re-
sults are tested on the GLUE server ’. The improvements
indicate that the token-aware perturbations used in TA-VAT
help construct fine-grained virtual adversarial samples to
achieve greater generalization performances of pre-trained
language models.

Compared with the FreeL.B algorithm which does not in-
corporate token-aware adversarial training, our algorithm
has a 0.4 points performance boost. Further, TA-VAT can
also boost performance when using the ALBERT model,
which indicates that the method is effective in various pre-
trained models. As mentioned, the xxlarge version of the
ALBERT model costs large GPU memories so we truncate
sequences to save the memories. The performances may
be affected by a small margin. In the SST dataset, we re-
implement the results of the standard fine-tuning to 96.5 so
the TA-VAT method does not surpass the reported perfor-
mances of both the ALBERT model and the FreeLB model
but outperforms the baseline of our implementation.

According to FreeLB (Zhu et al. 2020), a dropout strat-
egy is used to boost the model performances by a consid-
erable amount. We do not explore how the dropout mecha-
nism works in adversarial training, so we re-implement re-
sults of FreeLB without dropout for comparison. The result

"https://gluebenchmark.com/



Model Pre Recall F1
CoNLL2003
BERT-Relmp 94.9 95.5 95.2
FreeLB-Relmp 94.8 95.1 94.9
TA-VAT (ours) 95.0 95.7 95.4
Ontonotes
BERT-Relmp 86.7 88.9 87.8
FreeLB-Relmp 86.7 89.2 88.0
TA-VAT(ours) 87.0 89.5 88.2

Table 3: Evaluation results on the CoNLL2003 dataset and
Ontonotes dataset.

Model IMDB AG’s NEWS
BERT-Relmp 95.0 90.0
FreeLB-Relmp 95.4 90.5
TA-VAT (ours) 95.7 90.9

Table 4: Evaluation results of the Text Classification
Datasets.

of FreeLB-ALBERT in Table 1 is reported by (Zhu et al.
2020), which uses the dropout mechanism. As seen in Table
1, 2, our method performs better even without the dropout
mechanism.

In tasks like RTE or MRPC, the model performance is
improved by a larger margin using TA-VAT. We assume this
is because the training sets in these tasks are limited to only
a few thousands of samples, which indicates that our method
can be more helpful in tasks that lack training data. We will
discuss the effectiveness of our method when dealing with
insufficient data in the following section.

In the sequence labeling tasks, the TA-VAT method can
still boost the performance in both CoNLL 2003 NER
dataset and the Ontonotes NER dataset. In CoNLL 2003
dataset, traditional adversarial training is even worse. There-
fore, we can assume that TA-VAT is effective in dealing with
sequence-level tasks.

In the standard text classification tasks, TA-VAT is also
effective. In the IMDB dataset, the sequence is usually very
long(over 200 words per sample). As seen in 4, the perfor-
mance of TA-VAT is 0.3 points higher compared with the
FreeLB method in the IMDB-dataset.

The results of various tasks indicate that the proposed TA-
VAT method is effective in boosting the performance of fine-
tuned pre-trained models.

Ablations

We run ablation studies to explore the effectiveness of the
key components in our adversarial training algorithm:

We setup ablation experiments to test the effectiveness of
initializing the perturbations with the perturbation vocabu-
lary. Instead of initializing from the perturbation vocabulary,
we initialize perturbation 7 randomly for comparison. Also,
we run the experiment to compare whether using the token-
level constraint is effective.
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Method RTE MRPC CoLA
Ptb-Vocab Tok-Norm
v v 74.0 88.0 62.0
- v 73.0 87.5 60.3
v - 72.5 87.0 59.5
- - 70.0 86.0 57.5

Table 5: Ablation Studies; Ptb-Vocab represents the pertur-
bation vocabulary and Tok-norm represents the Token-level
normalization constraint.

As seen in Table 5, without initializing the perturbations
from the perturbation vocabulary, performances are consid-
erably lower. Also, using the token-level perturbation con-
straint is more effective than using the instance-level Frobe-
nius norm to constrain the perturbations.

Therefore, we can summarize it is important to craft per-
turbations that concern the variance between tokens. Initial-
izing the perturbations from a global accumulated perturba-
tion vocabulary and using token-level constraints helps im-
prove the quality of the generated virtual adversarial sam-
ples.

Analysis

In this section, we construct experiments to further analyze
the mechanism of the TA-VAT method.

What Does The Perturbation Vocabulary Learn?

Since we incorporate the global accumulated perturbation
vocabulary during the training process, the perturbation vo-
cabulary may learn some useful information after the entire
training process. So we construct an experiment: we save the
perturbation vocabulary after the training process and add
this vocabulary to the original word embedding layer of the
pre-trained models. Then we run a normal fine-tuning pro-
cess without the virtual adversarial training process on the
same task using the updated pre-trained models. We test on
the development set using the BERT-base model.

Results in Table 6 show that the learned perturbation vo-
cabulary can help improve the performance of the simple
fine-tuning method. This indicates that the perturbation vo-
cabulary helps improve the quality of the pre-trained word-
embeddings during the fine-tuning stage.

Further, we update the word-embedding layer with the
perturbation vocabulary learned in one task and run the nor-
mal fine-tuning process on another task to explore whether
the perturbation vocabulary is transferable.

In Table 6, we can see that when the embedding is up-
dated with another task, the performance of the normal fine-
tuned model is also better than using the original embed-
ding. We assume that the perturbation vocabulary is trans-
ferable, which indicates that the learned perturbation vo-
cabulary contains not only some task-specific information
but also some universal information to improve the word-
embeddings.



Method RTE MRPC CoLA
Normal-Train 63.5 84.1 54.7
TA-VAT 74.0 88.0 62.0
Init-with-vocab(RTE) 72.0 84.8 59.0
Init-with-vocab(MRPC) 69.0 85.8 58.8
Init-with-vocab(CoLA) 70.0 85.7 60.1

Table 6: Perturbation vocabulary: Init-with-vocab represents
a normal fine-tuning process with embedding layer updated
with the perturbation vocabulary learned in TA-VAT.

Method RTE MRPC CoLA
ST NT
v v 74.0 88.0 62.0
v 73.0 86.5 60.6
v 73.5 87.0 61.0

Table 7: Perturbations of Special Tokens: ST is to include
special tokens in the perturbation vocabulary; NT is to in-
clude normal tokens in the vocabulary.

Does The Special Token Play An Important Role?

We accumulate the perturbations of certain words in the per-
turbation vocabulary, therefore, we can assume that some
special tokens such as [C LS] and [SE P] in the BERT model
may play vital roles in the training process. We setup an ex-
periment on the development set using BERT-base model to
observe the performance that does not apply perturbations
over these special tokens.

Results in Table 7 show that perturbations on the special
tokens help improve the model performance. Also, the per-
turbation vocabulary is not only useful in accumulating per-
turbations over the special tokens.

Does TA-VAT Improve Robustness?

Adversarial training was firstly introduced to improve the
robustness against adversarial samples. To explore whether
our virtual adversarial training method helps improve model
robustness, we use the state-of-the-art adversarial attack al-
gorithm Textfooler (Jin et al. 2019) to test the robustness of
the trained model. We use the IMDB dataset and test on the
BERT-base model. The implementation is the same as used
in running the IMDB attack using Textfooler ®.

As seen in Table 8, TA-VAT can improve the robust-
ness against the Textfooler attacker. The attacked accuracy is
higher while the query number and the perturbation percent-
age are larger. The query number is the number of access
to the target model. During the attack algorithm, the target
model is accessed to return a score of the given texts for
the attacker to modify its output adversaries. This is a trial
and test process so a larger query number indicates that the
attacking process is harder.

8https://github.com/jind11/TextFooler
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Method Ori Acc Atk Acc Query Num  Ptb
BERT 90.9 13.6 1134 6.1%
TA-VAT 989 15.8 2093 17.3%

Table 8: Adversarial attack results using Textfooler(Jin et al.
2019) as the attacker.
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Figure 1: Performance of MNLI Dataset trained with differ-
ent training data size.

What Task Benefits More with TA-VAT?

Experiments show that our TA-VAT algorithm is effective
in various kinds of tasks, so it is also important to find out
what kind of task benefits more with TA-VAT. As already
shown in Table 2, our TA-VAT algorithm is more effective in
dealing with RTE, CoLA tasks than MNLI and QQP tasks.
We intuitively believe that the corpus size of the task may
be the cause of the performance difference. Therefore, we
construct an experiment that uses different proportions of
the training set in the MNLI task to fine-tune the pre-trained
models.

As seen in Figure 1, TA-VAT is more powerful when deal-
ing with a relatively smaller training set. When we train the
MNLI task with only 2000 training pairs, TA-VAT can lift
the performance by a larger margin than training with the
full 400K dataset.

In the NLP field, obtaining a high-quality dataset is costly
and most tasks have limited high-quality data. We believe
that our TA-VAT method can be widely used in these low-
resource tasks.

Conclusion

In this paper, we focus on virtual adversarial training in the
NLP field. We propose a Token-Aware Virtual Adversarial
Training method to allow virtual adversarial training meth-
ods to construct fine-grained virtual adversarial samples. We
establish experiments to show that our method helps im-
prove the performance of various tasks using pre-trained lan-
guage models. In the future, we will further explore the po-
tential of improving both generalization and robustness us-
ing token-aware virtual adversarial training methods.
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