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Abstract

Time series shapelets are short discriminative subsequences
that recently have been found not only to be accurate but
also interpretable for the classification problem of univari-
ate time series (UTS). However, existing work on shapelets
selection cannot be applied to multivariate time series classi-
fication (MTSC) since the candidate shapelets of MTSC may
come from different variables of different lengths and thus
cannot be directly compared. To address this challenge, in
this paper, we propose a novel model called ShapeNet, which
embeds shapelet candidates of different lengths into a uni-
fied space for shapelet selection. The network is trained us-
ing cluster-wise triplet loss, which considers the distance be-
tween anchor and multiple positive (negative) samples and
the distance between positive (negative) samples, which are
important for convergence. We compute representative and
diversified final shapelets rather than directly using all the
embeddings for model building to avoid a large fraction of
non-discriminative shapelet candidates. We have conducted
experiments on ShapeNet with competitive state-of-the-art
and benchmark methods using UEA MTS datasets. The re-
sults show that the accuracy of ShapeNet is the best of all the
methods compared. Furthermore, we illustrate the shapelets’
interpretability with two case studies.

Introduction

Multivariate time series (MTS), containing multiple obser-
vations at each timestamp, are ubiquitous in many appli-
cations, ranging from astronomy, biology, geoscience, and
smart cities, to health care, human action recognition, mar-
keting, and other scientific and social domains. For exam-
ple, data from electroencephalography (EEG) and magne-
toencephalography (MEG) are standard multivariate data
that have a wide range of applications in medicine, neu-
rology, and psychology. Multivariate time series classifica-
tion (MTSC) has been one of the most fundamental tasks of
MTS. However, MTSC has received much less research at-
tention than the specific case of univariate time series classi-
fication (UTSC). Various methods (Bagnall et al. 2017) have
been proposed for UTSC, and its accuracy has increased
significantly when compared to some benchmark methods,
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such as 1 Nearest Neighbor (1-NN) with Euclidean distance
(ED) or Dynamic Time Warping (DTW) (Berndt and Clif-
ford 1994).

Some related studies on improving MTSC accuracy are
presented in Section . In particular, shapelets (Ye and Keogh
2009) are short discriminative time series subsequences.
The effectiveness of shapelet-based classifiers of UTSC has
been proven by many related studies in the last decade,
e.g., logical shapelets (Mueen, Keogh, and Young 2011),
fast shapelets (Rakthanmanon and Keogh 2013), learning
shapelets (Grabocka et al. 2014) and dynamic shapelets (Ma
et al. 2020). Their efficiency has improved significantly re-
cently (Li et al. 2020; Hou, Kwok, and Zurada 2016). Impor-
tantly, shapelets themselves are intuitive, and the distances
between shapelets and time series from different classes
indicate significant differences in the classes. To integrate
shapelets with standard classifiers, such as SVM and the
Naive Bayes classifier, shapelet transformation (Lines et al.
2012) has been proposed.

Challenges. A shapelet-based approach for MTSC is
in its infancy, however. Few shapelet-based methods
for MTSC have been introduced (Bostrom and Bagnall
2017)(Grabocka, Wistuba, and Schmidt-Thieme 2016). The
challenges of a shapelet approach for MTSC can be listed as
follows.

e First, multivariate time series, of course, have multiple
variables. Shapelet candidates can be voluminous and het-
erogeneous. Exhaustive searches of shapelets (Bostrom
and Bagnall 2017)(Grabocka, Wistuba, and Schmidt-
Thieme 2016) can be inaccurate.

e Second, shapelet candidates of different variables can be
of different lengths, and such shapelets are hard to com-
pare. With excessive candidates, it is not clear how to se-
lect the discriminative ones for classification.

e Third, most existing studies take a black-box approach.
Few methods provide interpretable results for under-
standing and explaining the classification. It is crucial
that the MTSC approach maintains the interpretability of
shapelets.

Contributions. In this paper, we propose a new shapelet-
neural network approach for the MTSC problem, called
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Figure 1: Overview of ShapeNet for multivariate time series classification (MTSC)

ShapeNet, to address the challenges mentioned above. An
overview of ShapeNet is presented in Figure 1. The bene-
fits of ShapeNet are twofold, namely, accuracy improvement
and interpretable classification results.

First, we propose the Multi-length-input dilated causal
Convolutional Neural Network (Mdc-CNN), which enhances
Dc-CNN (Bai, Kolter, and Koltun 2018), to embed shapelet
candidates of different lengths and different variables into a
unified space (shapelet embedding). We adopt dilated con-
volution, which enables an exponentially large receptive
field of the sequence for handling long-term dependencies
without an explosion of model complexity. Causal convolu-
tion is adopted for convolving only the time before the cur-
rent time, which ensures that no future value impacts the
current value. In addition, we propose a cluster-wise triplet
loss function for training Mdc-CNN that considers intra/inter
cluster metric learning for accelerating convergence and im-
proving stability. Our cluster-wise triplet loss not only takes
multiple positive samples and multiple negative samples as
input, but also calculates the distance between them. In com-
parison, the previous triplet loss (Schroff, Kalenichenko, and
Philbin 2015) only involves one positive sample and one
negative sample. Our loss function is more robust for faster
determination of shapelet embedding and convergence (see
Figure 4). To the best of our knowledge, this paper is the first
to use a neural network to discover shapelets in MTS.

Second, we avoid directly feeding numerous shapelet can-
didates (encoded by the embedding learning using Mdc-
CNN) to build a classifier. We first cluster the shapelet candi-
date embeddings. We then propose a utility function to select
top-k candidates that are close to the centroid of a large clus-
ter and different from other cluster centroids, which gives us
representative and diversified final shapelets.

We then adopt multivariate shapelet transformation
(MST), which is first formally defined. Specifically, given
a multivariate time series, we compute its distance(s) to the
selected shapelet(s) of the same variable to obtain a MST
representation.

In all, ShapeNet learns the variable-length time series sub-
sequences of different variables into the unified embeddings,
where ShapeNet captures the interactions among different
variables in MTS.

Finally, because of the MST representation, we can read-
ily learn a classification model. In this paper, we adopt linear
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SVM, which allows us to visualize how the shapelets of dif-
ferent variables separate the time series of different classes
in the case studies.

We conduct experiments on UEA MTS Archive (Bagnall
et al. 2018). The results show that ShapeNet is the best of
the baselines and the state-of-the-art methods in terms of ac-
curacy. We note that ShapeNet gives the best performance in
14 datasets out of 30 datasets. We present two cases of hu-
man action recognition and ECG data, to illustrate how do
the shapelets give insights into classification.

Organization. The rest of this paper is organized as follows.
Section reviews the related work. The details of our pro-
posed method are given in Section . Section reports the ex-
perimental results. Section concludes the paper and presents
avenues for future work.

Related Work

In this section, we give a brief introduction to the existing
methods of MTSC. We classify them into two main types,
namely model-based, and neural network-based.

Model-based methods. A tree classifier based on a new
symbolic representation to extract information contained
in the relationships for MTS was proposed by (Baydogan
and Runger 2015). An accurate and efficient classification
method based on common principal components analysis
(PCA) to reduce the dimensionality for MTS is proposed
in (Li 2016). WEASEL-MUSE (Schéfer and Leser 2017)
utilizes the bag of SFA (Symbolic Fourier Approximation)
to classify MTS.

Neural network-based methods. Another type is based on
neural networks. A nice review paper (Fawaz et al. 2019)
summarizes many neural networks-based methods for time
series classification. LSTM-FCN (Karim et al. 2019) em-
ploys an LSTM layer and stacked CNN layer to extract fea-
tures for a softmax layer to predict the label for classifica-
tion. (Franceschi, Dieuleveut, and Jaggi 2019) applies one
positive sample and several negative samples when training
their neural network, then SVM is utilized to do the final
classification. TapNet (Zhang et al. 2020) is the latest model
of this type. It utilizes an attentional prototype network to
learn the latent features from MTS. All the methods men-
tioned above learn an end-to-end classification model, pro-
viding little interpretability.



ShapeNet

In this section, we propose a shapelet-neural network ap-
proach, namely ShapeNet. Specifically, we present multi-
length-input dialted casual CNN, the cluster-wise triplet loss
function, and multivariate shapelet transformation.

Multi-length-input Dilated Causal CNN
(Mdc-CNN)

Shapelet candidates are initially all time series subsequences
of different lengths. We use sliding windows (the data shown
in the cylinders of Figure 1) of discrete sizes to generate the
candidates. Our target is to embed all the shapelet candidates
from the original space into a new unified space.

Design rationale. ShapeNet adopts a few existing stud-
ies as its building blocks. First, the dilated causal convolu-
tional neural network (Dc-CNN) (Van Den Oord and Diele-
man 2016) is employed to learn a new representation of
time series subsequences. The effectiveness of the dilated
causal network has been proved for sequence modeling tasks
by (Bai, Kolter, and Koltun 2018). The dilated convolution
is utilized to modify the receptive field of the convolution.
The causal convolution is designed such that the future data
do not impact the learning of the past data.

Second, although the output can be of the same length as
the input, Dc-CNN cannot handle inputs of various lengths.
Thus, we propose to introduce a global max pooling layer
and a linear layer, which are stacked on top of the last Dc-
CNN layer, to embed all shapelet candidates into the unified
space (indicated by the green boxes in Figure 1). We call it
Multi-length-input Dilated Causal CNN (Mdc-CNN).

Mdc-CNN architecture. Mdc-CNN is further illustrated in
Figure 2. Figure 2(a) shows that the encoder has ¢ + 1 lay-
ers of residual blocks, where 2¢ is the dilation factor, and
the global max pooling layer and linear layer are stacked on
top of the residual blocks. The input of the encoder is the
time series subsequences of various lengths and variables,
and the output is their unified representation. We call the
output shapelet candidate embedding. Figure 2(b) presents
the residual block with two identical subblocks, and a di-
lated causal convolution block. Figure 2(c) presents a di-
lated causal convolution example with dilation factor d =
20 21 22 Further details of Figure 2(b) and Figure 2(c) can
be found in (Bai, Kolter, and Koltun 2018).

Following the standard practice (e.g., (LeCun, Ben-
gio et al. 1995)(Schroff, Kalenichenko, and Philbin 2015)),
Mdc-CNNs use shared weights for training models of
shapelet candidates of different lengths and variables, as
noted on the left side of Figure 1. The settings of Mdc-CNN
are presented in Section .

Unsupervised Representation Learning

We next explain how the Mdc-CNN networks are trained in
an unsupervised manner. There have been several loss func-
tions for unsupervised learning, such as word2vec (Mikolov
et al. 2013), image similarity (Chechik et al. 2010), and
face recognition (Schroff, Kalenichenko, and Philbin 2015).
In (Chechik et al. 2010) and (Schroff, Kalenichenko, and
Philbin 2015), only one positive sample and one negative
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sample are considered, whereas, in (Franceschi, Dieuleveut,
and Jaggi 2019) and (Mikolov et al. 2013), one positive
and several negative samples are considered. We recall that
Franceschi et al. (Franceschi, Dieuleveut, and Jaggi 2019)
followed the principle from word2vec (Mikolov et al. 2013),
which makes the assumption that the representation of a
word should meet two requirements: (i) the representation
should be close to those near its context (Goldberg and Levy
2014), and (ii) it should be distant from those in a randomly
chosen context, since they are probably different from the
original word’s context.

The objectives of learning/training (similar to word2vec)
are to ensure that similar time series obtain similar represen-
tations and vice versa. However, (D) the second requirement
of the word2vec’s assumption does not always hold in the
context of time series. For example, one variable of the walk-
ing class in the Basicmotions dataset is shown in Figure 3.
We can easily observe that some crests of the waveform are
far away but not distant from each other. @) Only one posi-
tive sample is included in a batch to train the network, which
is often unstable in the context of the representation learning
of shapelets. @ The distances between negative (positive)
samples were not considered before. Figure 4 shows the loss
in using the original triplet loss (Franceschi, Dieuleveut, and
Jaggi 2019) to learn shapelet representation. It can be noted
that while the loss has slightly declined, it is unstable and
hardly converges.

Cluster-wise triplet loss function. In this paper, we propose
a cluster-wise triplet loss function that takes multiple posi-
tive and negative samples and the distance among positives
(negatives) as input. For simplicity, we take two clusters to
demonstrate our loss function. Specifically, the set of all pos-
sible triplets in the training set 7 is defined as follows:

(z.zt,27) €T,
where z is the anchor shapelet candidate, z1 and £~ denote
the set of positive and negative samples of size K and K —,
respectively.

The number of triplet (z,z*,2~) in some real-world
datasets is large, and it is computationally prohibitive and
sub-optimal to use all the triplets for training. Instead, we
conduct triplet sampling. The details of our triplet sam-
pling are presented in the supplementary material (Li et al.
15/Dec/2020).

First, we denote the normalized distance of the positive
(negative) samples from the anchor as D 4p (D 4n), we have
the following formula:

Duap + p < Dan, (D
where p is a margin that is enforced between positive and

negative samples. Suppose squared Euclidean distance is
adopted. D 4p and D 4 can then be defined as follows.

Kt
Dar = 25 . lI7@) — f@hIE @
=1
and
1 &
Day = 7= S I1f@) — £, &)
i=1
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Figure 4: A comparison between our cluster-wise triplet loss
(multiple positives and multiple negatives, both with intra
distances) and original triplet loss (one positive and multiple
negatives without intra distance) on ArticularyWordRecog-
nition (Bagnall et al. 2018)

where f(-) € R is the representation embedded by Mdc-
CNN, and z is the length of the embedding.

In addition to the distances between the anchor and the
positive (negative) samples, the distances among the positive
(negative) samples are included and should be small (large).
The maximum distance among all positive (negative) sam-
ples is presented in Eq. 4 (Eq. 5).

_ +y +y112
Dpor= _max  {IfG) ~SEDIR) @
and
Dreg = max  {||f(x7) — f(x7)I3} ®)

i,je(1,K—)Ai<j
The intra-sample loss is defined as follows:
Dintra = Dpos + Dneg (6)
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Figure 5: Illustration of the effect of training a model using
the cluster-wise triplet loss function, positives are closer to
each other and the anchor, negatives are closer to each other
but farther from the anchor

Putting these together, we propose the cluster-wise triplet
loss function for the triplets for our model in Eq. 7, to train
the network under an unsupervised fashion.

[’ (f(x)v f($+), f(zi)) = lOg TAJ\I + )\Dint'ra (7)

where ) is a hyperparameter.

Example 1 Eq. 7 is illustrated in Figure 5. Two clusters of
our cluster-wise triplet loss are illustrated in this example.
The triplet loss function both minimizes the distance between
the anchor and all positive samples, and the distance among
all positive (negative) samples, and maximizes the distance
between the anchor (positive) and all negatives. (]

Multivariate Shapelet Transformation

After determining the unified representation of shapelet can-
didates, we propose to select high-quality and diversified
candidates as final shapelets. Finally, we adopt the proce-
dure of shapelet transformation for MTS, then apply a clas-
sic classifier to solve the MTSC problem.

Determining final shapelets. By following previous sub-
sections, all the candidates are embedded into a unified
space. It allows us to simply employ a clustering method
(e.g., kmeans) to obtain Y clusters of the shapelet candi-
dates. We propose a utility (Eq. 8) to rank the candidates
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that are nearest to the cluster centroids. The first compo-
nent of Eq. 8 is the size of the candidate’s cluster. A large
cluster means that it represents many candidates. The second
component is the candidate’s distance to other candidates in
other clusters. A large distance shows that the candidate is
different from others:

log(size(f(x:)))

U () = - —2
log(max(size(f (x:)))
tog X 11£(e:) = 7113 ®
+1 -8 ———
log(max( 3> | f(x:) — f(2)13))
pax( 2
where 8 € [0, 1].

We select the top-k candidates among all Y clusters ac-
cording to Eq. 8 and retrieve the original time series subse-
quences as the final shapelets, denoted as Sy.

Multivariate Shapelet Transformation. MST is first men-
tioned in (Bostrom and Bagnall 2017) and the following is
our formal definition of it.

Definition 1 Multivariate shapelet transformation. Multi-
variate shapelet transformation is a method to transform a
multivariate time series T, into a new data space (d, 1,
dm,2, -+, dm i) by calculating the distances with a set of
final shapelets Sy, denoted as d,, ; = dist(T}%,S;), where
S; € S, Ty, € Ty, and the variable of S; and T, is the
same. ]

Example 2 An example of MST is shown in Figure 6. The
leftmost plot exhibits an instance with six variables from the
Basicmotions dataset. Two shapelets, S, and S, are in the
middle. For MST, we calculate the distance between the time
series subsequence with the same variable (e.g., the dis-
tance between the first variable (red time series on top) and
S1). Thus, the MST representation of a time series instance
is a vector, as shown in the rightmost part. O

After MST, the dataset D is reduced from M x V x N to
M x k, where |Si| = k and k is significantly smaller than
V x N.

When the transformation of all the MTS instances is com-
pleted, some standard classifiers (e.g., SVM) can be ex-
ploited to learn a classification model from the transformed
representation. In this paper, we adopt SVM with a linear
kernel so that we can observe the weights of the shapelets
for classification.
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Figure 7: Convergences of the learning algorithm on some
MTS datasets

Experiments
Environment

We have implemented the proposed method! in PYTHON.
All the experiments were conducted on a machine with two
Xeon E5-2630v3 @ 2.4GHz (2S/8C) / 128GB RAM / 64
GB SWAP and two NVIDIA Tesla K80, running on CentOS
7.3 (64-bit).

Datasets and Parameters

A well-known benchmark of MTS datasets, the UEA
ARCHIVE, was tested. Detailed information regarding the
datasets can be obtained from (Bagnall et al. 2018).

The following are some parameters used in our experi-
ment. We follow the default hyperparameters of the network
from (Bai, Kolter, and Koltun 2018). The batch size, the
number of channels, the kernel size of the convolutional net-
work, and the network depth are set to 10, 40, 3, and 10,
respectively. The learning rate is kept fixed at the low value
of n = 0.001, while the number of epochs for network train-
ing is 400. 1 in Eq. 1 is set to 0.2, A = 1 for the triplet loss
function. The 3 in Eq. 8 is 0.5.

Convergence of Mdc-CNN

We verify the convergence of Mdc-CNN, which depends on
the parameters from Section . For instance, the convergences
of the learning algorithm on four datasets, AtrialFibrillation,
Basicmotions, StandWalkJump, and UWaveGestureLibrary,
are illustrated in Figure 7.

All the losses converge very smoothly as the training pro-
ceeds on all four datasets. We can also observe that the loss
converges quickly at the beginning, and then stabilizes. Sim-
ilar trends can be observed from the rest of the datasets. This
verifies the effectiveness of our cluster-wise triplet loss.

Baselines

We compared ShapeNet with seven different methods. Due
to space restrictions, we provide only brief details of each.
Interested readers may refer to the original paper for further
information.

!To promote reproducibility, our source code is made public at
http://alturl.com/d26bo.



e Three benchmarks (Bagnall et al. 2018). Three
benchmark classifiers (E DI, DTW I, and DTW D) are
based on Euclidean Distance (E£DI), dimension-
independent dynamic time warping (DTWI),
and dimension-dependent dynamic time warping
(DTW D) (Shokoohi-Yekta, Wang, and Keogh 2015).

e MLSTM-FCNs (Karim et al. 2019). MLSTM-FCNs
is a deep learning framework transforming the LSTM-
FCN models of UTS into MTS by augmenting it with
squeeze-and-excitation block.

o WEASEL-MUSE (Schiifer and Leser 2017).
WEASEL-MUSE is a bag-of-pattern based approach
with statistical feature selection, variable window lengths
and SAX for MTSC.

e Negative samples (NS) (Franceschi, Dieuleveut, and
Jaggi 2019). This method applies several negative sam-
ples when training their neural network, then SVM is uti-
lized to do the final classification.

e TapNet (Zhang et al. 2020). TapNet is a novel
MTSC model with an attentional prototype network to
harness the strengths of both traditional and deep learn-
ing based approaches.

Experiments on Accuracy

Comparison with other methods The experimental ac-
curacies of the baseline results are all taken from the orig-
inal papers (Bagnall et al. 2018), (Franceschi, Dieuleveut,
and Jaggi 2019) and (Zhang et al. 2020), respectively. We
only consider the normalized datasets for the experiment.
The overall classification accuracy results for the datasets
are presented in Table 1. The accuracy results of ShapeNet
are the mean values of 10 runs and the standard deviations
of all the datasets are less than 0.01.

From Table 1, we can observe that the overall accuracy of
ShapeNet is the best of all the methods compared. More-
over, ShapeNet performs best in 14 datasets, more than
the other three benchmarked methods. The total best ac-
curacy of ShapeNet is almost two times better than those
of NS, TapNet, WEASEL-MUSE, and MLSTM-FCNs, and
clearly even better than those of other methods. ShapeNet
is clearly more accurate in some datasets, such as Atri-
alFibrillation and StandWalkJump. A probable reason is
that high-quality shapelets do exist in those datasets and
ShapeNet can discover them for classification. Our accura-
cies on 1-to-1-Losses datasets are only slightly lower than
those of WEASEL-MUSE (e.g., , Cricket, Epilepsy), NS
(e.g., JapaneseVowels, Libras) and TapNet (e.g., PenDig-
its, SpokenArabicDigits).

Friedman test and Wilcoxon test We follow the process
described in (DemsSar 2006) to conduct the Friedman test
and Wilcoxon-signed rank test with Holm’s « (5%) (Holm
1979) for all the methods.

The Friedman test is a non-parametric statistical test to
detect the differences in 30 datasets across eight methods.
Our statistical significance is p = 0.00, which is smaller
than a = 0.05. Thus, we reject the null hypothesis, and there
is a significant difference among these eight methods.
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We note that ShapeNet ranks the 1st on average among all
the compared methods. We further conducted the Wilcoxon
test against all baselines and found out that all results are sta-
tistically significant at p < 0.05, except WEASEL-MUSE,
NS from the last row in Table 1.

Triplet sampling vs. random sampling To study the per-
formance of our triplet sampling, we compare with ran-
dom triplet sampling to train the network. Due to limi-
tations of space here, we present only the results from
four MTS datasets, namely ArticularyWordRecognition,
Epilepsy, RacketSports and UWaveGestureLibrary, in Fig-
ure 8. Figure 8 shows the results of final accuracy: our triplet
sampling is evidently the best of the four datasets.

Utility-based vs. random selection To study the effec-
tiveness of the utility function for selecting final shapelets in
Section , we conduct an experiment to compare it with ran-
dom selection. The clustering number is 200 and the value
of k is 50. The random selection number is 50.

Due to space restrictions, we report the final classifica-
tion accuracy on four MTS datasets, ArticularyWordRecog-
nition, Epilepsy, RacketSports and UWaveGestureLibrary as
examples. They are shown in Figure 9. The same trend can
be found in other datasets. Among all four datasets, the accu-
racy of our utility-based method is clearly better than those
of random selection, which shows its superiority ability to
discover high-quality shapelets.

Varying shapelet numbers We compare the impact of
different number of top-k shapelets from 200 clusters on
the final accuracy of ShapeNet on four MTS datasets: Ar-
ticularyWord., Epilepsy, RacketSports, and UWaveGesture-
Library.

Figure 10 shows accuracy by varying shapelet numbers.



Dataset EDI DTWI DTWD 1\{[}1:‘8;18\4 YEA?JSS.%L NS TapNet  ShapeNet
ArticularyWordRecognition | 0.97 0.98 0.987 0.973 0.99 0.987  0.987 0.987
AtrialFibrillation 0.267  0.267 0.22 0.267 0.333 0.133  0.333 0.4
BasicMotions 0.676 1 0.975 0.95 1 1 1 1
CharacterTrajectories 0.964  0.969 0.989 0.985 0.99 0.994  0.997 0.98
Cricket 0.944  0.986 1 0.917 1 0.986  0.958 0.986
DuckDuckGeese 0275  0.55 0.6 0.675 0.575 0.675  0.575 0.725
EigenWorms 0.549 N/A 0.618 0.504 0.89 0.878  0.489 0.878
Epilepsy 0.666  0.978 0.964 0.761 1 0.957 0971 0.987
ERing 0.133  0.133 0.133 0.133 0.133 0.133  0.133 0.133
EthanolConcentration 0.293  0.304 0.323 0.373 0.43 0.236  0.323 0.312
FaceDetection 0.519 N/A 0.529 0.545 0.545 0.528  0.556 0.602
FingerMovements 0.55 0.52 0.53 0.58 0.49 0.54 0.53 0.58
HandMovementDirection 0.278  0.306 0.231 0.365 0.365 0.27 0.378 0.338
Handwriting 0.2 0.316 0.286 0.286 0.605 0.533  0.357 0.451
Heartbeat 0.619  0.658 0.717 0.663 0.727 0.737  0.751 0.756
InsectWingbeat 0.128  N/A N/A 0.167 N/A 0.16 0.208 0.25
JapaneseVowels 0.924  0.959 0.949 0.976 0.973 0.989  0.965 0.984
Libras 0.833  0.894 0.87 0.856 0.878 0.867 0.85 0.856
LSST 0.456  0.575 0.551 0.373 0.59 0.558  0.568 0.59
MotorImagery 0.51 N/A 0.5 0.51 0.5 0.54 0.59 0.61
NATOPS 0.85 0.85 0.883 0.889 0.87 0.944  0.939 0.883
PEMS-SF 0.705 0.734 0.711 0.699 N/A 0.688  0.751 0.751
PenDigits 0973  0.939 0.977 0.978 0.948 0.983 0.98 0.977
Phoneme 0.104  0.151 0.151 0.11 0.19 0.246  0.175 0.298
RacketSports 0.868  0.842 0.803 0.803 0.934 0.862  0.868 0.882
SelfRegulationSCP1 0.771  0.765 0.775 0.874 0.71 0.846  0.652 0.782
SelfRegulationSCP2 0.483 0.533 0.539 0.472 0.46 0.556 0.55 0.578
SpokenArabicDigits 0.967  0.959 0.963 0.99 0.982 0.956  0.983 0.975
StandWalkJump 0.2 0.333 0.2 0.067 0.333 0.4 0.4 0.533
UWaveGestureLibrary 0.881  0.868 0.903 0.891 0.916 0.884  0.894 0.906
Total best acc 1 2 2 4 12 5 5 14
Ours 1-to-1-Wins 29 26 22 21 15 18 20 -
Ours 1-to-1-Draws 1 3 5 3 3 5 5 -
Ours 1-to-1-Losses 0 1 3 6 12 7 5 -
Rank Mean 6.2 543 4.77 4.6 3.47 3.67 3.23 2.23
Wilcoxon Test p-value 0.000  0.000 0.000 0.001 0.183 0.819  0.002 -

Table 1: Accuracy of our method and related methods on UEA Archive

The accuracy increases rapidly as the number of shapelets
increases from 5 to 50 in all four datasets, and then decreases
slightly. This tendency is more evident in the ArticularyWor-
dRecognition dataset than the other datasets since Articu-
laryWordRecognition has 25 classes. Thus, it is much harder
to do the classification when the shapelet number is small
(e.g., D). Based on this observation, the default shapelet
number of all the datasets is set to 50 in Section .

Experiments on Interpretability

We further investigate the shapelets’ interpretability, which
is a strength of shapelet-based methods. We report two
shapelets (i.e., k = 2) generated by ShapeNet from two
datasets. These datasets are chosen simply because they can
be presented without much domain knowledge.

Interpreting Basicmotions’ shapelets Two interesting
shapelets, S; and S, are discovered from the Basicmotions
dataset (leftmost plots) in Figure 11. S describes the ac-
celeration of the x-axis and S5 depicts the angular velocity
of the z-axis. The shapelets selected by ShapeNet are from
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Figure 10: MTSC accuracy by varying 6 shapelet numbers
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Figure 11: An example of multivariate shapelet transformation on Basicmotions
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Figure 12: An example of multivariate shapelet transformation on Atrialfibrillation

the first and fifth variables, which shows the differing impor-
tance of the variables. The middle plots show four multivari-
ate time series from four classes of the dataset. Different col-
ors show different variables. The distance can only be calcu-
lated between the time series of the same variable (visually
of the same color). The distances to two shapelets project the
multivariate time series into a two-dimensional space (right-
most plot). Then, the transformed representations are clas-
sified by a linear classifier. The result shows that S5 is ef-
fective in distinguishing the badminton motion from others.
S can distinguish walking and running from others. Finally,
both S1 and S5 can identify standing from others.

We note that the MST representation w.r.t shapelets is eas-
ier to interpret than the raw data and some knowledge can be
observed. For example, standing and badminton are similar
w.r.t S7, which is counter-intuitive. It turns out that when
waiting for the badminton, many players just stand.

Interpreting AtrialFibrillation’s shapelets We use Atri-
alFibrillation, which is an ECG dataset with two variables,
as an example, to show the interpretability of the discov-
ered multivariate shapelets. There are three classes in the
dataset, namely “non-termination atrial fibrillation”, “self-
terminating at least one minute”, and “terminating immedi-
ately”. They are labeled as N, S, and T, respectively.

From the brief description of AtrialFibrillation, we can
know that the terminating time of the three classes is T < S
< N. However, the raw data are hard to understand even in a
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plot form. In Figure 12, our shapelets, .57 and S, transform
all the original time series into two-dimensional space. In the
MST representation, readers can easily follow the terminat-
ing time of each class. The larger the magnitude in the new
space, the more time for terminating on the original time se-
ries.

Conclusion

This paper has proposed a novel shapelet-neural network
approach for MTSC, ShapeNet. We propose Mdc-CNN to
learn time series subsequences of various lengths into uni-
fied space and propose a cluster-wise triplet loss to train the
network in an unsupervised fashion. We adopt MST to ob-
tain the MST representation of time series. After the trans-
formation, we employ SVM with a linear kernel to do the
classification. The experiment’s results show that the classi-
fication accuracy of ShapeNet is superior to seven compared
methods. The learning algorithm converges quickly, and the
utility function is effective. The number of shapelets can be
set to 50 (by default) for the highest accuracy. The inter-
pretability of shapelets is illustrated with two case studies.
As for future work, we plan to study the MTS with missing
values, which is challenging for real-world datasets.
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