
Enhancing Parameter-Free Frank Wolfe with an Extra Subproblem

Bingcong Li,1 Lingda Wang,2 Georgios B. Giannakis,1 Zhizhen Zhao2

1University of Minnesota - Twin Cities
2University of Illinois at Urbana-Champaign

{lixx5599, georgios}@umn.edu, {lingdaw2, zhizhenz}@illinois.edu

Abstract

Aiming at convex optimization under structural constraints,
this work introduces and analyzes a variant of the Frank
Wolfe (FW) algorithm termed ExtraFW. The distinct fea-
ture of ExtraFW is the pair of gradients leveraged per iter-
ation, thanks to which the decision variable is updated in a
prediction-correction (PC) format. Relying on no problem de-
pendent parameters in the step sizes, the convergence rate of
ExtraFW for general convex problems is shown to be O(1

k
),

which is optimal in the sense of matching the lower bound on
the number of solved FW subproblems. However, the merit
of ExtraFW is its faster rate O

(
1
k2

)
on a class of machine

learning problems. Compared with other parameter-free FW
variants that have faster rates on the same problems, ExtraFW
has improved rates and fine-grained analysis thanks to its PC
update. Numerical tests on binary classification with different
sparsity-promoting constraints demonstrate that the empiri-
cal performance of ExtraFW is significantly better than FW,
and even faster than Nesterov’s accelerated gradient on cer-
tain datasets. For matrix completion, ExtraFW enjoys smaller
optimality gap, and lower rank than FW.

1 Introduction
The present work deals with efficient algorithms for solving
the optimization problem

min
x∈X

f(x) (1)

where f is a smooth convex function, while the constraint set
X ⊂ Rd is assumed to be convex and compact, and d is the
dimension of the variable x. Throughout we denote by x∗ ∈
X a minimizer of (1). For many machine learning and sig-
nal processing problems, the constraint set X can be struc-
tural but it is difficult or expensive to project onto. Examples
include matrix completion in recommender systems (Fre-
und, Grigas, and Mazumder 2017) and image reconstruction
(Harchaoui, Juditsky, and Nemirovski 2015), whose con-
straint sets are nuclear norm ball and total-variation norm
ball, respectively. The applicability of projected gradient de-
scent (GD) (Nesterov 2004) and Nesterov’s accelerated gra-
dient (NAG) (Allen-Zhu and Orecchia 2014; Nesterov 2015)
is thus limited by the computational barriers of projection,
especially as d grows large.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An alternative to GD for solving (1) is the Frank
Wolfe (FW) algorithm (Frank and Wolfe 1956; Jaggi 2013;
Lacoste-Julien and Jaggi 2015), also known as the ‘condi-
tional gradient’ method. FW circumvents the projection in
GD by solving a subproblem with a linear loss per iteration.
For a structural X , such as the constraint sets mentioned ear-
lier, it is possible to solve the subproblem either in closed
form or through low-complexity numerical methods (Jaggi
2013; Garber and Hazan 2015), which saves computational
cost relative to projection. In addition to matrix completion
and image reconstruction, FW has been appreciated in sev-
eral applications including structural SVM (Lacoste-Julien
et al. 2013), video colocation (Joulin, Tang, and Fei-Fei
2014), optimal transport (Luise et al. 2019), and submod-
ular optimization (Mokhtari, Hassani, and Karbasi 2018), to
name a few.

Although FW has well documented merits, it exhibits
slower convergence when compared to NAG. Specifically,
FW satisfies f(xk)− f(x∗) = O(1

k), where the subscript k
is iteration index. This convergence slowdown is confirmed
by the lower bound, which indicates that the number of FW
subproblems to solve in order to ensure f(xk)− f(x∗) ≤ ε,
is no less than O

(
1
ε

)
(Lan 2013; Jaggi 2013). Thus, FW is a

lower-bound-matching algorithm, in general. However, im-
proved FW variants are possible either in empirical perfor-
mance, or, in speedup rates for certain subclasses of prob-
lems. Next, we deal with these improved rates paying atten-
tion to whether implementation requires knowing parame-
ters such as the smoothness constant or the diameter of X .

Parameter-dependent FW with faster rates. This class
of algorithms utilizes parameters that are obtained for differ-
ent instances of f and X . Depending on the needed parame-
ters, these algorithms are further classified into: i) line search
based FW; ii) shorter step size aided FW; and iii) conditional
gradient sliding (CGS). Line search based FW relies on f(x)
evaluations, which renders inefficiency when acquisition of
function values is costly. The vanilla FW with line search
converges with rateO(1

k) on general problems (Jaggi 2013).
Jointly leveraging line search and ‘away steps,’ variants of
FW converge linearly for strongly convex problems when
X is a polytope (Guélat and Marcotte 1986; Lacoste-Julien
and Jaggi 2015); see also (Pedregosa et al. 2018; Braun et al.
2018). To improve the memory efficiency of away steps, a
variant is further developed in (Garber and Meshi 2016).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8324

Shorter step sizes refer to those used in (Levitin and Polyak
1966; Garber and Hazan 2015), where the step size is ob-
tained by minimizing a one-dimensional quadratic function
over [0, 1]. Shorter step sizes require the smoothness param-
eter, which needs to be estimated for different loss functions.
If X is strongly convex, and the optimal solution is at the
boundary ofX , it is known that FW converges linearly (Lev-
itin and Polyak 1966). For uniformly (and thus strongly)
convex sets, faster rates are attained given that the optimal
solution is at the boundary of X (Kerdreux, dAspremont,
and Pokutta 2020). When both f and X are strongly convex,
FW with shorter step size converges at a rate of O(1

k2), re-
gardless of where the optimal solution resides (Garber and
Hazan 2015). The last category is CGS, where both smooth-
ness parameter and the diameter ofX are necessary. In CGS,
the subproblem of the original NAG that relies on projection
is replaced by gradient sliding that solves a sequence of FW
subproblems. A faster rateO(1

k2) is obtained at the price of:
i) requiring at most O(k) FW subproblems in the kth iter-
ation; and ii) an inefficient implementation since the NAG
subproblem has to be solved up to a certain accuracy.

Parameter-free FW. The advantage of a parameter-free
algorithm is its efficient implementation. Since no parame-
ter is involved, there is no concern on the quality of param-
eter estimation. This also saves time and effort because the
step sizes do not need tuning. Although implementation ef-
ficiency is ensured, theoretical guarantees are challenging to
obtain. This is because f(xk+1) ≤ f(xk) cannot be guaran-
teed without line search or shorter step sizes. Faster rates for
parameter-free FW are rather limited in number, and most of
existing parameter-free FW approaches rely on diminishing
step sizes at the order ofO(1

k). For example, the behavior of
FW when k is large andX is a polytope is investigated under
strong assumptions on f(x) to be twice differentiable and
locally strongly convex around x∗ (Bach 2020). AFW (Li
et al. 2020) replaces the subproblem of NAG by a single FW
subproblem, where constraint-specific faster rates are devel-
oped. Taking an active `2 norm ball constraint as an exam-
ple, AFW guarantees a rate ofO

(
ln k
k2

)
. A natural question is

whether the ln k in the numerator can be eliminated. In ad-
dition, although the implementation involves no parameter,
the analysis of AFW relies on the value maxx∈X f(x).

Aiming at parameter-free FW with faster rates (on cer-
tain constraints) that can bypass the limitations of AFW,
the present work deals with the design and analysis of Ex-
traFW. The ‘extra’ in its name refers to the pair of gra-
dients involved per iteration, whose merit is to enable a
‘prediction-correction’ (PC) type of update. Though the idea
of using two gradients to perform PC updates originates
from projection-based algorithms, such as ExtraGradient
(Korpelevich 1976) and Mirror-Prox (Nemirovski 2004; Di-
akonikolas and Orecchia 2017; Kavis et al. 2019), leveraging
PC updates in FW type algorithms for faster rates is novel.

Our contributions are summarized as follows.

• A new parameter-free FW variant, ExtraFW, is studied in
this work. The distinct feature of ExtraFW is the adop-
tion of two gradient evaluations per iteration to update the
decision variable in a prediction-correction (PC) manner.

• It is shown that ExtraFW convergences with a rate of
O(1

k) for general problems. And for constraint sets in-
cluding active `1, `2 and n-support norm balls, ExtraFW
guarantees an accelerated rate O(1

k2).

• Unlike most of faster rates in FW literatures, ExtraFW is
parameter-free, so that no problem dependent parameter
is required. Compared with another parameter-free algo-
rithm with faster rates, AFW (Li et al. 2020), introducing
PC update in ExtraFW leads to several advantages: i) the
convergence rate is improved by a factor ofO(ln k) on an
`2 norm ball constraint; and ii) the analysis does not rely
on the maximum value of f(x) over X .

• The efficiency of ExtraFW is corroborated on two bench-
mark machine learning tasks. The faster rate O(1

k2) is
achieved on binary classification, evidenced by the pos-
sible improvement of ExtraFW over NAG on multiple
sparsity-promoting constraint sets. For matrix comple-
tion, ExtraFW improves over AFW and FW in both op-
timality error and the rank of the solution.

Notation. Bold lowercase (uppercase) letters denote vec-
tors (matrices); ‖x‖ stands for a norm of x, with its dual
norm written as ‖x‖∗; and 〈x,y〉 denotes the inner product
of x and y. We also define x ∧ y := min{x, y}. Due to the
page limitation, missing proofs can be found in Appendix.1

2 Preliminaries
This section reviews FW and AFW in order to illustrate the
proposed algorithm in a principled manner. We first pinpoint
the class of problems to focus on.

Assumption 1. (Lipschitz Continuous Gradient.) The func-
tion f : X → R has L-Lipchitz continuous gradients; that
is, ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x,y ∈ X .

Assumption 2. (Convex Objective Function.) The function
f : X → R is convex; that is, f(y)− f(x) ≥ 〈∇f(x),y −
x〉, ∀x,y ∈ X .

Assumption 3. (Constraint Set.) The constraint set X is
convex and compact with diameter D, that is, ‖x − y‖ ≤
D, ∀x,y ∈ X .

Assumptions 1 – 3 are standard for FW type algorithms,
and will be taken to hold true throughout. A blackbox opti-
mization paradigm is considered in this work, where the ob-
jective function and constraint set can be accessed through
oracles only. In particular, the first-order oracle (FO) and the
linear minimization oracle (LMO) are needed.

Definition 1. (FO.) The first-order oracle takes x ∈ X as
an input and returns its gradient∇f(x).

Definition 2. (LMO.) The linear minimization oracle takes
a vector g ∈ Rd as an input and returns a minimizer of
minx∈X 〈g,x〉.

Except for gradients, problem dependent parameters such
as function value, smoothness constant L, and constraint
diameter D are not provided by FO and LMO. Hence, al-
gorithms relying only on FO and LMO are parameter-free.

1http://arxiv.org/abs/2012.05284

8325

Algorithm 1 FW (Frank and Wolfe 1956)

1: Initialize: x0 ∈ X
2: for k = 0, 1, . . . ,K − 1 do
3: vk+1 = arg minx∈X 〈∇f(xk),x〉
4: xk+1 = (1− δk)xk + δkvk+1

5: end for
6: Return: xK

Algorithm 2 AFW (Li et al. 2020)

1: Initialize: x0 ∈ X , g0 = 0, and v0 = x0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk
4: gk+1 = (1− δk)gk + δk∇f(yk)
5: vk+1 = arg minx∈X 〈gk+1,x〉
6: xk+1 = (1− δk)xk + δkvk+1

7: end for
8: Return: xK

Next, we recap FW and AFW with parameter-free step sizes
to gain more insights for the proposed algorithm.

FW recap. FW is summarized in Alg. 1. A subproblem
with a linear loss, referred to also as an FW step, is solved
per iteration via LMO. The FW step can be explained as
finding a minimizer over X for the following supporting hy-
perplane of f(x),

f(xk) + 〈∇f(xk),x− xk〉. (2)

Note that (2) is also a lower bound for f(x) due to convex-
ity. Upon obtaining vk+1 by minimizing (2) over X , xk+1

is updated as a convex combination of vk+1 and xk to elim-
inate the projection. The parameter-free step size is usually
chosen as δk = 2

k+2 . As for convergence, FW guarantees

f(xk)− f(x∗) = O(LD
2

k).
AFW recap. As an FW variant, AFW in Alg. 2 relies on

Nesterov momentum type update, that is, it uses an auxil-
iary variable yk to estimate xk+1 and calculates the gradient
∇f(yk). If one writes gk+1 explicitly, vk+1 can be equiva-
lently described as a minimizer over X of the hyperplane

k∑
τ=0

wτk
[
f(yτ) + 〈∇f(yτ),x− yτ 〉

]
(3)

where wτk = δτ
∏k
j=τ+1(1 − δj) and

∑k
τ=0 w

τ
k ≈ 1

(the sum depends on the choice of δ0). Note that f(yτ) +
〈∇f(yτ),x−yτ 〉 is a supporting hyperplane of f(x) at yτ ,
hence (3) is a lower bound for f(x) constructed through a
weighted average of supporting hyperplanes at {yτ}. AFW
converges at O

(
LD2

k

)
on general problems. When the con-

straint set is an active `2 norm ball, AFW has a faster rate
O
(
LD2

k ∧ TLD2 ln k
k2

)
, where T depends on D. Writing this

rate compactly as O
(
TLD2 ln k

k2

)
, it is observed that AFW

achieves acceleration with the price of a worse dependence
on other parameters hidden in T . However, even for the k-
dependence, AFW is O(ln k) times slower compared with
other momentum based algorithms such as NAG. This slow-
down is because that the lower bound (3) is constructed

Algorithm 3 ExtraFW

1: Initialize: x0, g0 = 0, and v0 = x0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk . prediction
4: ĝk+1 = (1− δk)gk + δk∇f(yk)
5: v̂k+1 = arg minv∈X 〈ĝk+1,v〉
6: xk+1 = (1− δk)xk + δkv̂k+1 . correction
7: gk+1 = (1− δk)gk + δk∇f(xk+1)
8: vk+1 = arg minv∈X 〈gk+1,v〉 . extra FW step
9: end for

10: Return: xK

based on {yk}, which are estimated {xk+1}. We will show
that relying on a lower bound constructed using {xk+1} di-
rectly, it is possible to avoid this O(ln k) slowdown.

3 ExtraFW
This section introduces the main algorithm, ExtraFW, and
establishes its constraint dependent faster rates.

3.1 Algorithm Design
ExtraFW is summarized in Alg. 3. Different from the vanilla
FW and AFW, two FW steps (Lines 5 and 8 of Alg. 3) are
required per iteration. Compared with other algorithms re-
lying on two gradient evaluations, such as Mirror-Prox (Di-
akonikolas and Orecchia 2017; Kavis et al. 2019), ExtraFW
reduces the computational burden of the projection. In ad-
dition, as an FW variant, ExtraFW can capture the proper-
ties such as sparsity or low rank promoted by the constraints
more effectively through the update than those projection
based algorithms. Detailed elaboration can be found in Sec-
tion 4 and Appendix D. To facilitate comparison with FW
and AFW, ExtraFW is explained through constructing lower
bounds of f(x) in a “prediction-correction (PC)” manner.
The merits of the PC update compared with AFW are: i) the
elimination of maxx∈X f(x) in analysis; and ii) it improves
the convergence rate on certain class of problems as we will
see later.

Lower bound prediction. Similar to AFW, the auxiliary
variable yk in Line 3 of Alg. 3 can be viewed as an estimate
of xk+1. The first gradient is evaluated at yk, and is incor-
porated into ĝk+1, which is an estimate of the weighted av-
erage of {∇f(x)τ}k+1

τ=1. By expanding ĝk+1, one can verify
that v̂k+1 can be obtained equivalently through minimizing
the following weighted sum,

k−1∑
τ=0

wτk

[
f(xτ+1) + 〈∇f(xτ+1),x− xτ+1〉

]
+ δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
, (4)

where wτ = δτ
∏k
j=τ+1(1 − δj) and

∑k−1
τ=0 wτ + δk ≈ 1.

Note that each term inside square brackets forms a sup-
porting hyperplane of f(x), hence (4) is an (approximated)
lower bound of f(x) because of convexity. As a prediction
to f(xk+1) + 〈∇f(xk+1),x−xk+1〉, the last bracket in (4)
will be corrected once xk+1 is obtained.

8326

Lower bound correction. The gradient ∇f(xk+1) is
used to obtain a weighted averaged gradients gk+1. By un-
rolling gk+1, one can find that vk+1 is a minimizer of the
following (approximated) lower bound of f(x)

k−1∑
τ=0

wτk

[
f(xτ+1) +

〈
∇f(xτ+1),x− xτ+1

〉]
+ δk

[
f(xk+1) +

〈
∇f(xk+1),x− xk+1

〉]
. (5)

Comparing (4) and (5), we deduce that the terms in the last
bracket of (4) are corrected to the true supporting hyper-
plane of f(x) at xk+1. In sum, the FW steps in ExtraFW
rely on lower bounds of f(x) constructed in a weighted
average manner similar to AFW. However, the key differ-
ence is that ExtraFW leverages the supporting hyperplanes
at true variables {xk} rather than the auxiliary ones {yk} in
AFW through a “correction” effected by (5). In the follow-
ing subsections, we will show that the PC update in ExtraFW
performs no worse than FW or AFW on general problems,
while harnessing its own analytical merits on certain con-
straint sets.

3.2 Convergence of ExtraFW
We investigate the convergence of ExtraFW by considering
the general case first. The analysis relies on the notion of
estimate sequence (ES) introduced in (Nesterov 2004). An
ES “estimates” f using a sequence of surrogate functions
{Φk(x)} that are analytically tractable (e.g., being quadratic
or linear). ES is formalized in the following definition.

Definition 3. A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is called an

estimate sequence of function f(x) if limk→∞ λk = 0 and
for any x ∈ X we have Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

The construction of ES varies for different algorithms
(see e.g., (Kulunchakov and Mairal 2019; Nesterov 2004;
Lin, Mairal, and Harchaoui 2015; Li, Wang, and Giannakis
2020)). However, the reason to rely on the ES based analysis
is similar, as summarized in the following lemma.

Lemma 1. For
(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfying the def-

inition of ES, if f(xk) ≤ minx∈X Φk(x) + ξk, ∀k, it is true
that

f(xk)− f(x∗) ≤ λk
(
Φ0(x∗)− f(x∗)

)
+ ξk, ∀ k.

As shown in Lemma 1, λk and ξk jointly characterize
the convergence rate of f(xk). (Consider λk = O(1

k) and
ξk = O(1

k) for an example.) Keeping Lemma 1 in mind,
we construct two sequences of linear surrogate functions for
analyzing ExtraFW, which highlight the differences of our
analysis with existing ES based approaches

Φ0(x) = Φ̂0(x) ≡ f(x0) (6a)

Φ̂k+1(x) = (1− δk)Φk(x) + δk
[
f(yk) (6b)

+ 〈∇f(yk),x− yk〉
]
, ∀k ≥ 0

Φk+1(x) = (1− δk)Φk(x) (6c)

+ 〈∇f(xk+1),x− xk+1〉
]
, ∀k ≥ 0.

Clearly, both Φk(x) and Φ̂k(x) are linear in x, in contrast
to the quadratic surrogate functions adopted for analyzing
NAG (Nesterov 2004). Such linear surrogate functions are
constructed specifically for FW type algorithms taking ad-
vantage of the compact and convex constraint set. Next we
show that (6) and proper {λk} form two different ES of f .

Lemma 2. If we choose λ0 = 1, δk ∈ (0, 1), and λk+1 =
(1 − δk)λk ∀k ≥ 0, both

(
{Φk(x)}∞k=0,{λk}∞k=0

)
and(

{Φ̂k(x)}∞k=0, {λk}∞k=0

)
satisfy the definition of ES.

The key reason behind the construction of surrogate func-
tions in (6) is that they are closely linked with the lower
bounds (4) and (5) used in the FW steps, as stated in the
next lemma.

Lemma 3. Let g0 = 0, then it is true that vk =
arg minx∈X Φk(x) and v̂k = arg minx∈X Φ̂k(x).

After relating the surrogate functions in (6) with ExtraFW,
exploiting the analytical merits of the surrogate functions
Φk(x) and Φ̂k(x), including being linear, next we show that
f(xk) ≤ minx∈X Φk(x) + ξk, ∀k, which is the premise of
Lemma 1.

Lemma 4. Let ξ0 = 0 and other parameters chosen the
same as previous lemmas. Denote Φ∗k := Φk(vk) as the min-
imum value of Φk(x) over X (cf. Lemma 3), then ExtraFW
guarantees that for any k ≥ 0

f(xk) ≤ Φ∗k + ξk, with ξk+1 = (1− δk)ξk +
3LD2

2
δ2k.

Based on Lemma 4, the value of f(xk) and Φ∗k can be
used to derive the stopping criterion if one does not want to
preset the iteration number K. Further discussions are pro-
vided in Appendix A.6 due to space limitation.

Now we are ready to apply Lemma 1 to establish the con-
vergence of ExtraFW.

Theorem 1. Suppose that Assumptions 1, 2 and 3 are sat-
isfied. Choosing δk = 2

k+3 , and g0 = 0, ExtraFW in Alg. 3
guarantees

f(xk)− f(x∗) = O
(
LD2

k

)
, ∀k.

This convergence rate of ExtraFW has the same order
as AFW and FW. In addition, Theorem 1 translates into
O(LD

2

ε) queries of LMO to ensure f(xk) − f(x∗) ≤ ε,
which matches to the lower bound (Lan 2013; Jaggi 2013).

The obstacle for faster rates. As shown in the detailed
proof, one needs to guarantee that either ‖vk − v̂k+1‖2 or
‖vk+1 − v̂k+1‖2 is small enough to obtain a faster rate than
Theorem 1. This is difficult in general because there could be
multiple vk and v̂k solving the FW steps. A simple example
is to consider the ith entry [gk]i = 0. The ith entry [vk]i
can then be chosen arbitrarily as long as vk ∈ X . The non-
uniqueness of vk prevents one from ensuring a small upper
bound of ‖vk− v̂k+1‖2, ∀ vk. In spite of this, we will show
that together with the structure on X , ExtraFW can attain
faster rates.

8327

3.3 Acceleration of ExtraFW
In this subsection, we provide constraint-dependent accel-
erated rates of ExtraFW when X is some norm ball. Even
for projection based algorithms, most of faster rates are ob-
tained with step sizes depending on L (Nemirovski 2004;
Diakonikolas and Orecchia 2017). Thus, faster rates for
parameter-free algorithms are challenging to establish. An
extra assumption is needed in this subsection.
Assumption 4. The constraint is active, i.e., ‖∇f(x∗)‖2 ≥
G > 0.

It is natural to rely on the position of the optimal solu-
tion in FW type algorithms for analysis, and one can see this
assumption also in (Levitin and Polyak 1966; Dunn 1979;
Li et al. 2020; Kerdreux, dAspremont, and Pokutta 2020).
For a number of machine learning tasks, Assumption 4 is
rather mild. Relying on Lagrangian duality, it can be seen
that problem (1) with a norm ball constraint is equivalent
to the regularized formulation minx f(x) + γg(x), where
γ ≥ 0 is the Lagrange multiplier, and g(x) denotes some
norm. In view of this, Assumption 4 simply implies that
γ > 0 in the equivalent regularized formulation, that is, the
norm ball constraint plays the role of a regularizer. Given the
prevalence of the regularized formulation in machine learn-
ing, it is worth investigating its equivalent constrained form
(1) under Assumption 4.

Technically, the need behind Assumption 4 can be exem-
plified through a one-dimensional problem. Consider mini-
mizing f(x) = x2 over X = {x|x ∈ [−1, 1]}. We clearly
have x∗ = 0 for which the constraint is inactive at the
optimal solution. Recall a faster rate of ExtraFW requires
‖v̂k+1 − vk+1‖2 to be small. When xk is close to x∗ = 0,
it can happen that ĝk+1 > 0 and gk+1 < 0, leading to
v̂k+1 = −1 and vk+1 = 1. The faster rate is prevented by
pushing vk+1 and v̂k+1 further apart from each other.

Next, we consider different instances of norm ball con-
straints as examples to the acceleration of ExtraFW. For sim-
plicity of exposition, the intuition and technical details are
discussed using an `2 norm ball constraint in the main test.
Detailed analysis for `1 and n-support norm ball constraints
are provided in Appendix.
`2 norm ball constraint. ConsiderX := {x|‖x‖2 ≤ D

2 }.
In this case, vk+1 and v̂k+1 admit closed-form solutions,
taking vk+1 as an example,

vk+1 = arg min
x∈X

〈gk+1,x〉 = − D

2‖gk+1‖2
gk+1. (7)

We assume that when using gk+1 as the input to the LMO,
the returned vector is given by (7). This is reasonable since it
is what we usually implemented in practice. Though rarely
happen, one can choose vk+1 = v̂k+1 to proceed if gk+1 =
0. Similarly, we can simply set v̂k+1 = vk if ĝk+1 = 0. The
uniqueness of vk+1 is ensured by its closed-form solution,
wiping out the obstacle for a faster rate.
Theorem 2. Suppose that Assumptions 1, 2, 3 and 4 are
satisfied, and X is an `2 norm ball. Choosing δk = 2

k+3 ,
and g0 = 0, ExtraFW in Alg. 3 guarantees

f(xk)− f(x∗) = O
(
LD2

k
∧ LD

2T

k2

)
, ∀k

where T is a constant depending only on L, G, and D.
Theorem 2 admits a couple of interpretations. By writ-

ing the rate compactly, ExtraFW achieves accelerated rate
O
(
TLD2

k2

)
, ∀k with a worse dependence on D compared to

the vanilla FW. Or alternatively, the “asymptotic” perfor-
mance at k ≥ T is strictly improved over the vanilla FW.
It is worth mentioning that the choices of δk and g0 are not
changed compared to Theorem 1 so that the parameter-free
implementation is the same regardless whether accelerated.
In other words, prior knowledge on whether Assumption 4
holds is not needed in practice. Compared with CGS, Ex-
traFW sacrifices the D dependence in the convergence rate
to trade for i) the nonnecessity of the knowledge of L andD,
and ii) ensuring two FW subproblems per iteration (whereas
at most O(k) subproblems are needed in CGS). When com-
paring with AFW (Li et al. 2020), the convergence rate of
ExtraFW is improved by a factor of O(ln k), and the analy-
sis does not rely on the constant M := maxx∈X f(x).
`1 norm ball constraint. For the sparsity-promoting con-

straint X := {x|‖x‖1 ≤ R}, the FW steps can be solved in
closed form too. Taking vk+1 as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[gk+1]i, 0, . . . , 0]>

with i = arg max
j

|[gk+1]j |. (8)

We show in Theorem 3 (see Appendix C.1) that when As-
sumption 4 holds and the set arg maxj

∣∣[∇f(x∗)]j
∣∣ has car-

dinality 1, a faster rate O(T1LD
2

k2) can be obtained with the
constant T1 depending on L, G, and D. The additional as-
sumption here is known as strict complementarity, and has
been adopted also in, e.g.,(Ding et al. 2020; Garber 2020).
n-support norm ball constraint. The n-support norm

ball is a tighter relaxation of a sparsity prompting `0 norm
ball combined with an `2 norm penalty compared with the
ElasticNet (Zou and Hastie 2005). It is defined as X :=
conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R}, where conv{·} denotes
the convex hull (Argyriou, Foygel, and Srebro 2012). The
closed-form solution of vk+1 is given by (Liu et al. 2016)

vk+1 = − R

‖topn(gk+1)‖2
topn(gk+1) (9)

where topn(g) denotes the truncated version of g with
its top n (in magnitude) entries preserved. A faster rate
O(T2LD

2

k2) is guaranteed by ExtraFW under Assumption 4,
and a condition similar to strict complementarity (see The-
orem 4 in the Appendix C.2). Again, the constant T2 here
depends on L, G, and D.

Other constraints. Note that the faster rates for ExtraFW
are not limited to the exemplified constraint sets. In princi-
ple, if i) certain structure such as sparsity is promoted by the
constraint set so that x∗ is likely to lie on the boundary ofX ;
and ii) one can ensure the uniqueness of vk through either
a closed-form solution or a specific implementation manner,
the acceleration of ExtraFW is achievable. Discussions for
faster rates on a simplex X can be found in Appendix C.1.
In addition, one can easily extend our results to the matrix
case, where the constraint set is the Frobenius or the nuclear
norm ball since they are `2 and `1 norms on the singular
values of matrices, respectively.

8328

(a) (b) (c) (d)

Figure 1: Performance of ExtraFW for binary classification with an `2 norm ball constraint on datasets: (a) mnist, (b) w7a, (c)
realsim, and, (d) mushroom. In all plots, x-axis denotes the iteration number, and y-axis is f(xk)− f(x∗).

(a1) (a2) (b1) (b2)

Figure 2: Performance of ExtraFW for binary classification with an `1 norm ball constraint: (a1) optimality error on mnist, (a2)
solution sparsity on mnist, (b1) optimality error on mushroom, and, (b2) solution sparsity on mushroom. In all figures, x-axis
denotes the iteration number.

4 Numerical Tests
This section deals with numerical tests of ExtraFW to show-
case its effectiveness on different machine learning prob-
lems. Due to the space limitation, details of the datasets
and implementation are deferred to Appendix D. For com-
parison, the benchmarked algorithms are chosen as: i) GD
with standard step size 1

L ; ii) Nesterov accelerated gradient
(NAG) with step sizes in (Allen-Zhu and Orecchia 2014);
iii) FW with parameter-free step size 2

k+2 (Jaggi 2013); and
iv) AFW with step size 2

k+3 (Li et al. 2020).

4.1 Binary Classification
We first investigate the performance of ExtraFW on binary
classification using logistic regression. The constraints con-
sidered include: i) `2 norm ball for generalization merits;
and, ii) `1 and n-support norm ball for promoting a sparse
solution. The objective function is

f(x) =
1

N

N∑
i=1

ln
(
1 + exp(−bi〈ai,x〉)

)
(10)

where (ai, bi) is the (feature, label) pair of datum i, and N
is the number of data. Datasets mnist2 and those from LIB-
SVM3 are used in the numerical tests. Figures reporting test
accuracy, and additional tests are postponed into Appendix.
`2 norm ball constraint. We start with X = {x|‖x‖2 ≤

R}. The optimality error are plotted in Figure 1. On all
tested datasets, ExtraFW outperforms AFW, NAG, FW and
GD, demonstrating the O(1

k2) convergence rate established

2http://yann.lecun.com/exdb/mnist/
3https://www.csie.ntu.edu.tw/ cjlin/libsvm/

in Theorem 2. In addition, the simulation also suggests that
T is in general small for logistic loss. On dataset w7a and
mushroom, ExtraFW is significantly faster than AFW. All
these observations jointly confirm the usefulness of the ex-
tra gradient and the PC update.
`1 norm ball constraint. Let X = {x|‖x‖1 ≤ R}

be the constraint set to promote sparsity on the solution.
Note that FW type updates directly guarantee that xk has
at most k non-zero entries when initialized at x0 = 0;
see detailed discussions in Appendix D.2. In the simulation,
R is tuned to obtain a solution that is almost as sparse as
the dataset itself. The numerical results on datasets mnist
and mushroom including both optimality error and the spar-
sity level of the solution can be found in Figure 2. On
dataset mnist, ExtraFW slightly outperforms AFW but is not
as fast as NAG. However, ExtraFW consistently finds so-
lutions sparser than NAG. While on dataset mushroom, it
can be seen that both AFW and ExtraFW outperform NAG,
with ExtraFW slightly faster than AFW. And ExtraFW finds
sparser solutions than NAG.
n-support norm ball constraint. Effective projection

onto such a constraint is unknown yet and hence GD and
NAG are not included in the test. The performance of Ex-
traFW can be found in Figure 3. On dataset mnist, both AFW
and ExtraFW converge much faster than FW with ExtraFW
slightly faster than AFW. However, FW trades the solution
accuracy with its sparsity. On dataset mushroom, ExtraFW
converges much faster than AFW and FW, while finding the
sparsest solution.

4.2 Matrix Completion
We then consider matrix completion problems that are ubiq-
uitous in recommender systems. Consider a matrix A ∈

8329

(a1) (a2) (b1) (b2)

Figure 3: Performance of ExtraFW for binary classification with an n-support norm ball constraint: (a1) optimality error on
mnist, (a2) solution sparsity on mnist, (b1) optimality error on mushroom, and, (b2) solution sparsity on mushroom. In all
figures, x-axis denotes the iteration number.

(a) (b) (c) (d)

Figure 4: Performance of ExtraFW for matrix completion: (a) optimality vs k, (b) solution rank vs k, (c) optimality at k = 500
vs R, and, (d) solution rank at k = 500 vs R.

Rm×n with partially observed entries, that is, entriesAij for
(i, j) ∈ K are known, where K ⊂ {1, . . . ,m}×{1, . . . , n}.
Note that the observed entries can also be contaminated by
noise. The task is to predict the unobserved entries of A.
Although this problem can be approached in several ways,
within the scope of recommender systems, a commonly
adopted empirical observation is that A is low rank (Ben-
nett and Lanning 2007; Bell and Koren 2007). Hence the
objective boils down to

min
X

1

2

∑
(i,j)∈K

(Xij −Aij)2 (11)

s.t. ‖X‖nuc ≤ R
where ‖·‖nuc denotes the nuclear norm. Problem (11) is dif-
ficult to be solved via GD or NAG because projection onto a
nuclear norm ball requires to perform SVD, which has com-
plexity O

(
mn(m ∧ n)

)
. On the contrary, FW and its vari-

ants are more suitable for (11) given the facts: i) Assump-
tions 1 – 3 are satisfied under nuclear norm (Freund, Grigas,
and Mazumder 2017); ii) FW step can be solved easily with
complexity at the same order as the number of nonzero en-
tries; and iii) the update promotes low-rank solution directly
(Freund, Grigas, and Mazumder 2017). More on ii) and iii)
are discussed in Appendix D.3.

We test ExtraFW on a widely used dataset, Movie-
Lens100K4. The experiments follow the same steps in (Fre-
und, Grigas, and Mazumder 2017). The numerical perfor-
mance of ExtraFW, AFW, and FW can be found in Figure 4.
We plot the optimality error and rank versus k choosingR =
2.5 in Figures 4(a) and 4(b). It is observed that ExtraFW ex-
hibits the best performance in terms of both optimality error

4https://grouplens.org/datasets/movielens/100k/

and solution rank. In particular, ExtraFW roughly achieves
2.5x performance improvement compared with FW in terms
of optimality error. We further compare the convergence of
ExtraFW to AFW and FW at iteration k = 500 under differ-
ent choices ofR in Figures 4(c) and 4(d). ExtraFW still finds
solutions with the lowest optimality error and rank. More-
over, the performance gap between ExtraFW and AFW in-
creases with R, suggesting the inclined tendency of prefer-
ring ExtraFW over AFW and FW as R grows.

5 Conclusions

A new parameter-free FW variant, ExtraFW, is introduced
and analyzed in this work. ExtraFW leverages two gra-
dient evaluations per iteration to update in a “prediction-
correction” manner. We show that ExtraFW converges at
O(1

k) on general problems, while achieving a faster rate
O(TLD

2

k2) on certain types of constraint sets including ac-
tive `1, `2 and n-support norm balls. Given the possibility
of acceleration, ExtraFW is thus a competitive alternative to
FW. The efficiency of ExtraFW is validated on tasks such
as i) binary classification with different constraints, where
ExtraFW can be even faster than NAG; and ii) matrix com-
pletion where ExtraFW finds solutions with lower optimality
error and rank rapidly.

Acknowledgements

The authors would like to thank anonymous reviewers for
their constructive feedback. BL and GG gratefully acknowl-
edge the support from NSF grants 1711471, and 1901134.
LW and ZZ are supported by Alfred P. Sloan Foundation.

8330

References
Allen-Zhu, Z.; and Orecchia, L. 2014. Linear coupling: An ul-
timate unification of gradient and mirror descent. arXiv preprint
arXiv:1407.1537 .

Argyriou, A.; Foygel, R.; and Srebro, N. 2012. Sparse prediction
with the k-support norm. In Proc. Advances in Neural Info. Pro-
cess. Syst., 1457–1465.

Bach, F. 2020. On the effectiveness of Richardson extrapolation in
machine learning. arXiv preprint arXiv:2002.02835 .

Bell, R. M.; and Koren, Y. 2007. Lessons from the Netflix prize
challenge. SiGKDD Explorations 9(2): 75–79.

Bennett, J.; and Lanning, S. 2007. The Netflix prize. In KDD cup
and workshop, 35. New York, NY, USA.

Braun, G.; Pokutta, S.; Tu, D.; and Wright, S. 2018. Blended condi-
tional gradients: the unconditioning of conditional gradients. arXiv
preprint arXiv:1805.07311 .

Diakonikolas, J.; and Orecchia, L. 2017. Accelerated extra-
gradient descent: A novel accelerated first-order method. arXiv
preprint arXiv:1706.04680 .

Ding, L.; Fei, Y.; Xu, Q.; and Yang, C. 2020. Spectral Frank-Wolfe
algorithm: Strict complementarity and linear convergence. In Proc.
Intl. Conf. on Machine Learning.

Dunn, J. C. 1979. Rates of convergence for conditional gradient
algorithms near singular and nonsingular extremals. SIAM Journal
on Control and Optimization 17(2): 187–211.

Frank, M.; and Wolfe, P. 1956. An algorithm for quadratic pro-
gramming. Naval Research Logistics Quarterly 3(1-2): 95–110.

Freund, R. M.; Grigas, P.; and Mazumder, R. 2017. An extended
Frank–Wolfe method with in-face directions, and its application to
low-rank matrix completion. SIAM Journal on Optimization 27(1):
319–346.

Garber, D. 2020. Revisiting Frank-Wolfe for polytopes: Strict com-
plementary and sparsity. arXiv preprint arXiv:2006.00558 .

Garber, D.; and Hazan, E. 2015. Faster rates for the Frank-Wolfe
method over strongly-convex sets. In Proc. Intl. Conf. on Machine
Learning. Lille, France.

Garber, D.; and Meshi, O. 2016. Linear-memory and
decomposition-invariant linearly convergent conditional gradient
algorithm for structured polytopes. In Proc. Advances in Neural
Info. Process. Syst., 1001–1009.

Guélat, J.; and Marcotte, P. 1986. Some comments on Wolfe’s away
step. Mathematical Programming 35(1): 110–119.

Harchaoui, Z.; Juditsky, A.; and Nemirovski, A. 2015. Conditional
gradient algorithms for norm-regularized smooth convex optimiza-
tion. Mathematical Programming 152(1-2): 75–112.

Jaggi, M. 2013. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In Proc. Intl. Conf. on Machine Learning,
427–435.

Joulin, A.; Tang, K.; and Fei-Fei, L. 2014. Efficient image and
video co-localization with Frank-Wolfe algorithm. In Proc. Euro-
pean Conf. on Computer Vision, 253–268. Springer.

Kavis, A.; Levy, K. Y.; Bach, F.; and Cevher, V. 2019. UniXGrad:
A universal, adaptive algorithm with optimal guarantees for con-
strained optimization. In Proc. Advances in Neural Info. Process.
Syst., 6257–6266.

Kerdreux, T.; dAspremont, A.; and Pokutta, S. 2020. Projection-
free optimization on uniformly convex sets. arXiv preprint
arXiv:2004.11053 .

Korpelevich, G. 1976. The extragradient method for finding saddle
points and other problems. Matecon: Translations of Russian and
East European Mathematical Economics 12: 747–756.

Kulunchakov, A.; and Mairal, J. 2019. Estimate sequences for
variance-reduced stochastic composite optimization. In Proc. Intl.
Conf. on Machine Learning.

Lacoste-Julien, S.; and Jaggi, M. 2015. On the global linear con-
vergence of Frank-Wolfe optimization variants. In Proc. Advances
in Neural Info. Process. Syst., 496–504. Atlanta, USA.

Lacoste-Julien, S.; Jaggi, M.; Schmidt, M. W.; and Pletscher, P.
2013. Block-coordinate Frank-Wolfe optimization for structural
SVMs. In Proc. Intl. Conf. on Machine Learning, 53–61.

Lan, G. 2013. The complexity of large-scale convex programming
under a linear optimization oracle. arXiv:1309.5550 .

Levitin, E. S.; and Polyak, B. T. 1966. Constrained minimization
methods. USSR Computational Mathematics and Mathematical
Physics 6(5): 1–50.

Li, B.; Coutino, M.; Giannakis, G. B.; and Leus, G. 2020.
How does momentum help Frank Wolfe? arXiv preprint
arXiv:1908.09345 .

Li, B.; Wang, L.; and Giannakis, G. B. 2020. Almost tune-free
variance reduction. In Proc. Intl. Conf. on Machine Learning.

Lin, H.; Mairal, J.; and Harchaoui, Z. 2015. A universal catalyst for
first-order optimization. In Proc. Advances in Neural Info. Process.
Syst., 3384–3392. Montreal, Canada.

Liu, B.; Yuan, X.-T.; Zhang, S.; Liu, Q.; and Metaxas, D. N. 2016.
Efficient k-support-norm regularized minimization via fully cor-
rective Frank-Wolfe method. In Proc. Intl. Joint Conf. on Artifical
Intelligence, 1760–1766.

Luise, G.; Salzo, S.; Pontil, M.; and Ciliberto, C. 2019. Sinkhorn
barycenters with free support via Frank-Wolfe algorithm. In Proc.
Advances in Neural Info. Process. Syst., 9318–9329.

Mokhtari, A.; Hassani, H.; and Karbasi, A. 2018. Stochastic condi-
tional gradient methods: From convex minimization to submodular
maximization. arXiv preprint arXiv:1804.09554 .

Nemirovski, A. 2004. Prox-method with rate of convergence
O(1/t) for variational inequalities with Lipschitz continuous
monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization 15(1): 229–251.

Nesterov, Y. 2004. Introductory lectures on convex optimization: A
basic course, volume 87. Springer Science & Business Media.

Nesterov, Y. 2015. Universal gradient methods for convex opti-
mization problems. Mathematical Programming 152(1-2): 381–
404.

Pedregosa, F.; Askari, A.; Negiar, G.; and Jaggi, M. 2018. Step-
size adaptivity in projection-free optimization. arXiv preprint
arXiv:1806.05123 .

Zou, H.; and Hastie, T. 2005. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society: series
B (Statistical Methodology) 67(2): 301–320.

8331

