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Abstract

Deep learning based subspace clustering methods have at-
tracted increasing attention in recent years, where a basic
theme is to non-linearly map data into a latent space, and
then uncover subspace structures based upon the data self-
expressiveness property. However, almost all existing deep
subspace clustering methods only rely on target domain data,
and always resort to shallow neural networks for modeling
data, leaving huge room to design more effective represen-
tation learning mechanisms tailored for subspace clustering.
In this paper, we propose a novel subspace clustering frame-
work through learning precise sample representations. In con-
trast to previous approaches, the proposed method aims to
leverage external data through constructing lots of relevant
tasks to guide the training of the encoder, motivated by the
idea of meta-learning. Considering limited networks layers
of current deep subspace clustering models, we intend to dis-
till knowledge from a deeper network trained on the external
data, and transfer it into the shallower model. To reach the
above two goals, we propose a new loss function to realize
them in a unified framework. Moreover, we propose to con-
struct a new auxiliary task for self-supervised training of the
model, such that the representation ability of the model can
be further improved. Extensive experiments are performed
on four publicly available datasets, and experimental results
clearly demonstrate the efficacy of our method, compared to
state-of-the-art methods.

Introduction
Clustering is a popular tool for unsupervised data analyt-
ics (Hinton et al. 1999). In many real-world applications,
data from each cluster can be approximately modelled by
a proper low-dimensional subspace. For example, in movie
recommendation systems, users having similar watching
interests approximately span a low-dimensional subspace
(Zhang et al. 2012). In bioinformatics domain, the scRNA-
seq expression of the instances from one cell type forms a
subspace structure (Zheng et al. 2019). A typical example in
vision problems is that face images are known to lie in a lin-
ear subspace of dimension up to nine (Zhang et al. 2019a).
To deal with such data, subspace clustering is proposed to
cluster data into groups, where each group contains samples
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from the same subspace. The topic of subspace clustering
has been extensively studied and applied in many research
domains (Moise and Sander 2008; Peng et al. 2016; You,
Robinson, and Vidal 2016; Liu et al. 2016; Peng et al. 2017;
Liu et al. 2017; Ji et al. 2017; Zhang et al. 2018; Peng et al.
2018; Zhou et al. 2019; Zhang et al. 2019b; Li et al. 2020b).

To date, a number of subspace clustering methodologies,
such as iterative methods (Zhang, Szlam, and Lerman 2009;
Ho et al. 2003), statistical methods (Gruber and Weiss 2004;
Rao et al. 2009) and spectral analysis based methods (Yan
and Pollefeys 2006; Goh and Vidal 2007; Peng, Yi, and
Tang 2015), have been proposed. The spectral analysis based
methods have received more attention in recent years. The
algorithm belonging to this category generally learns an
affinity graph, and then applies spectral analysis to obtain
the clustering result. Many of the spectral analysis based al-
gorithms are built upon the self-representative property of
data which has been successfully applied to many areas (El-
hamifar and Vidal 2013; Peng, Zhang, and Yi 2013; Li et al.
2018, 2020a). For subspace clustering, the typical models
include low-rank representation (LRR) (Liu, Lin, and Yu
2010), sparse subspace clustering (SSC) (Elhamifar and Vi-
dal 2013), smooth representation clustering (Hu et al. 2014),
block diagonal representation (Lu et al. 2018), stochastic
sparse subspace clustering (Chen, Li, and You 2020), etc.

In many practical scenarios, the data do not necessarily
comply with the assumption that they are drawn from multi-
ple linear subspaces. Thereby this limits the applications of
traditional subspace clustering methods. Several deep learn-
ing based solutions are thus proposed to alleviate this prob-
lem. A Basic idea among deep subspace clustering mod-
els is to non-linearly map original input into a latent space
in which a self-representative layer is incorporated to learn
the affinity graph (Ji et al. 2017). Based on this basic strat-
egy, some representative works are successively proposed
in recent years to further boost the performance of subspace
clustering, including dual self-supervised CNN (Zhang et al.
2019a), latent distribution preserving (Zhou et al. 2019),
deep adversarial subspace clustering (Zhou, Hou, and Feng
2018), multi-scale fusion (Dang et al. 2020).

Although existing deep subspace clustering approaches
have achieved remarkable results, there is still huge room to
design more effective representation learning mechanisms
due to the following reasons: First, all methods mentioned
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above attempt to model subspaces only depending on the
target dataset, but ignore a lot of external data available on
the internet. This is a quite challenging problem if we only
consider the target domain data, owing to the unsupervised
nature of subspace clustering. In contrast, it should be bene-
ficial to subspace clustering if we can leverage external use-
ful information during learning; Second, current deep mod-
els basically take advantage of very shallow neural network
architectures for uncovering subspace structures. Because of
the introduction of the self-representative layer, it is usually
hard for these methods to utilize very deep neural networks
to model data, thus limiting their representation abilities.

In light of these, this paper proposes a novel subspace
clustering framework by learning precise sample represen-
tations, to overcome the above deficiencies. To make use
of external relevant data, the proposed method intends to
construct lots of auxiliary relevant tasks on external data
with the purpose of improving the ability of the encoder,
motivated by the emerging meta-learning research (Vilalta
and Drissi 2002). In view of the limited layers of current
approaches, we attempt to distill valuable knowledge from
a deeper neural network well trained on the external data,
and propose a new loss function to transfer the knowledge
into the shallower model. Finally, a new auxiliary task is
constructed based upon the self-representative layer, which
provides self-supervision information to further enhance the
representation ability of the model.

Our major contributions can be summarized as follows:

• We propose a principled framework for subspace cluster-
ing under a new problem setting, i.e., external relevant
data are available. To the best of our knowledge, this is
the first work to explore how to leverage external data to
facilitate model learning for subspace clustering.

• We devise a new strategy to jointly transfer useful knowl-
edge from both task-level and model-level aspects, and
propose a new loss function to simultaneously realize
them in a joint framework.

• We design a new self-supervised learning task to guide
learning of the model, such that a better sample represen-
tation can be obtained, and the performance of subspace
clustering can be thus further improved.

• Extensive experiments are conducted on four real-world
datasets to evaluate the performance of the proposed
method, and the results demonstrate its effectiveness.

Related Work
In this section, we will briefly review some works related to
our method, including deep subspace clustering and meta-
learning.

Deep Subspace Clustering
An earlier work, named PARTY, is proposed in (Peng et al.
2016), which realizes the idea of self-expression in the neu-
ral network and incorporates a prior sparsity constraint into
the latent space for sparseness reconstruction. Similarly, the
work in (Ji et al. 2017) incorporates the self-expression layer
into an auto-encoder, and presents a two-stage strategy to

effectively learn the parameters of the network in an end-
to-end framework. Motivated by this work, more advanced
deep learning based approaches have been proposed in re-
cent years. For instance, deep adversarial subspace clus-
tering (Zhou, Hou, and Feng 2018) introduces adversarial
learning to simultaneously guide the learning of sample rep-
resentation and subspace clustering. The authors in (Zhang
et al. 2019b) utilize the complementary property of the
classifier-induced affinities and the subspace-based affinities
to train a deep subspace clustering model in a collabora-
tive scheme. Moreover, a self-supervised convolutional sub-
space clustering network proposed in (Zhang et al. 2019a)
integrates the stacked convolution based feature extraction
module, the self-expression based affinity learning model, as
well as the spectral clustering based data segmentation into
a joint framework. To make the distribution of latent repre-
sentation be consistent with original data distribution, a dis-
tribution consistency loss is presented in (Zhou et al. 2019)
by minimizing the KL divergence between the two distribu-
tions. Although the above deep subspace clustering methods
generally achieve better performance than traditional meth-
ods, almost all of them only rely on the target data to learn
subspace structures, leaving huge room to explore more ef-
fective models by leveraging data from relevant domains.

Meta-Learning
Despite of the concept of meta-learning (a.k.a. learning
to learn) has a long standing history (Schmidhuber, Zhao,
and Wiering 1997), it has resurged in popularity in re-
cent years. Meta-learning intends to learn knowledge from
a lot of previous related tasks, and quickly adapt to new
tasks with a few training examples. Because of its po-
tential, meta-learning has been widely studied for recom-
mendation systems (Lee et al. 2019), few-shot learning
(Snell, Swersky, and Zemel 2017), domain adaption (Bal-
aji, Sankaranarayanan, and Chellappa 2018). The most re-
lated of these studies to ours is the model-agnostic meta-
learning (MAML) approach (Finn, Abbeel, and Levine
2017). MAML aims to find a meta-learner that learns to ef-
fectively initialize a base-learner for a new learning task,
where the meta-learner is optimized by gradient descent
using the validation loss of the base-learner. Motivated by
MAML, a recent line of work (Finn, Xu, and Levine 2018;
Yao et al. 2019; Jamal and Qi 2019), has been proposed.
Different from these methods, we attempt to leverage meta-
learning for subspace clustering in this paper.

Proposed Method
In this section, we will elaborate the details of the proposed
model. As shown in Figure 1, our method is mainly made
up of three modules: A meta-learn module is used to gain
rich experiences from a task-level point of view, i.e., con-
structing relevant tasks on external data to help the target
model learn effectively; A distillation module aims to trans-
fer knowledge from a model-level point of view, i.e., train-
ing a deeper network on external data to help the shallower
target model learn, such that the problem of limited rep-
resentation ability of deep subspace clustering can be cir-
cumvented; A self-supervised module intends to construct
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Figure 1: Illustration of the overall architecture. Our method mainly consists of three modules: A meta-learn module to acquire
useful information from lots of auxiliary relevant tasks based on the external data, making the target model effectively learn
on the target data; A distillation module to transfer knowledge from a deeper network to the shallower target network, so as
to improve the representation ability of the model; A self-supervised module used to construct a auxiliary task based on the
self-expression layer for self-supervised learning on the target data.

an auxiliary task through the self-expression layer, such that
the representation ability of the target model can be further
improved. Before introducing our modules in detail, we first
give some preliminaries and our new problem setting.

Preliminaries and Problem Statement

Let X = [x1, · · · ,xn] ∈ Rd×n be a data matrix from
the target domain, whose data points are drawn from a
union of multiple low-dimensional subspaces. d is the di-
mension of samples and n is the number of the target data.
In the meantime, given another external data matrix M =
{xm

i , y
m
i }n̂i=1, called meta data, from a source domain rele-

vant to the target domain. xm
i ∈ Rd is the i-th sample rep-

resentation inM, and ymi ∈ R is its label. n̂ is the number
of meta data. Our goal is to build a principled and generic
framework that can leverage the external dataM to help the
model better uncover subspace structures of the target data
X. To the best of our knowledge, this is the first work to ex-
plore how to leverage external data for subspace clustering.

In order to learn subspace structures of data, current deep
methods usually map inputs into a latent space, and then
learn an affinity graph through introducing a self-expression
layer. A representative work is the DSC-Nets (Ji et al. 2017)
which consists of an encoder module, a decoder module,
as well as a self-expression layer. The encoder and decoder
modules are used to learn a nonlinear latent space, and the
self-expression module aims to learn pairwise affinities be-
tween all data points based on this latent space. The loss

function of DSC-Nets can be formulated as:

min Lb =
1

2
||X−X̂||2F +

λ1
2
||Z−ZC||2F +λ2||C||2l (1)

s.t. diag(C) = 0,

where λ1 ≥ 0 and λ2 ≥ 0 are two tradeoff parameters.
|| · ||F is the Frobenius norm of a matrix. ||C||2l denotes a
certain matrix norm on C to discover the subspace structure,
where DSC-Nets uses the l1-norm and Frobenius norm, re-
spectively. Z and X̂ are the latent representation and the re-
construction of X, respectively. They can be obtained by:{

Z = Φe(X, θe)

X̂ = Φd(ZC, θd)
(2)

where Φe and Φd denote the architecture of the encoder and
decoder, respectively. θe and θd are the learned parameters
of the encoder and decoder, respectively.

In (1), the first term aims to minimize the reconstruction
error. The second term is a self-representation loss measured
in a self-expression layer which is made up of one fully con-
nected layer without bias and activation functions. The last
one is a regularization term used to discover the subspace
structure. The constraint ensures the diagonal elements of C
equal to zeros, avoiding degenerated solutions.

Leveraging External Data
As aforementioned, the objective function in (1) only relies
on the target data X for subspace clustering, while ignores
external data. To learn subspace structures more effectively,

8342



we devise a new mechanism to leverage external data from
both task-level and model-level aspects simultaneously.

Task-level: Motivated by MAML (Finn, Abbeel, and
Levine 2017), we adopt a similar strategy in our meta-learn
module to gain experience from a lot of auxiliary relevant
tasks: Let T denote a subspace clustering task sampled from
a distribution p(T ) based on meta dataM, where T is called
episode. Each episode is divided into two non-overlapping
splits: a training split M(tr) for updating the base-learner
θT , as well as a test split M(te) for optimizing the meta-
learner θ. The forms of the loss functions in the above two
updating processes are the same with (1), and are defined as:

Lt =
1

2

∑
i

‖xm
i −x̃m

i ‖22+
λ3
2
‖Z̃− Z̃C̃‖2F +λ4‖C̃‖2l , (3)

where x̃m
i is the reconstruction of xm

i . λ3 ≥ 0 and λ4 ≥ 0
are two tradeoff parameters. We omit the constraint condi-
tion for writing conveniently.

Model-level: In (3), it still only allows shallow neural net-
works to model data, due to large memory requirements for
learning the affinity graph. To circumvent this problem, we
attempt to train a deeper neural network by a supervised
task, and then distill knowledge from this deeper model to
guide the learning of the shallower model, such that the rep-
resentation ability of the latter can be improved.

Assuming ΦT is a deeper network which is trained on the
meta dataM by a classification loss (e.g., the cross-entropy
loss), as shown in Figure 1. Let Tm

i denote a latent fea-
ture representation of xm

i , obtained by the feature extrac-
tion module in the deeper network ΦT . In order to trans-
fer knowledge from the deeper model ΦT into the shallower
network, we propose a new distilled loss to minimize:

Lm =
1

2

∑
i6=j

Wm
ij ||Z̃i − Z̃j ||22, (4)

where Z̃i is the i-th column in Z̃, denoting the latent rep-
resentation of the sample xm

i . Wm
ij is a weight to incur a

heavy penalty to a large distance between Z̃i and Z̃j if they
are close based on Tm. In other words, if the distance of two
feature vectors in Tm is small (or large), then the distance
of the corresponding two feature vectors in Z̃ is expected to
also be small (or large). The weight Wm

ij is defined as:

Wm
ij = e−

||Tm
i −Tm

j ||
2
2

t , (5)

where Tm
i is the i-th column in Tm. t ∈ R is a hyperparam-

eter.
In order to simultaneously transfer knowledge from both

task-level and model-level aspects, we can plug (4) into (3),
and obtain a new loss function as:

min Le =
1

2

∑
i

||xm
i − x̃m

i ||22 +
λ3
2
||Z̃− Z̃C̃||2F

+ λ4||C̃||2l +
η

2

∑
i6=j

Wm
ij ||Z̃i − Z̃j ||22, (6)

where η is a tradeoff parameter.

Algorithm 1: Leveraging External Data
Input: P (T ) denotes a distribution over meta tasks;
tradeoff parameters

Initialization: randomly Initialize θ = {θe, θd} , C̃
while not done do

Sample batch of tasks Ti ∼ P (T )
for all Ti do

(S1) Extract features ofM(tr)
i using the

feature extraction module of the deeper
network ΦT , denoted as T(tr)

i ;
(S2) Compute W using T

(tr)
i by (5);

(S3) Compute LTi(θ;M
(tr)
i ) by (6);

(S4) Update the base-learner θi by
minimizing LTi(θ;M

(tr)
i );

end
for all Ti do

(S1) Extract features ofM(te)
i using the

feature extraction module of the deeper
network ΦT , denoted as T(te)

i ;
(S2) Compute W using T

(te)
i by (5);

(S3) Compute LTi(θi;M
(te)
i ) by (6);

end
Update the meta-learner θ by minimizing∑
Ti∼P (T ) LTi(θi;M

(te)
i );

end
Output: Meta-learner θ.

By minimizing the above loss function, the knowledge
from the external data can be simultaneously distilled from
two views: task-level and mode-level. The key steps of lever-
aging external data are summarized in Algorithm 1.

Subspace Clustering on Target Data
When training the meta-learner θ well based on the external
dataM, we can quickly adapt it to a new subspace cluster-
ing task. To this end, we utilize the meta-learner θ to provide
a good initialization to the target model. In the meantime, we
also utilize the deeper network to further guide the represen-
tation learning of the target model. The loss function on the
target data is defined as:

min Ln =
1

2
||X− X̃||22 +

λ1
2
||Z− ZC||2F

+ λ2||C||2l +
µ

2

∑
i6=j

Wij ||Zi − Zj ||22, (7)

where µ ≥ 0 is a tradeoff parameter. Wij is defined as in
(5), except that the features extracted by the deeper neural
network are from the target data X.

In (7), by taking advantage of the meta-learner θ to ini-
tialize the target model, and utilizing the deeper network
to assist in the learning of the target model, the knowledge
from the external data can be better transferred into the tar-
get task. Moreover, in order to further improve the represen-
tation ability, we construct a new auxiliary task to learn a
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better representation in a self-supervised manner, motivated
by the popular self-supervised learning (Wu et al. 2018).

Given an input of the self-expression layer, Zi, and a set of
the outputs of the self-expression layer, {Gj = ZCj}nj=1.
Here we construct the following self-supervised task: we
take Zi and Gi as a positive pair, i.e., Zi and Gi are deemed
to be matched. In the meantime, we take Zi and all other
points as {Gj}nj=1,j 6=i negative pairs. Then, we consider to
optimize the following self-supervised loss function as:

min Lc = − log
exp (

−→
Z T

i

−→
Gi/σ)∑n

j=1 exp (
−→
Z T

i

−→
Gj/σ)

(8)

where σ is a temperature parameter that controls the con-
centration level of the distribution (Wu et al. 2018).

−→
Z i

and
−→
Gi are the normalization of Zi and Gi respectively,

where ||
−→
Z i|| = 1 and ||

−→
Gi|| = 1 are realized by a L2-

normalization layer. The sum in the denominator of (8) is
over one positive and n − 1 negative samples. Intuitively,
this loss is the log loss of a n-way softmax-based classifier
that classify Zi as Gi.

Based on (7) and (8), the final loss function on the target
data is defined as:

min Lf =
1

2
‖X− X̃‖22 +

λ1
2
‖Z− ZC‖2F + λ2‖C‖2l

+
µ

2

∑
i6=j

Wij‖Zi−Zj‖22 − γ log
exp (

−→
Z T

i

−→
Gi/σ)

n∑
j=1

exp (
−→
Z T

i

−→
Gj/σ)

, (9)

The key steps to perform subspace clustering on the target
data are listed in Algorithm 2. Through training, the self-
expression matrix C can be obtained, and then the affinity
matrix can be computed by 1

2 (‖C‖+‖CT ‖), as in most self-
representation methods (Ji et al. 2017). Finally, the spectral
clustering algorithm (Ng, Jordan, and Weiss 2002) is per-
formed on the affinity matrix for subspace clustering.

Training
To train our method, we propose a two-stage training strat-
egy: First we pre-train the meta-learner based on Algorithm
1, to provide a good initialization to the target model; Sec-
ond, we fine-tune the target model by Algorithm 2.
Remark. To extract features using the deeper neural net-
work on the meta data and target data, we divide M into
two non-overlapping subsets: M1 and M2. We first train
the deeper network usingM1, and then extract features of
M2 by the trained model. After that, we re-train the model
by M2, and use it to extract features for M1. Finally, we
merge the two feature sets as a knowledge base for trans-
ferring knowledge. Meanwhile, the deeper network trained
on eitherM1 orM2 can be used as a feature extractor to
extract features of target data X for guiding the learning of
the target model.

EXPERIMENTS
In this section, we study the effectiveness of the proposed
approach on four publicly available datasets including two
text datasets and two image datasets.

Algorithm 2: Subspace Clustering on Target Tasks
Input: X denotes the target data matrix; tradeoff
parameters

Initialization: The parameters of the target model is
initialized by those of meta-learner.

Extract features of X using the deeper network ΦT ,
denotes as T;

// Pre-train auto-encoder without self-expression
layer

for k = 1, 2, · · · ,K1 do
(S1) Sample a mini batch Dk from X;
(S2) Select a subset Tk from T based on Dk;
(S3) Compute Lf by Eq. (9) with λ2 = γ = 0;
(S4) Update auto-encoder via the BP algorithm.

end
// Fine-tune auto-encoder and self-expression layer
for k = 1, 2, · · · ,K2 do

(S1) Compute the loss Lf by Eq. (9);
(S2) Update the whole network via the BP
algorithm.

end
Output: C.

Dataset
We evaluate the performance of our proposed approaches on
four publicly available datasets:
• Fashion-MNIST dataset: It contains 10 categories of

fashion clothing. Similar attributes in different classes and
diversity in the same class make this dataset more difficult
for subspace clustering. We randomly select 1,000 images
from each class in our experiment.

• notMNIST: It consists of 10 classes with letters A-J taken
from different fonts. Similar to Fashion-MNIST, We ran-
domly selected 1,000 images from each class. Thus, there
are 10,000 images in our experiment.

• BBC dataset: This dataset consists of 2,225 documents
from BBC news corresponding to stories in five topical
areas. We extract the TF-IDF features to represent sam-
ples, and utilize TruncatedSVD (Hansen 1987) to reduce
the dimensions to 256.

• 20 Newsgroups dataset: This dataset is a collection of
18,846 messages from 20 different news groups. We ex-
tract the TF-IDF features and use TruncatedSVD to re-
duce the dimensions to 512.
We use the miniImageNet (Vinyals et al. 2016) dataset

as the meta data for two image datasets, and use the 20-
newsgroup dataset as the meta data for the BBC dataset.
For the 20 Newsgroups dataset, we randomly select 10 cate-
gories as the target data, and use the rest for meta data.

Experimental Setting
Compared Methods: To show the competitiveness of the
proposed method, we compare with the following methods:
• Clustering methods: ClusterGAN (Mukherjee et al. 2019)

based on the generative adversarial network (GAN).
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Dataset Metric SSC EnSC SSC-
OMP LRR ClusterGAN DSCN

-L1
DSCN

-L2 DASC DPSC LRSC
-L1

LRSC
-L2

Fashion-
MNIST

ACC 0.528 0.519 0.423 0.519 0.581 0.608 0.585 0.617 0.624 0.652 0.651
NMI 0.524 0.559 0.508 0.625 0.597 0.640 0.626 0.647 0.645 0.672 0.672
ARI 0.386 0.392 0.302 0.399 0.446 0.470 0.447 0.483 0.484 0.529 0.527

not-
MNIST

ACC 0.240 0.267 0.277 0.282 0.510 0.517 0.517 0.514 0.566 0.587 0.608
NMI 0.224 0.226 0.223 0.335 0.345 0.501 0.501 0.506 0.508 0.517 0.523
ARI 0.023 0.026 0.076 0.074 0.246 0.413 0.412 0.408 0.415 0.439 0.467

BBC
ACC 0.410 0.479 0.307 0.524 0.510 0.855 0.879 0.893 0.864 0.928 0.929
NMI 0.201 0.387 0.108 0.451 0.201 0.722 0.727 0.751 0.726 0.802 0.804
ARI 0.144 0.314 0.064 0.209 0.172 0.694 0.725 0.759 0.724 0.834 0.836

20-
News

ACC 0.235 0.229 0.210 0.186 0.244 0.348 0.352 0.356 0.336 0.369 0.406
NMI 0.138 0.127 0.093 0.139 0.116 0.275 0.283 0.280 0.250 0.287 0.315
ARI 0.064 0.067 0.064 0.024 0.064 0.112 0.122 0.122 0.105 0.116 0.161

Table 1: Clustering results on the four datasets in terms of ACC, NMI, and ARI.

• Traditional subspace clustering methods: SSC (Elhamifar
and Vidal 2009), LRR (Liu, Lin, and Yu 2010), ENSC
(You et al. 2016), SSC-OMP (You, Robinson, and Vidal
2016).

• Deep subspace clustering methods: DSCN-L1 (Ji et al.
2017), DSCN-L2 (Ji et al. 2017), DASC(Zhou, Hou, and
Feng 2018), DPSC(Zhou et al. 2019).

• Our method: LRSC-L1: Our method using the l1 norm
to regularize the self-expression matrix. LRSC-L2: Our
method using the l2 norm as a regularization.

Evaluation Metrics: For all quantitative evaluations, we
use three widely used evaluation metrics for subspace clus-
tering: accuracy (ACC), the normalized mutual information
(NMI), and the adjusted rand index (ARI).
Implementation Details: For two image datasets, we em-
ploy a CNN with 4 convolutional layers as the encoder, and
a symmetric structure for the decoder. For all convolutional
layers, we set the kernel size to 3 × 3 with stride 2 and the
number of channels to 10-20-30-40 for the four convolu-
tional layers in the encoder, respectively. Moreover, we use
a deep convolutional neural network with 17 convolutional
layers plus one fully-connected layer as the larger network.
All images in the two datasets are resized to 32 × 32 for
training. For two text datasets, we take advantage of a shal-
low neural network with one fully-connected layer as the
encoder, and one fully-connected layer for the decoder. In
addition, we utilize a deep neural networks with four fully-
connected layers as the deper network. In all layers, the rec-
tified linear unit (ReLU) (Krizhevsky, Sutskever, and Hinton
2012) is used as the activations. For hyper-parameter setting,
we report the detailed setting in the supplementary material.

Experimental Result
General Performance: We show the performance of our
proposed approaches and baselines on the four datasets in
Table 1. Our methods consistently outperform other mod-
els on the four datasets. Moreover, deep subspace cluster-
ing methods consistently outperform the deep clustering
method ClusterGAN, which indicates that data are sam-
pled from a union of multiple subspaces in many real-world
applications, and it is necessary to develop advanced sub-

politics tech entertainment sport business

Figure 2: The visualization of the latent space of our LRSC-
L2 through dimensionality reduction by t-SNE (Der Maaten
and Hinton 2008) on the BBC dataset.
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Figure 3: Affinity matrix derived by LRSC-L2 on the BBC
dataset. The subspace structure of the data can be clearly
discovered.

space clustering algorithms to better exploit subspace struc-
tures for clustering problems. Traditional linear subspace
clustering algorithms obtain poor performances on the four
datasets. This is because the data do not necessarily con-
form to linear subspace models in many practices. In addi-
tion, as DSCN-L1 and DSCN-L2 are our two base models,
LRSC-L1 achieves better performance than DSCN-L1, and
LRSC-L2 outperforms DSCN-L2 on the four datasets. This
demonstrates that learning more precise representations can
improve the performance of the model.
Effect of Different Sizes of Data: We report the results

8345



(a) Fashion-MNIST
No. Points 1000 5000 10000

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI
SSC 0.474 0.484 0.327 0.522 0.503 0.371 0.528 0.524 0.386

EnSC 0.566 0.510 0.366 0.526 0.540 0.387 0.519 0.559 0.392
SSC-OMP 0.343 0.301 0.148 0.434 0.358 0.223 0.423 0.508 0.302

LRR 0.561 0.619 0.417 0.551 0.625 0.415 0.519 0.625 0.399
ClusterGAN 0.558 0.504 0.354 0.582 0.602 0.448 0.581 0.597 0.446
DSCN-L1 0.536 0.594 0.406 0.563 0.558 0.372 0.608 0.640 0.470
DSCN-L2 0.536 0.594 0.406 0.563 0.558 0.372 0.585 0.626 0.447

DASC 0.548 0.573 0.400 0.578 0.598 0.431 0.617 0.647 0.483
DPSC 0.560 0.606 0.426 0.599 0.584 0.425 0.624 0.645 0.484

LRSC-L1 0.588 0.645 0.458 0.631 0.674 0.508 0.652 0.672 0.529
LRSC-L2 0.607 0.627 0.439 0.636 0.682 0.516 0.651 0.672 0.527

(b) notMNIST
No. Points 1000 5000 10000

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI
SSC 0.429 0.332 0.184 0.412 0.350 0.180 0.240 0.224 0.023

EnSC 0.481 0.372 0.246 0.431 0.369 0.201 0.267 0.226 0.026
SSC-OMP 0.424 0.351 0.226 0.385 0.368 0.204 0.277 0.223 0.075

LRR 0.454 0.451 0.158 0.306 0.315 0.097 0.282 0.335 0.074
ClusterGAN 0.475 0.386 0.230 0.461 0.343 0.225 0.510 0.345 0.246
DSCN-L1 0.488 0.440 0.318 0.521 0.488 0.407 0.517 0.501 0.413
DSCN-L2 0.489 0.439 0.316 0.520 0.487 0.406 0.517 0.501 0.412

DASC 0.483 0.441 0.312 0.527 0.500 0.421 0.514 0.506 0.408
DPSC 0.471 0.430 0.303 0.523 0.477 0.403 0.566 0.508 0.415

LRSC-L1 0.574 0.509 0.427 0.612 0.542 0.465 0.587 0.517 0.439
LRSC-L2 0.578 0.512 0.430 0.615 0.544 0.468 0.608 0.523 0.467

Table 2: Clustering results on the Fashion-MNIST and notMNIST datasets with different numbers of data points.

(a) notMNIST

Method Task
-level

Model
-level

Self-
supervision ACC NMI ARI

LRSC-L2

0.520 0.487 0.406
X 0.552 0.510 0.393
X X 0.597 0.522 0.440
X X X 0.615 0.544 0.468

(b) BBC

Method Task
-level

Model
-level

Self-
supervision ACC NMI ARI

LRSC-L2

0.879 0.727 0.725
X 0.918 0.784 0.812
X X 0.927 0.792 0.830
X X X 0.929 0.804 0.836

Table 3: Ablation study on LRSC on the notMNISt and BBC
datasets.

of all methods with different sizes of training data, in or-
der to study the effect of varying the dataset sizes. Because
of space limitations, we report the results on the Fashion-
MNIST and notMNIST datasets. We randomly select 1,000,
5,000, and 10,000 samples from each dataset as the training
data, respectively. The results are listed in Table 2(a) and
2(b). We can see that our methods consistently outperform
other baselines with different sizes of data.
Ablation Study: To gain further understanding of the pro-

posed method, we evaluate the effect of our components via
an ablation study on the notMNISt and BBC datasets. We
take LRSC-L2 as an example, owing to its superior per-
formance. The experimental setting is as follows: We set
η = µ = γ = 0 in (6), (7) and (9), which means we only
transfer knowledge from the task-level aspect. When setting
γ = 0, the self-supervised learning module is not consid-
ered. In addition, DSC-Nets is our baseline. The experimen-
tal results are reported in Table 3, which demonstrates the
effectiveness of each component in our algorithm.
Visualization To intuitively show that data are distributed in
a union of multiple low-dimensional subspaces, and demon-
strate our method can learn an effective representation for
subspace clustering. We perform our LRSC-L2 on the BBC
dataset. The results are shown in Figure 2 and 3. From Fig-
ure 2, we can clearly observe that LRSC-L2 can learn a good
sample representation. Moreover, LRSC-L2 can discover the
subspace structures of the data from Figure 3.

Conclusion
In this paper, we proposed a novel representation learning
based subspace clustering method by leveraging external
data. To this end, we devised a strategy to transfer knowl-
edge from both task-level and model-level aspects. More-
over, we constructed a new auxiliary self-supervised task
to further improve the representation ability of the encoder.
Experimental results on four publicly available datasets
demonstrated the effectiveness of our method.
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