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Abstract

Knowledge distillation (KD) is one of the most useful tech-
niques for light-weight neural networks. Although neural net-
works have a clear purpose of embedding datasets into the
low-dimensional space, the existing knowledge was quite far
from this purpose and provided only limited information.
We argue that good knowledge should be able to interpret
the embedding procedure. This paper proposes a method of
generating interpretable embedding procedure (IEP) knowl-
edge based on principal component analysis, and distilling
it based on a message passing neural network. Experimen-
tal results show that the student network trained by the pro-
posed KD method improves 2.28% in the CIFAR100 dataset,
which is higher performance than the state-of-the-art (SOTA)
method. We also demonstrate that the embedding procedure
knowledge is interpretable via visualization of the proposed
KD process. The implemented code is available at https:
//github.com/sseung0703/IEPKT.

Introduction

Convolutional neural networks (CNNs) have been adopted
by a variety of areas because of their outstanding perfor-
mance. However, CNNs require a huge amount of compu-
tation and memory cost, which makes it hard to mount on
embedded and mobile systems. Knowledge distillation (KD)
is one of the solutions to build light-weighted CNNs (Hin-
ton, Vinyals, and Dean 2015). The main function of KD
is to create and deliver a certain knowledge so that a stu-
dent network behaves similarly to a teacher network. Since
KD can be applied to various machine learning areas such
as semi-supervised learning and zero-shot learning, KD has
been received a lot of attention recently. Conventional KD
algorithms defined information from several locations of
CNN, e.g., intermediate feature maps (Romero et al. 2014;
Zagoruyko and Komodakis 2016a) and embedded feature
vectors at the output end of CNN (Hinton, Vinyals, and Dean
2015; Park et al. 2019; Kim, Park, and Kwak 2018), as the
knowledge of CNN.

Note that CNN’s ultimate goal is to map high dimensional
data such as images and audio to low dimensional space for
easy analysis. However, the knowledge proposed so far has
been far from the purpose of CNNs. In order to improve the
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Figure 1: The conceptual illustration of the neural network’s
embedding procedure knowledge with the proposed stacked
principal component analysis (SPCA).

student network’s embedding performance, it is important
to accurately convey the information about the embedding
process of CNN, which analyzes a dataset in order from
low-level features to high-level features. Therefore, we in-
sist that the knowledge of CNN should represent the embed-
ding procedure and be able to interpret human insight during
the distillation process. In order to define and distill such in-
terpretable embedding procedure (IEP) knowledge, we have
gained a few insights from the following previous works.

Principal component analysis (PCA) has been one of the
effective tools for visualizing and analyzing embedded fea-
ture distribution (Harkonen et al. 2020). On the other hand,
since graph-structure can effectively represent inter-data re-
lations, many graph neural networks (GNNs) have been de-
veloped recently. For example, GNN is attracting attention
as a reliable solution to represent embedding space (Meng
et al. 2018).

Based on insights from the previous works, this paper
presents a new KD method for distilling IEP knowledge.
First, to analyze the embedding procedure of the teacher net-
work, a stacked PCA (SPCA), which performs PCA twice,
is proposed. SPCA allows the feature map dimension to be
shallow, enabling analysis and visualization of embedding
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procedures at relatively low cost. Here, the graph-structure is
employed. Figure 1 illustrates this concept. Next, in order to
distill IEP knowledge with minimal information loss, a new
distillation method using a message passing neural network
(MPNN) is proposed. The MPNN distills IEP knowledge by
estimating the embedding procedure of each stage from the
previous stage’s graph.

Our contribution points are as follows: First, student
networks trained by the proposed IEP knowledge provide
SOTA performance. Second, IEP knowledge is interpretable
via visualization, which represents the embedding procedure
of CNN and coincides with human insight.

Related Works
Knowledge Distillation

Conventional KD methods defined various knowledge.
Some of them defined the neural response of the last or sev-
eral interim feature maps of CNN as knowledge (Ahn et al.
2019; Hinton, Vinyals, and Dean 2015; Romero et al. 2014;
Zagoruyko and Komodakis 2016a). Also, there have been at-
tempts to distill embedding knowledge so as to overcome the
problem of lack of knowledge in existing KD techniques (Ge
et al. 2019; Lee and Song 2019; Park et al. 2019). Such ap-
proaches were mainly intended to find inter-data relations in
the embedding space of the last stage of CNN. Only some
of the approaches distilled embedding procedure informa-
tion directly (Lee and Song 2019). However, the knowl-
edge defined by the above-mentioned methods was not in-
terpretable, which means that the previous methods could
lose significant information during the distillation process.
To distill the teacher network’s knowledge with no or mini-
mal information loss, we propose a new method for distilling
IEP knowledge.

PCA in Deep Learning

As derivative functions of singular value decomposition
(SVD) and eigendecomposition (EID) have been defined
recently (Ionescu, Vantzos, and Sminchisescu 2015), sev-
eral studies to fuse SVD and EID with deep neural net-
works have been published (Lee, Kim, and Song 2018; Val-
madre et al. 2017). For example, SVD was used to compress
feature maps (Valmadre et al. 2017), and principal compo-
nents themselves were employed as compressed feature vec-
tors (Lee and Song 2019; Lee, Kim, and Song 2018). As one
of the ways to reduce the PCA’s memory cost, incremen-
tal PCA (IPCA) incrementally estimated dataset’s principal
components and predicted mean vectors on a mini-batch ba-
sis (Ross et al. 2008). Recently, applying PCA to deep learn-
ing have been proposed (Hao and Zhang 2016). From the
previous studies, we got an insight that embedding proce-
dure knowledge can be obtained from the teacher network
through IPCA.

Graph Neural Network

GNN has been studied in various fields as a tool for ob-
taining inter-data relations. In particular, MPNN, one of the
GNNs, has emerged as a core technology in areas where
edge information is important, such as physics (Cranmer
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Figure 2: Conceptual diagram of the proposed knowledge
distillation algorithm. K" and K** mean knowledge of in-
terim embedding stages and alteration of them, respectively.

etal. 2019; Henrion et al. 2017) and chemistry tasks (Gilmer
et al. 2017; Nguyen, Maeda, and Oono 2017). Recently,
Meng et al. proposed a technique to apply MPNN to em-
bedding task (Meng et al. 2018). The method was able to
interpret and estimate complex relationships between data
by defining inter-data relations as edges. From the previous
works, we gained another insight that MPNNs can capture
relational information better than the attention networks that
become recently popular more and more.

Methods

This section defines knowledge of embedding procedure,
i.e., the goal of neural networks, and suggests how to dis-
till the knowledge in an interpretable form. The block dia-
gram of the proposed method is shown in Fig. 2. First, com-
press the set of feature maps of the teacher network with
SPCA, and calculate the embedding procedure, and define it
as knowledge. MPNN distills this knowledge in a form that
can be transferred to the student network. Next, the student
network’s IEP knowledge is distilled through a distillation
module trained with the teacher network in advance. Finally,
the student network’s target task and teacher’s knowledge
are trained via multi-task learning. In addition, this paper
presents a method for integrating the proposed method with
multi-head graph distillation (MHGD), one of the latest KD
techniques, to accomplish complete neural network knowl-
edge.

Producing IEP Knowledge via SPCA

In order to produce embedding procedure knowledge of
CNN, we need to analyze the inter-data relation of feature
maps sensed in the middle of CNN, which corresponds to
the intermediate stage of embedding. However, finding rela-
tions between feature maps usually requires high computa-
tion cost. Therefore, SPCA is applied to effectively reduce
the dimension of feature maps without crucial information
loss. SPCA also contributes to visualizing a set of feature
maps for better understanding. The conceptual diagram of
the SPCA is shown in Fig. 3.

Since feature maps generally have high spatial correla-
tion, some feature vectors can have similar information to
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Figure 3: The block diagram of the stacked PCA (SPCA).
Here, S.C is sign correction, S2P is sphere to plane mapping,
EMA is an exponential moving average, and conc. means
concatenation.

each other. Thus, a feature map can be approximated with
several principal components (PCs). In detail, a feature map
of Hx W xD is converted into a matrix F of HW x D by PCA.
Here, H, W, D indicate the width, height, and depth of a fea-
ture map, respectively. We only adopt the first PC to com-
press the feature map as much as possible. Next, the sign
flipping, which makes the largest absolute value positive, is
used to remove the sign ambiguity of singular vectors (S.C
in Fig. 3). Finally, assuming a mini-batch data, a set of PCs
P is represented as follows.

P =[p.licncn = [8nVnoli<pan - P € RNXP (1)
Sn, = sign (max (vp,0) + min (v, o)) 2)
Vo = [Vn,khgkgmin(HW’D) , F, = UnEnV; 3)

where * is the Hermitian function and N is the batch size.

Since p,, is HW times smaller than F,, it is possible to
obtain the relation with very low cost. But the dimension of
P is still too high to be interpreted by humans. So we apply
PCA once more to find the PCs of the embedding space (the
2" PCA in Fig. 3). Additional dimension reduction by the
second PCA not only enables visualization but also elimi-
nates unnecessary information. However, since p,, exists on
the hypersphere as a unit vector, it is difficult to obtain a lin-
ear least squares solution. Therefore, as shown in Eq. (4), we
apply stereographic projection (Apostol 1964) for mapping
P to a plane space.

p, to

5 — 20
cos (cos~! (p* - 0) /2)

1<n<N
)

where o is the center vector of the space where PCs exist,

that is [1/\/5,.‘.,1/\/5}.

P= [f)n]lgnSN = [

)
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Figure 4: The block diagram of the proposed MPNN to dis-
till interpretable embedding procedure knowledge.

Now, since P is on the plane space, PCA can be applied.
However, only mini-batch data is available for learning, and
if the batch size is smaller than the feature dimension, full-
rank PCs cannot be obtained. Also, it is not reasonable to
assume that the PCs of the mini-batch data match those of
the dataset. To solve these problems, we employ IPCA (Ross
et al. 2008) which produces approximated PCs V¥ and mean
vector u? by iteratively updating them. The IPCA in Fig. 3
is identical to the conventional IPCA, except that the mean
vector calculation is replaced with an exponential moving
average (EMA). The detailed description is given in the sup-
plementary material. Since only the top half of the total PCs
are used, the dimension of a set of compressed PCs C is re-
duced to half than before, as in Eq. (5) and Eq. (6).

C=lenlicnen = {(ﬁ” B 'uf)) .VP}

CERNXD/Q (6)

Finally, based on Eq. (5) and definition of cosine similarity,
an affinity matrix A is defined by

1
A= |:C?; . cw:|
leolly llewll, 1<v,w<N

Note that A has intermediate embedding information at a
sensing point of CNN. Assuming that feature maps sensed
in L points, IEP knowledge is obtained by observing a set of
intermediate embedding informations [A;], ,., and a set
of their alterations [A; 11 — A}, ., _;. Also, when we ex-
tract the top three components in C for three-dimensional vi-
sualization, it can be easily understood through visualization
(see the supplementary material). The next section describes
how to distill IEP knowledge in a transferable form.

P
1<n<N

&)

(7

MPNN for Distilling IEP Knowledge

The IEP knowledge obtained by the SPCA coincides with
the purpose of CNN. But in the case of a simple student net-
work, this knowledge is so sharp and complex, which can
give over-constraint if transferred as is. So, in order to distill
the IEP knowledge, we employ MPNN which can interpret
inter-data relation effectively and give a task that estimates
the next interim embedding stages from current stages. The
overall structure of the proposed MPNN is illustrated in
Fig. 4.

First, the node feature h, and the initial edge feature eg)w
are defined using the two set of compressed PCs C; and C; 1



which are sensed at two adjacent points. h,, uses ¢;41 , as it

is, and eg)w is obtaining by linear mapping (LM) of ¢; ,, and
dimension-wise relation like Eq. (8).
_ _ _ LM (¢;)
0 , U
€ = Clo OCLu, Clov = ——— (®)
v T | LM (e

where ® stands for Hadamard product, and LM consists of a
fully connected (FC) layer and a batch normalization (Ioffe
and Szegedy 2015). Next, to update the edge feature, the
message function Msg and the edge update function Up op-
erate as follows.

= Msg (hy,hy, €} ) = GLU ([h, —h,,E (e;w)(]g))
Zz_‘—u% Up (e ( v wvmi,w) = ej},w + mi,wv (10)

where E is a function that returns the average of all com-
ponents of an input. Msg uses a gated linear unit (GLU)
(Dauphin et al. 2017), and Up simply adds edge features
and messages. Finally, the edge feature e/, is obtained by
repeating the above process / times, and it is input to the
readout function Rd, and the (I + 1)" affinity matrix A is
returned. This final process is expressed as follows.

vw) =E(€5,) (in
AH>1 = [Rd (e{hw)] 1<v,w<N (]2)

We use Kullback-Leibler divergence (KLD) (Kullback
1997) as a loss function for learning the proposed MPNN.

LMPNN KLD( (A1) [lo (AM))’

Rd (e

13)

where o stands for the softmax function. The details of
learning are described in the supplementary material.

In the proposed MPNN, each edge and message have clear
meanings. The initial edge indicates the /" interim embed-
ding stage, and MPNN updates it to the (/+1)” interim em-
bedding stage using messages, which indicate alteration of
embedding stage. Therefore, we define them as an interme-
diate embedding knowledge K™ and alteration of embed-
ding knowledge K to transfer IEP knowledge, which are
shown in Eq. (14) and Eq. (15), respectively.

K" = A (14)
1<I<L—1
alt __ 7
K" = [mlﬂ)v“’]lglgLfl, 1<v,w<N, 1<i<IT (15)

Since this knowledge is smoothened by neural layers, it
can be more easily learned by the student network. Also, the
proposed knowledge can interpret the embedding procedure
through visualization, which can be verified in the Experi-
ment Section.

Transferring IEP Knowledge to the Student

To transfer the IEP knowledge distilled from the teacher net-
work, a distillation module must be applied even to the stu-
dent network. First, SPCA is applied to the matrix-formed
feature map FlS which is sensed in the student network.
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Next, CZS is obtained using the information produced by the
SPCA of the teacher network as follows.

Sn, (ulsn)*F,SI
s\ @S
H(ulvn) E, 21 1<n<nN

¢ = [0, — i) V"

The generated CZS is then inputted into the MPNN, which
shares parameters with the teacher network, to distill the
knowledge of the student network. The knowledge should be
transferred in a way that minimizes the difference between
the distilled knowledge of the teacher and student networks.
So, the loss functions £ and £ are defined by Eq. (18)
and (19).

Elnt

P,

PZS = ]1gn§N =

(16)

S

l,n

1<n<N 17

KLD (o (K%™) [|lo (KT"™)) (18)

Eah _ ‘KS,all o I(T,altH1 (19)

.
KLD is adopted to avoid putting too strong constraints on
K" (the 2" term of Eq. (18)). Since K*' is a key informa-
tion, strong constraint using L;-norm is given to K% (the
1*" term of Eq. (18)). So, the proposed method transfers two
kinds of knowledge to the student network. Thus, the student
network learns totally three tasks simultaneously, including
a target task.

However, when transferring knowledge in the middle of
CNN, the gradient of the transfer task can be much larger
than that of the target task. This becomes over-constraint
on the student network. Therefore, an appropriate multi-
task learning technique is required to prevent such a phe-
nomenon.

(Lee, Kim, and Song 2018) proposed a gradient clipping
based on the norm of the target task’s gradient. Inspired from
(Lee, Kim, and Song 2018), we propose to clip the gradient
obtained by knowledge based on the norm of the target task’s
gradient. Specific details are as follows.

0 00 . 00 " 00
o LToal — Hrlarget + clip o Lint + Chp o Lalt (20)
. 00
cp () = max (1. 52| 711,) = e

As a result, the knowledge of the teacher network can be
transferred as much as possible without over-constraint.

Black-box Knowledge Distillation via Multi-head
Graph Distillation

The proposed method focuses on distilling CNN’s IEP
knowledge. However, in fact, CNN has black-box knowl-
edge that cannot be interpreted due to its inherent charac-
teristic. So distilling black-box knowledge is required to de-
liver complete knowledge of CNN. We generate black-box
knowledge K55 by fusing the multi-head graph distilla-
tion (MHGD) (Lee and Song 2019) and linguistic-informed
self-attention (LISA) (Strubell et al. 2018). MHGD is a
method of distillation of arbitrary relations interpreted by
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Figure 5: Visualization of A and K obtained through the proposed distillation module. A and K®* contain information of
interim embedding stages and their alterations, respectively. For clear visualization, A is represented by gray scale and Ko by

RdBu colormap.

CNN through an attention network. LISA also adds extrin-
sic information to the attention network so that the attention
network can extract an arbitrary relation of data. Next, sim-
ilarly to LISA, the black-box knowledge K22 is distilled
by injecting the IEP knowledge into MHGD. The detailed
structure is explained in the supplementary material.

The proposed method can transfer all kinds of embedding
procedure knowledge from the teacher network, i.e., black-
box knowledge as well as IEP knowledge, to the student
network. Therefore, the student network receives clear guid-
ance about the embedding procedure from the teacher net-
work, which leads to additional performance improvement.

Experimental Results

This section shows the results of three kinds of experi-
ments. First, we visualize the information of the proposed
IEP knowledge. Second, we evaluate the basic performance
of the proposed method through experiments on small net-
work enhancement and transfer learning. Third, the effect of
each component of the proposed method on the overall per-
formance is verified. Additional evaluation results to show
the effectiveness of the proposed method can be found in
the supplementary material. We used four neural network ar-
chitectures for implementing the proposed method: WRes-
Net (Zagoruyko and Komodakis 2016b), ResNet (He et al.
2016), MobileNet-V2 (Sandler et al. 2018), and VGG (Si-
monyan and Zisserman 2014). Also, one of the most pop-
ular methods, attention transfer (AT) (Zagoruyko and Ko-
modakis 2016a) as well as four SOTA methods: factor trans-
fer (FT) (Kim, Park, and Kwak 2018), activation bound-
ary (AB) (Heo et al. 2018), relational knowledge distilla-
tion (RKD) (Park et al. 2019), and comprehensive overhaul
(CO) (Heo et al. 2019). were adopted for comparison with
the proposed method. In addition, MHGD (Lee and Song
2019), which has a similar concept to the proposed method,
was compared. We implemented all the techniques to be
compared by ourselves. Detailed information such as net-
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work structures and hyper-parameters is described in the
supplementary material.

Visualization of Embedding Procedure

This section visualizes the proposed IEP knowledge that is
configured by A and K. For this experiment, WResNet40-
4 trained on CIFAR 10 dataset (Krizhevsky and Hinton 2009)
was used. First, color mapping was employed to clearly
display the numerical values of the each knowledge. Next,
the edge lengths were manually adjusted according to the
strength of the relation. Figure 5 shows the visualization re-
sult.

Note that through the neural layers of CNN, a given data is
embedded as it is analyzed from low-level features to high-
level features. If the embedding procedure of CNN is visual-
ized, it is expected that data can be clustered according to the
similarity of low-level features in the early stage of CNN and
the similarity of high-level features in the late stage. In fact,
Fig. 5 shows that the changes in the affinity matrices of the
proposed knowledge are consistent with the above expecta-
tion. The feature maps of the initial layer have a strong rela-
tion to visually similar data, i.e., the 1* to 4™ feature maps.
On the other hand, since high-level features are analyzed as
the later layers progress, we can observe that feature maps
has a strong relation to the context, that is, the data of the
same class, e.g., the 3, 4" and 5" feature maps. Accord-
ingly, K obtained by the proposed method has a positive
value for data of the same class and a negative value for data
of different classes.

Thus, the proposed IEP knowledge can be a tool for de-
scribing the embedding procedure, which is consistent with
human intuition. Additional visualization results about full
data in CIFARI10 can be found in the supplementary mate-
rial.



Dataset | Rate | Student [ AT FT AB  RKD MHGD CO [ IEP  IEP+Black-box

Full 76.09 7698 77.14 7729 77.02 77.45 78.21 | 78.12 78.37

CIFAR100 0.50 69.77 71.13 7241 7228 69.57 73.32 7433 | 74.22 74.53
0.25 59.28 63.07 63.70 66.79 53.57 67.27 67.90 | 68.57 69.02

0.10 40.65 47.66 4829 5738 23.27 54.58 40.80 | 55.89 59.04

Full 59.71 6092 5561 60.19 61.12 62.26 63.56 | 63.29 63.73

TinyImageNet 0.50 52.53 5450 55.81 5441 54.09 56.56 59.14 | 58.56 59.27
0.25 43.56 46.54 39.19 4899 42.19 50.59 52.56 | 53.20 53.68

0.10 28.44 3238 34.08 42.18 20.90 38.28 34.73 | 43.00 45.01

Table 1: Small network enhancement performance comparison of several KD methods for CIFAR100 and TinylmageNet

datasets with various sample rates.

Dataset | Rate | Student [ AT FT AB  RKD MHGD CO [ IEP  IEP+Black-box

Full 52.21 58.87 5996 56.80 52.54 55.77 60.83 | 60.13 61.35

0.50 30.58 39.51 4294 3977 29.72 34.02 37.61 | 42.24 43.06

CUB200-2011 0.25 14.25 19.68 21.18 20.52 14.15 18.41 14.29 | 22.00 22.60
0.10 5.87 8.05 8.04 7.03 6.60 5.97 4.61 8.74 9.69

Full 51.00 56.32 60.07 59.52 53.50 47.90 57.72 | 59.32 60.94

MIT-scene 0.50 36.83 4243 46.53 46.80 39.18 36.48 35.16 | 45.83 47.85
0.25 21.59 28.54 3196 33.13 25.39 25.51 21.14 | 33.83 34.28

0.10 10.59 1444 1439 19.79 12.17 10.07 6.07 18.44 19.94

Table 2: Transfer learning performance comparison of several KD methods for CUB-200-2011 and MIT-scene datasets with

various sample rates.

Small Network Enhancement with Sampled
Dataset

This section examines the small network enhance-
ment performance of the proposed method on CI-
FAR100 (Krizhevsky and Hinton 2009) and Tinylma-
geNet (Deng et al. 2009). In this experiment, the teacher and
student networks were trained on the same dataset, but the
student network used sampled datasets. Four sampling rates
(full, 0.5, 0.25, and 0.1) were considered. WResNet40-4 was
used as the teacher network. The teacher network provides
the performance of 77.52% on CIFAR100 and 62.30% on
TinyImageNet. We used WResNet16-4 as the student net-
work, and set the hyper-parameters such that we can get the
best performance when using the full dataset (rate = full).

Since the proposed method transfers embedding proce-
dure knowledge, high performance can be expected thanks
to the excellence of knowledge if the teacher and student
networks are trained with the same dataset. Table 1 proves
this assumption by comparing the proposed method with the
existing KD methods. We can find that the proposed method
outperforms other KD schemes at all sampling rates. The
larger the sampling rate, that is, the lower the rate, the better
the proposed method. For example, when the rate is 10%, the
IEP+Black-box at CIFAR100 performed 1.66% higher than
AB that is the best of SOTA techniques. Also, it provided
2.83% higher performance than AB for TinyImageNet. This
is because the proposed KD method can transfer the most
accurate knowledge that the student network needs to per-
form the target task.
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Transfer Learning

The next experiment is about transfer learning. As the
teacher network, ResNet32 which was pre-trained with
ImageNet-2012 (Russakovsky et al. 2015) was employed.
As the student network, ResNet14 which was learned with
MIT-scene (Quattoni and Torralba 2009) and CUB200-
2012 (Wah et al. 2011) datasets was used. Also, the student
network was pre-trained with teacher knowledge and fine-
tuned with the target dataset. The experimental results are
shown in Table 2. We can observe that the proposed method,
IEP+Black-box, is always superior to conventional tech-
niques. However, because the target datasets of the teacher
and student networks do not match, the performance im-
provement in Table 2 tends to be somewhat lower than that
in Table 1. Therefore, to apply the proposed method most
effectively, it is important to use the teacher network trained
on the same dataset as the target dataset.

Knowledge Transfer to Heterogeneous Student
Network

In this section, we tried to transfer teacher knowledge to
several heterogeneous student networks that have differ-
ent architectures from the teacher network to verify knowl-
edge’s dependency on network architecture. As a dataset
for this experiment, 25% sampled CIFAR100 was used, and
the teacher network was set to WResNet40-4. WResNet16-
2 and WResNetl6-1 were used as student networks that
have different dimensional feature maps. Also, we em-
ployed MobileNet-V2 which is one of the famous light-



Architecture [ Student [ AT FT AB RKD MHGD CO IEP+Black-box
WResNet16-2 56.61 59.42 5728 62.53 54.27 59.29 60.21 63.78
WResNet16-1 51.88 53.01 5095 55.01 48.46 50.72 52.67 56.09
MobileNet-V2 | 5696 | 59.04 5748 61.35 58.17 61.80 62.72 64.82
VGG 4776 | 49.88 48.13 N/A N/A 4740  45.18 55.82

Table 3: Small network enhancement performance comparison for different architecture or feature depth with teacher network.

Dataset | Student | K™t K [EP KPP
CIFAR100 59.28 61.77 68.14 68.57 67.75
TINY 43.56 4590 52.62 5326 51.92

Table 4: Ablation study for each proposed knowledge. TINY
denotes TinyImageNet.

Sample rate | 100% 50%  25%  10%
PCA-IPCA | 78.12 7422 68.57 55.89
PCA-PCA | 77.92 73.66 66.58 51.88

Table 5: Performance comparison of PCA and IPCA with
various batch sizes.

weight architecture that has different layer modules, and fi-
nally adopted VGG having a quite different architecture with
WResNet. Table 3 shows that the proposed method outper-
forms others for all of the network architectures. For exam-
ple, in the case of VGG, the proposed method noticeably
improved the performance of the student network while the
other methods failed or were less effective. This result ex-
perimentally proves that the proposed method can distill the
network’s authentic knowledge that is independent of net-
work architecture.

Ablation Study

CIFAR100 and TinyImageNet datasets were used for abla-
tion study. For a clear comparison, we experimented with
the 25% sampled datasets showing significant performance
improvements. First, Table 4 shows how the three types of
knowledge, K", K™ and KPZ, can help improve network
performance. It is worth noting that even the student network
that has only one knowledge transferred delivers significant
performance. In particular, K% and KPP , 1.e., knowledge
related to alteration, can outperform the SOTA techniques.
Next, we investigated the effect of the SPCA for obtain-
ing the proposed knowledge. As mentioned earlier, if [IPCA
is not used as the second PCA, accurate PCs will not be ob-
tained, and inter-data relations will not be predicted well. So,
MPNN concentrates on memorizing data rather than accu-
rately estimating relations. As a result, network performance
is degraded because the intended knowledge is not distilled.
Table 5 supports this analysis. When using the normal PCA
as the second PCA, the performance tends to decrease, and
the lower the sampling rate, the larger the degradation. This
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Iteration | 1 2 3 4
CIFAR100 6791 6857 68.44 66.63
TinyImageNet | 52.81 53.20 53.28 51.55

Table 6: Performance according to the number of message
passing iterations.

is because the distillation module makes it easier to memo-
rize data. Therefore, we can find that IPCA is essential for
obtaining the proposed knowledge. For reference, the visu-
alization of the embedded dataset obtained by each method
can be found in the supplementary material.

Finally, we take a look at the performance according to the
number of iterations of MPNN. As the number of iterations
increases, more accurate IEP knowledge can be obtained.
However, if MPNN uses too many layers, the capacity in-
creases, so there is a risk of focusing on memorizing data.
Table 6 demonstrates this assumption. In fact, we can see
that the performance increases as the number of iterations
increases, but at a certain point, the performance starts de-
creasing. Our experiments show that two to three iterations
are most advantageous for the best performance.

Conclusion

Knowledge distillation has recently been proven to be ef-
fective in a variety of computer vision problems with sig-
nificant advances. However, research on knowledge distil-
lation is currently too focused on performance. We thought
that knowledge distillation could be an essential tool for un-
derstanding the nature of deep neural networks, not just a
technique. So we validated our idea by defining new inter-
pretable knowledge and suggesting a graph neural network
based on interpretable knowledge. Thus, the experimental
result shows that the proposed method outperforms SOTA
methods in various datasets.
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