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Abstract

We show generalisation error bounds for deep learning with
two main improvements over the state of the art. (1) Our
bounds have no explicit dependence on the number of classes
except for logarithmic factors. This holds even when formulat-
ing the bounds in terms of the Frobenius-norm of the weight
matrices, where previous bounds exhibit at least a square-
root dependence on the number of classes. (2) We adapt the
classic Rademacher analysis of DNNs to incorporate weight
sharing—a task of fundamental theoretical importance which
was previously attempted only under very restrictive assump-
tions. In our results, each convolutional filter contributes only
once to the bound, regardless of how many times it is applied.
Further improvements exploiting pooling and sparse connec-
tions are provided. The presented bounds scale as the norms of
the parameter matrices, rather than the number of parameters.
In particular, contrary to bounds based on parameter count-
ing, they are asymptotically tight (up to log factors) when
the weights approach initialisation, making them suitable as a
basic ingredient in bounds sensitive to the optimisation proced-
ure. We also show how to adapt the recent technique of loss
function augmentation to replace spectral norms by empirical
analogues whilst maintaining the advantages of our approach.

Introduction
Deep learning has enjoyed an enormous amount of success
in a variety of engineering applications in the last decade (Kr-
izhevsky, Sutskever, and Hinton 2012; He et al. 2016; Silver
et al. 2018). However, providing a satisfying explanation to
its sometimes surprising generalisation capabilities remains
an elusive goal (Zhang et al. 2017; Du et al. 2019a; Asadi,
Abbe, and Verdu 2018; Goodfellow, Shlens, and Szegedy
2015). The statistical learning theory of deep learning ap-
proaches this question by providing a theoretical analysis
of the generalisation performance of deep neural networks
(DNNs) through better understanding of the complexity of
the function class corresponding to a given architecture or
training procedure.

This field of research has enjoyed a revival since 2017
with the advent of learning guarantees for DNNs expressed
in terms of various norms of the weight matrices and classi-
fication margins (Neyshabur, Bhojanapalli, and Srebro 2018;

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bartlett, Foster, and Telgarsky 2017; Zhang, Lei, and Dhillon
2018; Li et al. 2018; Allen-Zhu, Li, and Liang 2019). Many
improvements have surfaced to make bounds non-vacuous at
realistic scales, including better depth dependence, bounds
that apply to ResNets (He, Liu, and Tao 2020), and PAC-
Bayesian bounds using network compression (Zhou et al.
2019), data-dependent Bayesian priors (Dziugaite and Roy
2018), fast rates (Suzuki 2018), and reduced dependence
on the product of spectral norms via data-dependent local-
isation (Wei and Ma 2019; Nagarajan and Kolter 2019). A
particularly interesting new branch of research combines
norm-based generalisation bounds with the study of how the
optimisation procedure (stochastic gradient descent) impli-
citly restricts the function class (Cao and Gu 2019; Du et al.
2019a; Arora et al. 2019; Du et al. 2019b; Jacot, Gabriel, and
Hongler 2018; Frankle and Carbin 2019). One idea at the
core of many of these works is that the weights stay relatively
close to initialisation throughout training, reinforcing lucky
guesses from the initialised network rather than constructing
a solution from scratch. Thus, in this branch of research, it
is critical that the bound is negligible when the network ap-
proaches initialisation, i.e., the number of weights involved
is not as important as their size. This observation was first
made as early as in (Bartlett 1998).

Despite progress in so many new directions, we note that
some basic questions of fundamental theoretical importance
have remain unsolved. (1) How can we remove or decrease
the dependence of bounds on the number of classes? (2) How
can we account for weight sharing in convolutional neural
networks (CNNs)? In the present paper, we contribute to an
understanding of both questions.

Question (1) is of central importance in extreme classi-
fication (Prabhu and Varma 2014), where we deal with an
extremely high number of classes (e.g. millions). (Bartlett,
Foster, and Telgarsky 2017) showed a bound with no explicit
class dependence (except for log terms). However, this bound
is formulated in terms of the L2,1 norms of the network’s
weight matrices. If we convert the occurring L2,1 norms into
the more commonly used L2 norms, we obtain a square-root
dependence on the number of classes.

Regarding (2), (Li et al. 2018) showed a bound that ac-
counts for weight sharing. However, this bound is valid
only under the assumption of orthonormality of the weight
matrices. The assumption of unit norm weights—which is

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8279



violated by typical convolutional architectures (GoogLeNet,
VGG, Inception, etc.)—makes it difficult to leverage the gen-
eralisation gains from small weights, and it is a fortiori not
easy to see how the bounds could be expressed in terms of
distance to initialisation.

In this paper, we provide, up to only logarithmic terms,
a complete solution to both of the above questions. First,
our bound relies only the L2 norm at the last layer, yet it
has no explicit (non-logarithmic) dependence on the number
of classes.1 In deep learning, no generalization bound other
than ours has ever achieved a lack of non-logarithmic class
dependency with L2 norms. Second, our bound accounts for
weight sharing in the following way. The Frobenius norm
of the weight matrix of each convolutional filter contributes
only once to the bound, regardless of how many times it is ap-
plied. Furthermore, our results have several more properties
of interest: (i) We exploit the L∞-continuity of nonlinearities
such as pooling and ReLu to further significantly reduce the
explicit width dependence in the above bounds. (ii) We show
how to adapt the recent technique of loss function augmenta-
tion to our setting to replace the dependence on the spectral
norms by an empirical Lipschitz constant with respect to
well chosen norms. (iii) Our bounds also have very little ex-
plicit dependence on architectural choices and rely instead
on norms of the weight matrices expressed as distance to
initialisation, affording a high degree of architecture robust-
ness compared to parameter-space bounds. In particular, our
bounds are negligible as the weights approach initialisation.

In parallel to our efforts, (Long and Sedghi 2020) recently
made progress on question (2), providing a remedy to the
weight-sharing problem. Their work, which is scheduled to
appear in the proceedings of ICLR 2020, is independent of
ours. This can be observed from the fact that their work and
ours were first preprinted on arXiv on the very same day.
Their approach is completely different from ours, and both
approaches have their merits and disadvantages. We provide
an extensive discussion and comparison in the sections below
and in Appendix H.

Related Work
In this section, we discuss related work on the statistical
learning theory (SLT) of DNNs. The SLT of neural networks
can be dated back to 1970s, based on the concepts of VC
dimension, fat-shattering dimension (Anthony and Bartlett
2002), and Rademacher complexities (Bartlett and Mendel-
son 2002). Here, we focus on recent work in the era of deep
learning.

Let (x1, y1), . . . , (xn, yn) be training examples independ-
ently drawn from a probability measure defined on the
sample space Z = X × {1, . . . ,K}, where X ⊂ Rd, d
is the input dimension, and K is the number of classes.
We consider DNNs parameterized by weight matrices A =
{A1, . . . , AL}, so that the prediction function can be written
FA(x) = ALσL−1

(
AL−1σL−2

(
· · ·A1x

))
, where L is the

depth of the DNN, Al ∈ RWl×Wl−1 ,W0 = d,WL = K, and
1As explained below, this corresponds to an implicit dependence

of the order
√
C if the classifying vectors have comparable norms.

Our result is in line with the state of the art in shallow learning.

σi : RWi 7→ RWi is the non linearity (including any pooling
and activation functions), which we assume to be 1-Lipschitz.

When providing PAC guarantees for DNNs, a critical
quantity is the Rademacher complexity of the network ob-
tained after appending any loss function. The first work in
this area (Neyshabur, Tomioka, and Srebro 2015) therefore
focused on bounding the Rademacher complexity of net-
works satisfying certain norm conditions, where the last layer
is one-dimensional. They apply the concentration lemma
and a peeling technique to get a bound on the Rademacher
complexity of the order O

(
2L√
n

∏L
i=1 ‖A

i‖Fr
)
, where ‖A‖Fr

denotes the Frobenius norm of a matrix A. (Golowich,
Rakhlin, and Shamir 2018) showed that this exponential
dependency on the depth can be avoided by an elegant
use of the contraction lemma to obtain bounds of the or-
der O

(
(
√
L/
√
n)
∏L
i=1 ‖Ai‖Fr

)
.2 The most related work to

ours is the spectrally-normalized margin bound by (Bartlett,
Foster, and Telgarsky 2017) for multi-class classification.
Writing ‖A‖σ for the spectral norm is, and M i for initialised
weights, the result is of order Õ(M/γ) with

M =
1√
n

L∏
i=1

‖Ai‖σ

 L∑
i=1

‖Ai> −M i>‖
2
3
2,1

‖Ai‖
2
3
σ

 3
2

, (1)

where ‖A‖p,q =
(∑

j

(∑
i |Aij |

p
) q

p
) 1

q is the (p, q)-norm,
and γ denotes the classification margin.

At the same time as the above result appeared, the authors
in (Neyshabur, Bhojanapalli, and Srebro 2018) used a PAC
Bayesian approach to prove an analogous result 3, where
W = max{W0,W1, . . . ,WL} is the width:

Õ

L√W
γ
√
n

(
L∏
i=1

‖Ai‖σ

)(
L∑
i=1

‖Ai +M i‖2Fr
‖Ai‖2σ

) 1
2

 . (2)

These results provide solid theoretical guarantees for
DNNs. However, they take very little architectural inform-
ation into account. In particular, if the above bounds are
applied to a CNN, when calculating the squared Frobenius
norms ‖Ai‖2Fr, the matrix Ai is the matrix representing the
linear operation performed by the convolution, which im-
plies that the weights of each filter will be summed as many
times as it is applied. This effectively adds a dependence
on the square root of the size of the corresponding activ-
ation map at each term of the sum. A notable exception
would be the bound in Theorem 2 of (Golowich, Rakhlin,
and Shamir 2018), which applies to DNN’s and scales like
Õ
(√

d(
∏L
l=1M(l))/

√
n
)

where M(l) is an upper bound for

the l1 norm of the rows of the matrix Ãl. In this case, there
is also a lack of explicit dependence on the number of times
each filter is applied. However, the implicit dependence on
other architectural parameters such as the size of the patches

2Note that both of these works require the output node to be one
dimensional and thus are not multiclass

3Note that the result using formula (2) can also be derived by
expressing (1) in terms of L2 norms and using Jensen’s inequality
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and the depth is stronger. Also, the activations are applied
element-wise, which rules out pooling and multi-class losses.

Note also that the L2 version (2) of the above bound (1)
includes a dependence on the square root of the number
of classes through the maximum width W of the network.
This square-root dependence is not favorable when the num-
ber of classes is very large. Although many efforts have
been performed to improve the class-size dependency in
the shallow learning literature (Lauer 2018; Guermeur 2002,
2007; Koltchinskii and Panchenko 2002; Guermeur 2017;
Musayeva, Lauer, and Guermeur 2019; Mohri, Rostamiza-
deh, and Talwalkar 2018; Lei et al. 2019), extensions of those
results to deep learning are missing so far.

In late 2017 and 2018, there was a spur of research ef-
fort on the question of fine-tuning the analyses that provided
the above bounds, with improved dependence on depth (Go-
lowich, Rakhlin, and Shamir 2018), and some bounds for
recurrent neural networks (Chen, Li, and Zhao 2020; Zhang,
Lei, and Dhillon 2018)). In (Li et al. 2018), the authors
provided an analogue of (1) for CNNs, but only under some
very specific assumptions, including orthonormal filters.

Independently of our work, (Long and Sedghi 2020, to ap-
pear at ICLR 2020) address the weight-sharing problem using
a parameter-space approach. Their bounds scale roughly as
the square root of the number of parameters in the model. In
contrast to ours, their employed proof technique is more sim-
ilar to (Li et al. 2018): it focuses on computing the Lipschitz
constant of the functions with respect to the parameters. The
result by (Long and Sedghi 2020) and ours, which we con-
trast in detail below, both have their merits. In nutshell, the
bound by (Long and Sedghi 2020) remarkably comes along
without dependence on the product of spectral norms (up
to log terms), thus effectively removing the exponential de-
pendence on depth. Our result on the other hand comes along
without an explicit dependence on the number of parameters,
which can be very large in deep learning. As already noted in
(Bartlett 1998), this property is crucial when the weights are
small or close to the initialisation.

Lastly, we would like to point out that, over the course
of the past year, several techniques have been introduced
to replace the dependence on the product of spectral norms
by an empirical version of it, at the cost of either assuming
smoothness of the activation functions (Wei and Ma 2019)
or a factor of the inverse minimum preactivation (Nagarajan
and Kolter 2019). Slightly earlier, a similar bound to that
in (Long and Sedghi 2020) (with explicit dependence on
the number of parameters) had already been proved for an
unsupervised data compression task (which does not apply
to our supervised setting) in (Lee and Raginsky 2019). Re-
cently, another paper addressing the weight sharing problem
appeared on arXiv (Lin and Zhang 2019). In this paper, which
was preprinted several months after (Long and Sedghi 2020)
and ours, the authors provided another solution to the weight
sharing problem, which incorporates elements from both our
approach and that of (Long and Sedghi 2020): they bound
the L2-covering numbers at each layer independently, but use
parameter counting at each layer, yielding both an unwanted
dependence on the number of parameters in each layer (from
the parameter counting) and a dependence on the spectral

norms from the chaining of the layers.
Further related work includes the following. (Du et al.

2018) showed size-free bounds for CNNs in terms of the
number of parameters for two-layer networks. In (Sedghi,
Gupta, and Long 2019), the authors provided an ingenious
way of computing the spectral norms of convolutional lay-
ers, and showed that regularising the network to make them
approach 1 for each layer is both feasible and beneficial to
accuracy. Other than the above mentioned work, several re-
searchers have provided interesting insights into DNNs from
different perspectives, including through model compres-
sion (Neyshabur, Bhojanapalli, and Srebro 2018), capacity
control by VC dimensions (Harvey, Liaw, and Mehrabian
2017), and the implicit restriction on the function class im-
posed by the optimisation procedure (Arora et al. 2018; Zhou
et al. 2019; Neyshabur et al. 2019, to appear; Suzuki 2018;
Du et al. 2019a; Jacot, Gabriel, and Hongler 2018; Arora
et al. 2019).

Contributions in a Nutshell
In this section, we state the simpler versions of our main
results for specific examples of neural networks. The general
results are described in in more technical detail in Section A.

Fully Connected Neural Networks
In the fully connected case, the bound is particularly simple:

Theorem 1 (Multi-class, fully connected). Assume that we
are given some fixed reference matrices M1,M2, . . . ,ML

representing the initialised values of the weights of the
network. Set R̂γ(FA) = (1/n)(#(i : F (xi)yi < γ +
maxj 6=yi F (xi)j)) With probability at least 1 − δ, every net-
work FA with weight matrices A = (A1, A2, . . . , AL) and
every margin γ > 0 satisfy:

P(arg max
j

(FA(x)j) 6= y) ≤ R̂γ(FA)+ (3)

Õ

(
maxni=1 ‖xi‖FrRA

γ
√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (4)

where W = W̄ = maxLi=1Wiis the maximum width of the
network, and

RA := Lmax
i
‖ALi, .‖Fr

(
L−1∏
i=1

‖Ai‖σ

)
(5)

(
L−1∑
i=1

(‖Ai −M i‖2/32,1

‖Ai‖2/3σ

+
‖AL‖2/3Fr

maxi ‖ALi, .‖
2/3
Fr

) 3
2

. (6)

Note that the last term of the sum does not explicitly
contain architectural information, and assuming bounded
L2 norms of the weights, the bound only implicitly de-
pends on Wi for i ≤ L − 1 (through ‖Ai − M i‖2,1 ≤√
Wi−1‖Ai−M i‖Fr), but not onWL (the number of classes).

This means the above is a class-size free generalisation
bound (up to a logarithmic factor) with L2 norms of the
last layer weight matrix. This improves on the earlier L2,1

norm result in (Bartlett, Foster, and Telgarsky 2017). To
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see this, let us consider a standard situation where the rows
of the matrix AL have approximately the same L2 norm,
i.e., ‖ALi, .‖2 � a. (In Section I in the Appendix, we show
that this condition holds except on a subset of weight space
of asymptotically vanishing lebesgue measure and further
discuss possible behaviour of the norms.) In this case, our
bound involves ‖AL‖Fr �

√
WLa, which incurs a square-

root dependency on the number of classes. As a comparison,
the bound in (Bartlett, Foster, and Telgarsky 2017) involves
‖(AL)>‖2,1 � WLa, which incurs a linear dependency on
the number of classes. If we further impose an L2-constraint
on the last layer as ‖AL‖Fr ≤ a as in the SVM case for a
constant a (Lei et al. 2019), then our bound would enjoy a
logarithmic dependency while the bound in (Bartlett, Foster,
and Telgarsky 2017) enjoys a square-root dependency. This
cannot be improved without also changing the dependence
on n. Indeed, if it could, we would be able to get good guar-
antees for classifiers working on fewer examples than classes.
Furthermore, in the above bound, the dependence on the spec-
tral norm of AL in the other terms of the sum is reduced to a
dependence on maxi ‖ALi, .‖2.Both improvements are based
on using the L∞-continuity of margin-based losses.

Convolutional Neural Networks
Our main contribution relates to CNNs. For the convenience
of the reader, we first present a simple versions of our results.

Two-layers For the convenience of the reader, we first
present a particular case of our bound for a two-layer network
composed of a convolutional layer and a fully connected layer
with a single input channel, with explicit pre chosen norm
constraints. Note that the restrictions are purely based on
notational and reader convenience: more general results are
presented later and in the supplementary material.

2-layer Notation: Consider a two-layer network with a
convolutional layer and a fully connected layer. Write d, C
for the dimensions of the input space and the number of
classes respectively. We write w for the spacial dimension of
the hidden layer after pooling4 Write A1, A2 for the weight
matrices of the first and second layer, with the weights ap-
pearing only once in the convolutional case (thus, the mat-
rix Ã1representing the convolution operation presents the
weights of the matrix A1 repeated as many times as the filters
are applied). For any input x ∈ Rd, we write |x|0 for the
maximum L2 norm of a single convolutional patch of x. The
network is represented by the function

F (x) = A2σ(Ã1x),

where σ denotes the non linearities (including both pooling
and activation functions). As above, M1,M2 are the initial-
ised weights.

Theorem 2. Let a1, a2, a∗, b0, b1 > 0. Suppose that the dis-
tribution over inputs is such that |x|0 ≤ b0 a.s. With probabil-
ity> 1−δ over the draw of the training set, for every network
A = (A1, A2) with weights satisfying ‖(A1 −M1)>‖2,1 ≤

4This is less than the number of convolutional patches in the
input and is not influenced by the number of filters applied.

a1, ‖A2 − M2‖Fr ≤ a2 and supc≤C ‖A2
c, .‖2 ≤ a∗, if

supi≤n ‖Ã1xn‖Fr ≤ b1 , then

P
(

arg max
j

(FA(x)j) 6= y

)
(7)

≤ R̂γ(FA) + 3

√
log( 2

δ )

2n
+
C√
n
R
[
log2(n2D)

] 1
2 log(n),

where C is an absolute constant,

R2/3 =

[
b0a1 max

(
1

b1
,

√
wa∗
γ

)]2/3
+

[
b1a2
γ

]2/3
, (8)

and the quantity in the log term is D =
max(b0a1W̄a∗/b1, b1a2C/γ) where W̄ is the number
of hidden neurons before pooling.

Remarks:
1. Just as in the fully connected case, the implicit dependence

on the number of classes is only through an L2 norm of
the full last layer matrix. b1 is a an upper bound on the L2

norms of hidden activations.

2. a1 is the norm of the filter matrix A1, which counts each
filter only once regardless of how many times it is applied.
This means our bound enjoys only logarithmic dependence
on input size for a given stride.

3. As further explained in Appendix H, there is also no expli-
cit dependence on the size of the filters and the bound is
stable through up-resolution. In fact, there is no explicit
(non log) dependence on architectural parameters, and the
bounds converges to 0 as a1, a2 tend to zero (in contrast to
parameter space bounds, e.g. (Long and Sedghi 2020)).

4. a∗ replaces the spectral norm of A2, and is only equal to
the maximum L2 norm of the second layer weight vec-
tors corresponding to each class. This improvement,comes
from better exploiting the continuity of margin based losses
with respect to the L∞ norm.

5. The spectral norm of the first layer matrix Ã1 is not nec-
cessary and is absorbed into an empirical estimate of the
hidden layer norms. The first term in the max relates to
the estimation of the risk of a test point presenting with a
hidden layer norm higher than (a multiple of) b1.

6. b0 refers to the maximum L2 norm of a single convolu-
tional patch over all inputs and patches.

A Result for the Multi-Layer Case. We assume we are
given training and testing points (x, y), (x1, y1), (x2, y2),
. . ., (xn, yn) drawn iid from any probability distribution over
Rd × {1, 2, . . . , C}. We have a convolutional architecture so
that for each filter matrix Al ∈ Rml×dl from layer l − 1 to
layer l, we can construct a larger matrix Ãl representing the
corresponding (linear) convolutional operation. The 0th layer
is the input, whist the Lth layer is the output/loss function.
We write wl for the spacial width at layer l, Wl for the total
width at layer l (including channels), and W for maxlWl.
For simplicity of presentation, we assume that the activation
functions are composed only of ReLu and max pooling.

8282



Theorem 3. With probability≥ 1−δ, every network FA with
fliter matrices A = {A1, A2, . . . , AL} and every margin
γ > 0 satisfy:

P
(

arg max
j

(FA(x)j) 6= y

)
≤ R̂γ(FA) + Õ

(
RA√
n

log(W̄ ) +

√
log(1/δ)

n

)
, (9)

where W̄ = max number of neurons in a layer before pooling,

R
2/3
A =

L∑
l=1

(Tl)
2/3

where Tl =

Bl−1(X)‖(Al −M l)>‖2,1
√
wl max

U≤L

∏U
u=l+1 ‖Ã

u‖σ′
BU (X)

if l ≤ L− 1 and for l = L, Tl =

BL−1(X)

γ
‖AL −ML‖Fr.

Here, wl is the spacial width at layer l after pooling. By
convention, bL = γ, and for any layer l1, Bl1(X) :=
maxi

∣∣F 0→ll(xi)
∣∣
l1

denotes the maximum l2 norm of any con-
volutional patch of the layer l1 activations, over all inputs.
For l ≤ L− 1, ‖Ãl‖σ′ ≤ ‖Ãl‖ denotes the maximum spectral
norm of any matrix obtained by deleting, for each pooling
window, all but one of the corresponding rows of Ã. In partic-
ular, for l = L, ‖ÃL‖σ′ = ρL maxi ‖ALi, .‖2.HereALi, . denotes
the i’th row of AL, and ‖ .‖2 denotes the Frobenius norm5.

Similarly to the two-layer case above, a notable property
of the above bounds is that the norm involved is that of the
matrix Al (the filter) instead of Ãl (the matrix representing
the full convolutional operation), which means we are only
adding the norms of each filter once, regardless of how many
patches it is applied to. As a comparison, although the gen-
realization bound in (Bartlett, Foster, and Telgarsky 2017)
also applies to CNNs, the resulting bound would involve the
whole matrix Ã ignoring the structure of CNNs, yielding an
extra factor of Ol−1 instead of

√
Ol, where Ol denotes the

number of convolutional patches in layer l: Through exploit-
ing weight sharing, we remove a factor of

√
Ol−1 in the lth

term of the sum compared to a standard the result in (Bartlett,
Foster, and Telgarsky 2017), and we remove another factor
of
√
Ol−1/wl through exploitation of the L∞ continuity of

max pooling and our use of L∞ covering numbers.
A further significant improvement is in replacing the factor

‖X‖2,2
∏l−1
i=1 ‖Ãi‖σ from the classic bound by Bl−1(X),

which is the maximum L2 norm of a single convolutional
patch. This implicitly removes another factor of

√
Ol−1, this

time from the local connection structure of convolutions.
We note that it is possible to obtain more simple bounds

without a maximum in the definition of Tl by using the spec-
tral norms to estimate the norms at the intermediary layers.

5A simpler version of the above Theorem holds where Tl =∏
i 6=l ‖Ã

i‖σ‖(Al −M l)>‖2,1
√
wl/γ for l ≤ L − 1 and TL =∏L−1

i=1 ‖Ã
i‖σ‖AL−ML‖Fr. Cf. Appendix E, and equation (E.14).

Empirical Spectral Norms; Lipschitz
Augmentation
A commonly mentioned weakness of norm-based bounds is
the dependence on the product of spectral norms from above.
In the case of fully connected networks, there has been a
lot of progress last year on how to tackle this problem. In
particular, it was shown in (Nagarajan and Kolter 2019) and
in (Wei and Ma 2019) that the products of spectral norms can
be replaced by empirical equivalents, at the cost of either a
factor of the minimum preactivation in the Relu case (Nagara-
jan and Kolter 2019), or Lipschitz constant of the derivative
of the activation functions if one makes stronger assump-
tions (Wei and Ma 2019). In the appendix, we adapt some
of those techniques to our convolutional, ReLu situation and
find that the quantity ρAl can be replaced in our case by:

ρAl = max

(
maxi maxl̃≥l

ρ
A,xi
l1→l2

Bl2
(X) ,maxi maxl̃≥l

θ
A,xi
l1→l2

El2
(X)

)
where El(X) denotes the minimum preactivation (or dis-
tance to the max/second max in max pooling) at layer l
for over every input, ρA,xi

l1→l2 (resp. θA,xi

l1→l2) is the Lipschitz
constant of gradient of F l1→l2 with respect to the norms
| .|∞,l1 and | .|l2(resp. | .|∞,l1 and | .|∞). These quantities
can be computed explicitly: if M = ∇F 0→l1 (xi)F

l1→l2

so that locally around F 0→l1(xi), F l1→l2(x) = Mx, then
θA,xi

l1→l2 = ‖M>‖1,∞ and ρA,xi

l1→l2 = maxM ‖M ′‖1,2 where
M ′ runs over all sub matrices of M obtained by keeping only
the rows corresponding to a single patch of layer l2.

Note that an alternative approach is to obtain tighter
bounds on the worst-case Lipschitz constant. Theorem A.1
in the Appendix is a variation of Theorem 3 involving the
explicit worst case Lipschitz constants across layers instead
of spectral norms. These quantities can then be bounded, or
made small via regularisation using recent techniques (cf, e.g.
Fazlyab et al. (2019); Latorre, Rolland, and Cevher (2020)).

General Proof Strategy
Some key aspects of our proofs and general results rely on
judicious choices of norms in activation spaces. On each ac-
tivation space, we use | .|∞ to refer to the maximum absolute
value of each neuron in the layer, | .|l to refer to the the max-
imum l2 norm of a single convolutional patch (at layer l) and
| .|∞,l for the maximum l2 norm of a single pixel viewed as
a vector over channels. Using these norms, we can for each
pair of layers l1, l2 define the quantity ρl1→l2 as the Lipschitz
constant of the subnetwork F l1→l2 with respect to the norms
| .|∞,l1 and | .|l2 . We can formulate a cleaner extention of
Theorem 3 where the quantity RA can be replaced by[ L−1∑

l=1

(
Bl−1(X)‖Al −M l‖2,1 max

l̃>l

ρl→l̃
Bl̃(X)

)2/3

+

(
BL−1(X)

γ
‖AL −ML‖Fr

)2/3 ]3/2
,

where for any layer l1, Bl1(X) := maxi
∣∣F 0→ll(xi)

∣∣
l1

denotes
the maximum l2 norm of any conv. patch of the layer l1, over
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all inputs. BL(X) = γ. Our proofs derive this result, and the
previous Theorems follow. See Section A, Theorem A.16.

In the rest of this Section, we sketch the general strategy of
the proof, focusing on the (crucial) one-layer step. We need
to introduce notation w.r.t. the convolutional channels: we
will collect the data matrix of the previous layer in the form
of a tensor X ∈ Rn×U×d consisting of all the convolutional
patches stacked together: if we fix the first index (sample i.d.)
and the second index (patch i.d.), we obtain a convolutional
patch of the corresponding sample. For weights A ∈ Rd×m,
the result of the convolutional operation is written XA with
(XA)u,i,j =

∑d
o=1Xu,i,oAo,j for all u, i, j.

A first step in bounding the capacity of NN’s is to provide
a bound on the covering numbers of individual layers.

Definition 1 (Covering numbers). Let V ⊂ Rn and ‖ · ‖ be
a norm in Rn. The covering number w.r.t. ‖ · ‖, denoted by
N (V, ε, ‖ · ‖), is the minimum cardinality m of a set of vec-
tors v1, . . . ,vm ∈ Rn such that supv∈V minj=1,...,m ‖v −
vj‖ ≤ ε. In particular, if F ⊂ RX is a function
class and X = (x1, x2, . . . , xn) ∈ Xn are data points,
N (F(X), ε, (1/

√
n)‖ · ‖2) is the minimum cardinality m

of a set of functions F 3 f1, . . . , fm : X → R such that for
any f ∈ F , ∃j ≤ m s.t.

∑n
i=1(1/n)

∣∣f j(xi)− f(xi)
∣∣2 ≤ ε2

. Similarly, N (F(X), ε, ‖ · ‖∞) is the minimum cardinal-
ity m of a set of functions F 3 f1, . . . , fm : X → R
such that for any f ∈ F , there exists j ≤ m such that
i ≤ n,

∣∣f j(xi)− f(xi)
∣∣ ≤ ε.

If we apply classical results on linear classifiers as is done
in (Bartlett, Foster, and Telgarsky 2017) (where results on L2

covering numbers are used) by viewing a convolutional layer
as a linear map directly, we cannot take advantage of weight
sharing. In this work, we circumvent this difficulty by apply-
ing results on the L∞ covering numbers of classes of linear
classifiers to a different problem where each "(convolutional
patch, sample, output channel)" combination is mapped into
a higher dimensional space to be viewed as a single data
point. A further reduction in dependence on architectural
parameters is achieved by leveraging the L∞-continuity of
margin-based loss functions and pooling. We will need the
following result from (Zhang 2002) (Theorem 4, page 537).

Proposition 4. Let n, d ∈ N, a, b > 0. Suppose we are given
n data points collected as the rows of a matrix X ∈ Rn×d,
with ‖Xi, .‖2 ≤ b, ∀i = 1, . . . , n. For Ua,b(X) =

{
Xα :

‖α‖2 ≤ a, α ∈ Rd
}

, we have

logN (Ua,b(X), ε, ‖ .‖∞) ≤ 36a2b2

ε2
log2

(
8abn

ε
+ 6n+ 1

)
.

Note this proposition is stronger than Lemma 3.2 in (Bart-
lett, Foster, and Telgarsky 2017). In the latter, the cover can
be chosen independently of the data set, and the metric used
in the covering is an L2 average over inputs. In Proposition 4,
the covering metric is a maximum over all inputs, and the

6Our boundedness assumptions on worst-case Lipschitz con-
stants remove some of the interactions between layers, yielding
simpler results than (Wei and Ma 2019; Nagarajan and Kolter 2019)

data set must be chosen in advance, though the size of the
cover only depends (logarithmically) on the sample size7.

Using the above on the auxiliary problem based on (input,
convolutional patch, ouput channel) triplets, we can prove the
following covering number bounds for the one-layer case:

Proposition 5. Let positive reals (a, b, ε) and positive integer
m be given. Let the tensor X ∈ Rn×U×d be given with
∀i ∈ {1, 2, . . . , n}, ∀u ∈ {1, 2, . . . , U}, ‖Xi,u, .‖2 ≤ b.
For any choice of reference matrix M , we have

logN
(
{XA : A ∈ Rd×m, ‖A−M‖Fr ≤ a}, ε, ‖ .‖∞

)
≤ 36a2b2

ε2
log2

[(
8ab

ε
+ 7

)
mnU

]
,

where the norm ‖ .‖∞ is over the space Rn×U×m.

Sketch of proof: By translation invariance, it is clear
that we can suppose M = 0. We consider the problem of
bounding the L∞ covering number of {(v>i Xj)i≤I,j≤J :∑
i≤I ‖vi‖22 ≤ a2} (where Xj ∈ Rd×n for all j) with only

logarithmic dependence on n, I, J . Here, I plays the role of
the number of output channels, while J plays the role of the
number of convolutional patches. We now apply the above
Proposition 4 on the nIJ × dI matrix constructed as follows:



X1 0 . . . 0
0 X1 . . . 0
. . . . . . . . . . . .
0 0 . . . X1

X2 0 . . . 0
0 X2 . . . . . .
. . . . . . . . . . . .
0 0 . . . X2

X3 0 . . . 0
. . . . . . . . . . . .
XJ 0 . . . 0
0 XJ . . . 0
. . . . . . . . . . . .
0 0 . . . XJ



>

,

with the corresponding vectors being (v1, v2, . . . , vI) ∈ RdI .
If we compose the linear map on Rn×d represented by

(v1, v2, . . . , vI)
> with k real-valued (1, L∞) Lipschitz func-

tions, the above argument yields comparable bounds on the
‖ .‖2 covering number of the composition, losing a factor of√
k only (for the last layer, k = 1, and for convolutional lay-

ers, k is the number of neurons in the layer left after pooling).
The proposition above is only enough to deal with a purely

l2 version of our bounds. To prove Theorem 3, which involves
‖ .‖2,1 norms, we must show the following extension:

Proposition 6. Let positive reals (a, b, ε) and positive integer
m be given. Let the tensor X ∈ Rn×U×d be given with
∀i ∈ {1, 2, . . . , n}, ∀u ∈ {1, 2, . . . , U}, ‖Xi,u, .‖2 ≤ b. For

7We note that the proof is also much more obscure, although it is
far more approachable to prove an analogous result with a squared
log term instead, by going via the shattering dimension.
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any fixed M :

logN
(
{XA : A ∈ Rd×m, ‖A−M‖2,1 ≤ a}, ε, ‖ .‖∗

)
≤ 64a2b2

ε2
log2

[(
8ab

ε
+ 7

)
mnU

]
,

where the norm ‖ .‖∗ over the space Rn×U×m is defined by
‖Y ‖∗ = maxi≤n maxj≤U

[∑m
k=1 Y

2
i,j,k

] 1
2 .

Sketch of Proof: We first assume fixed bounds on the L2

norms ‖Ai, .‖2 = ai of each filter, and use Proposition 5 with
m = 1 for each output channel with a different granularity
εi. We then optimize over the choice of εi, and make the
result apply to the case where only a =

∑
i ai ≥ ‖A‖2,1 is

fixed in advance by l1 covering the set of possible choices for
(a1, a2, . . . , am) for each a, picking a cover for each such
choice and taking the union. We accumulate a factor of 2
because of this approach, but to our knowledge, it is not
possible to rescale the inputs by factors of

√
ai as was done

in (Bartlett, Foster, and Telgarsky 2017), as the input samples
in an L∞ covering number bound must be chosen in advance.

Sketch of Proof of Theorem 2 : we use the loss function

l(xi, yi) = max
[
λb1(‖σ(Ã1xi)‖2 − b1),

λγ
(

max
j 6=y

(A2σ(Ã1xi))j − (A2σ(Ã1xi))yi
)]
,

where for any θ > 0 the ramp loss λθ is defined by
λθ = 1 + min(max(x,−θ), 0)/θ. This loss incorporates
the following two failure scenarios: (1) the L2 norm of the
hidden activations exceed a multiple of b1 (2) The activa-
tions behave normally but the network still outputs a wrong
prediction. Since pooling is continuous w.r.t. the infty norm,
the above results for the one layer case applied to a layer
yields an ε cover of hidden layer w.r.t to the L∞ norm. The
contributions to the error source (1) therefore follows directly
from the first layer case. The contribution of the 1st layer
cover error to (2) must be multiplied 1/γ and the Lipschitz
constant of A2 with respect to the L∞ norms, which we es-
timate by

√
wa∗ since the Euclidean norm of the deviation

from the cover at the hidden layer is bounded by
√
w times

the deviation in ||∞,1 norm 8.

Remarks and Comparison to Concurrent
Work

We have addressed the main problems of weight sharing and
dependence on the number of classes. As mentioned earlier,
(Long and Sedghi 2020) have recently studied the former
problem independently of us. It is interesting to provide a
comparison of their and our main results, which we do briefly
here and in more detail in the Appendix.

The bound in (Long and Sedghi 2020) scales like

C
√
W(

∑L
l=1

sl−log(γ))+log(1/δ)

n
, where sl is an upper bound on

the spectral norm of the matrix corresponding to the lth layer,
γ is the margin, and W is the number of parameters, tak-
ing weight sharing into account by counting each parameter

8This norm is a supremum over the spacial locations of the L2

norms over the channel directions.

of convolutional filters only once. The idea of the proof is
to bound the Lipschitz constant of the map from the set of
weights to the set of functions represented by the network,
and use dimension-dependent results on covering numbers of
finite dimensional function classes. Remarkably, this doesn’t
require chaining the layers, which results in a lack of a non
logarithmic dependence on the product of spectral norms.
Note that the term

∑L
l=1 sl comes from a log term via the

inequality
∏

(1 + si) ≤ exp(
∑
si).

On the other hand, the bound scales at least as the square
root of the number of parameters, even if the weights are
arbitrarily close to initialisation. In contrast, our bound (3)
scales like O(

√
1/n) up to log terms when the weights ap-

proach initialisation. Furthermore, if we fix an explicit upper
bound on the relevant norms (cf.Theorem C.2) 9, the bound
then converges to zero as the bounds on the norms go to
zero. In a refined treatment via the NTK literature (Arora et al.
2019), explicit bounds would be available via other tools.

Finally, note that the main advantages and disadvantages
of our bounds compared to (Long and Sedghi 2020) are con-
nected through a tradeoff in the proof where one can decide
which quantities go inside or outside the log. In particular, it
is not possible to combine the advantages of both. We refer
the reader to Appendix H for a more detailed explanation.

Conclusion
We have proved norm-based generalisation bounds for deep
neural networks with significantly reduced dependence on
certain parameters and architectural choices. On the issue
of class dependency, we have completely bridged the gap
between the states of the art in shallow methods and in deep
learning. Furthermore, we have, simultaneously with (Long
and Sedghi 2020), provided the first satisfactory answer to
the weight sharing problem in the Rademacher analysis of
neural networks. Contrary to independent work, our bounds
are norm-based and are negligible at initialisation.
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