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Abstract

We propose a hierarchical normalizing flow model for gener-
ating molecular graphs. The model produces new molecular
structures from a single-node graph by recursively splitting
every node into two. All operations are invertible and can
be used as plug-and-play modules. The hierarchical nature
of the latent codes allows for precise changes in the resulting
graph: perturbations in the top layer cause global structural
changes, while perturbations in the consequent layers change
the resulting molecule marginally. The proposed model out-
performs existing generative graph models on the distribution
learning task. We also show successful experiments on global
and constrained optimization of chemical properties using la-
tent codes of the model.

Introduction

Drug discovery is a challenging multidisciplinary task that
combines domain knowledge in chemistry, biology, and
computational science. Recent works demonstrated success-
ful applications of machine learning to the drug develop-
ment process, including synthesis planning (Segler, Preuss,
and Waller 2018), protein folding (Senior et al. 2020), and
hit discovery (Merk et al. 2018; Zhavoronkov et al. 2019).
Advances in generative models enabled applications of ma-
chine learning to drug discovery, such as distribution learn-
ing and molecular property optimization. Distribution learn-
ing models train on a large dataset to produce novel com-
pounds (Polykovskiy et al. 2020); property optimization
models search the chemical space for molecules with desir-
able properties (Brown et al. 2019). Often researchers com-
bine these tasks: they first train a distribution learning model
and then use its latent codes to optimize molecular properties
(Goémez-Bombarelli et al. 2018). For such models, proper la-
tent codes are crucial for molecular space navigation.

We propose a new graph generative model—MolGrow.
Starting with a single node, it iteratively splits every node
into two. Our model is invertible and maps molecular struc-
tures onto a fixed-size hierarchical manifold. Top levels of
the manifold define global structure, while the bottom levels
influence local features.

Our contributions are three-fold:

Copyright © 2021, Association for the Advancement of Artificial
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* We propose a hierarchical normalizing flow model for
generating molecular graphs. The model gradually in-
creases graph size during sampling, starting with a single
node;

* We propose a fragment-oriented atom ordering that im-
proves our model over commonly used breadth-first
search ordering;

* We apply our model to distribution learning and property
optimization tasks. We report distribution learning met-
rics (Fréchet ChemNet distance and fragment distribu-
tion) for graph generative models besides providing stan-
dard uniqueness and validity measures.

Background: Normalizing Flows

Normalizing flows are generative models that transform a
prior distribution p(z) into a target distribution p(z) by com-
posing invertible functions fj:

Z:fKO...OfQOfl(Jj), (1)
T = ffl o... ofgil ofgl(z). )

We call Equation 1 a forward path, and Equation 2 an in-
verse path. The prior distribution p(z) is often a standard
multivariate normal distribution A (0, I). Such models are
trained by maximizing training set log-likelihood using the
change of variables formula:

det ( dh )

dh;—1

where h; = f;(hi—1), ho = x. To efficiently train the model
and sample from it, inverse transformations and Jacobian de-
terminants should be tractable and computationally efficient.
In this work, we consider three types of layers: invertible
linear layer, actnorm, and real-valued non-volume preserv-
ing transformation (RealNVP) (Dinh, Sohl-Dickstein, and
Bengio 2017). We define these layers below for arbitrary
d-dimensional vectors, and extend these layers for graph-
structured data in the next section.

We consider an invertible linear layer parameterization by
Hoogeboom, Van Den Berg, and Welling (2019) that uses
QR decomposition of a weight matrix: h = QR - z, where
Q is an orthogonal matrix (Q7 = @Q!), and R is an upper

C)
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Figure 1: MolGrow architecture. Left: Full architecture combines multiple levels to generate latent codes z”, ..., 20 from

a graph (V, F) and vice versa. Middle: Each level separates noise, merges node pairs, applies multiple blocks and linear
transformations; Right: Each block applies three channel-wise transformations and two RealNVP layers.

triangular matrix with ones on the main diagonal. We use
Householder reflections to parameterize Q:

sz[l(I—Q ).

where v; are learnable column-vectors. The Jacobian deter-
minant of a linear layer is 1. There is an alternative way to
formulate a linear layer with LU decomposition (Kingma
and Dhariwal 2018). However, in our experiments, QR de-
composition showed more numerically stable results.

Actnorm layer (Kingma and Dhariwal 2018) is a linear
layer with a diagonal weight matrix: h = s ® z 4+ m, where
©® is an element-wise multiplication. Vectors s and m are
initialized so that the output activations from this layer have
zero mean and unit variance at the beginning of training. We
use the first training batch for initialization. The Jacobian
determinant of this layer is Hle Si-

RealNVP layer (Dinh, Sohl-Dickstein, and Bengio 2017)
is a nonlinear invertible transformation. Consider a vector z
of length d = 2t with first half of the components denoted as
Za, and the second half as z;. Then, RealNVP and its inverse
transformations are:

“

’UiUZ-T
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Functions sy and ¢y do not have to be invertible, and usually
take form of a neural network. The Jacobian determinant of
the RealN'VP layer is Hle e%0:i(20) We sequentially apply
two RealNVP layers to transform both components of z. We
also use permutation layer that deterministically shuffles in-
put dimensions before RealNVP—this is equivalent to ran-
domly splitting data into a and b parts.
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MolGrow (Molecular Graph Flow)

In this section, we present our generative model—MolGrow.
MolGrow is a hierarchical normalizing flow model (Fig-
ure 1): it produces new molecular graphs from a single-node
graph by recursively dividing every node into two. The final
graph has N = 2% nodes, where L is a number of node-
splitting layers in the model. To generate graphs with fewer
nodes, we add special padding atoms. We choose N to be
large enough to fit any graph from the training dataset.

We represent a graph with node attribute matrix V' €
RN*dv and edge attribute tensor £ € RN*N*de where
d, and d, are feature dimensions. For the input data, V; de-
fines atom type and charge, F; ; defines edge type. Since
molecular graphs are non-oriented, we preserve the symme-
try constraint on all intermediate layers: E; j x = E;; k-

We illustrate MolGrow’s architecture in Figure 1. Mol-
Grow consists of L invertible levels, each level has its own
latent code with a Gaussian prior. On a forward path, each
level extracts the latent code and halves the graph size by
merging node pairs. On the inverse path, each level does the
opposite: it splits each node into two and adds additional
noise. The final output on the forward path is a single-node
graph graph 20 = (V& EX) and latent codes from each
level: 2z, ..., 2. We call 2° a top level latent code.

Dequantization

To avoid fitting discrete graphs into a continuous den-
sity model, we dequantize the data using a uniform noise
(Kingma and Dhariwal 2018):

Vi = Vi +ui;, %)
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Figure 2: Node merging and splitting example for a 4-node
graph. We concatenate features of nodes V; and V5 and edge
E; > to get new node features. We also concatenate edge
features Iy 3, )1 4, V2 3, and Ey 4. Splitting operation slices
merged graph’s node and edge features.

Elements of u” and u® are independent samples from a uni-
form distribution [0, ¢]. Such dequantization is invertible
for ¢ € [0, 1)—original data can be reconstructed by round-
ing down the elements of V;?j and E? k- We dequantize
the data for each training batch independently and train the
model on (V0 E?). Dequantizated graph (V°, E°) is a com-
plete graph.

Node Merging and Splitting

We use node merging and splitting operations to control the
graph size. These operations are inverse of each other, and
both operate by rearranging node and edge features. Con-
sider a graph (V*, E¥) with N, nodes. Node merging oper-
ation joins nodes 27 and 27+ 1 into a single node by concate-
nating their features and features of the edge between them.
We concatenate edge features connecting the merged nodes:

k-+1 k 1k k
Vi = cat( Voi s Vaivas Egi i ): )
—— ~ —— —

2d,+de dy dy de

k41 _ k k k k
Ei,j = cat( E2i,2j» E2i.2j+17 E2i+1,2ja E2i+1,2j+1 ) (10)
—— —— —— —— Y— ——

4d, de de de de
Node splitting is the inverse of node merging layer: it slices
features into original components. See an example in Fig-

ure 2.

Noise Separation and Injection

MolGrow produces a latent vector for each level. We de-
rive the latent codes by separating half of the node and edge
features before node merging and impose Gaussian prior on
these latent codes. During generation, we sample the latent
code from the prior and concatenate it with node and edge
features. As we show in the experiments, latent codes on
different levels affect the generated structure differently. La-
tent codes from smaller intermediate graphs (top level) in-
fluence global structure, while bottom level features define
local structure.

8228

— 16, 215
) .
PAEN 26, 25 LN 28, 26
w‘1 ‘e‘z 2‘1 c 2 i “‘0 2‘4 ‘2‘7
il
s 7 A T~ 8/ 18] N 22 25
A \5/ S @ _27 57 g " =
2 i "
i I
N IN 4

’ a. Breadth-first search ordering b. Fragment-oriented ordering
Figure 3: Different atom orderings. Numbers are atom’s in-
dices in a particular ordering. Note that BFS ordering (a)
generates two fragments in parallel (see nodes 15-18), while
our method completes a fragment before transitioning to the
next one. For fragment-oriented ordering (b), we circled ex-
tracted fragments.

Block Architecture

The basic building block in MolGrow (denoted block in Fig-
ure 1) consists of five layers. The first three layers (permuta-
tion, linear, and actnorm) serve as 1 x 1 convolutions. Each
layer contains two transformations: one transforms every
node and the other transforms every edge. The number of
linear layer’s Housholder reflections in matrix () is smaller
than the dimension of (). Hence, a combination of linear and
permutation layers is not equivalent to a single linear layer.

The final two layers of the block are RealNVP layers.
RealNVP layer splits its input graph (V* E¥) with N,
nodes into (V@ E*:@) and (VKb Ekb) along features di-
mension. We transform (V*:*| E*:®) by projecting node and
edge features onto a low-dimensional manifold and applying
attention on complete graph edges (CAGE) architecture (Al-
gorithm 1). We compute the final output of RealNVP layer
by applying fully-connected neural networks sp, tp, sg, and
t5 to each node and edge independently:

V"' B = CAGE(V*'W,, ERPW,) (1)
o i (7)) o v (7)o
yhthe — kb (13)
B — exp (55 (Ef]b» © BN 415 (Ek b) (14)
BT =EF(5)

2V}

Similar to other attentive graph convolutions (Veli¢kovié
et al. 2017; Guo, Zhang, and Lu 2019), CAGE architecture
uses a multi-head attention (Vaswani et al. 2017). It also
uses gated recurrent unit update function to stabilize training
(Parisotto et al. 2020). Positional encoding in CAGE con-
sists of two parts. First d,, — [log, N}, | dimensions are stan-
dard sinusoidal positional encoding (Vaswani et al. 2017):

Pos; 5; = sin (1/1000023'/%) : (16)

POS; ;41 = COS (z‘/100002ﬂ'/dv) . 17)



Algorithm 1 Attention on complete graph edges (CAGE)

Algorithm 2 Balanced padding (function “pad”)

1: Input: Complete graph (V, E) with node feature matrix
V € R"*4v and edge feature tensor E € R"*"xde,
2: Output: Transformed complete graph (V, E) of the
same dimension as (V, E).
3: Compute positional encodings matrix pos € R™* %
4: fori =1tondo
5:  Allocate y € R4
6 for j =1tondo
Ty = folcat (Eyy, Vi, V) + pos; — compute
message ;7 — ¢ of dimension d, using a fully-
connected neural network fy
8: end for
9: ¢ =V; + pos, — compute attention query

10:  r = Multi-Head Attention(query=q, keys=p, values=p)

— aggregate messages

11: V; = GRUy(x=r, h=V;) — update node feature
matrix using a GRU cell

122 v = cat (E;;, Vi, V;), Vj — compute edge up-
date vectors

13: E;; = %GRUE(ZL‘ZVZ‘J, hZEi,j) +
3GRUg(z=v;,,h=E;;) Vj — update edge
features

14: end for

The last [log, N ] components of pos; contain a binary
code of 7. We add multiple blocks before the first and after
the last level in the full architecture.

Layout and Padding

Similar to the previous works (Shi et al. 2020; You et al.
2018b), we achieved better results when learning on a fixed
atom ordering, instead of learning a distribution over all per-
mutations. Previous works used breadth-first search (BFS)
atom ordering, since it avoids long-range dependencies.
However, BFS does not incorporate the knowledge of com-
mon fragments and can mix their atoms (Figure 3a). We pro-
pose a new atom ordering to incorporate prior knowledge
about frequent fragments. Our ordering better organizes the
latent space and simplifies generation.

We break the molecule into fragments by removing
BRICS (Degen et al. 2008) bonds and bonds connecting
rings, linkers, and decorations in the Bemis-Murcko scaf-
fold (Bemis and Murcko 1996). We then enumerate the frag-
ments and atoms in each fragment using BFS ordering (Fig-
ure 3b). We recursively choose padding positions, minimiz-
ing the number of edges after node merging layers (Algo-
rithm 2).

Related Work

Many well-known generative models work out of the box
for molecular generation task. By representing molecules as
strings, one can apply any sequence generation model: lan-
guage models (Segler et al. 2018), variational autoencoders
(Gémez-Bombarelli et al. 2018), and generative adversarial
networks (Sanchez-Lengeling et al. 2017). Molecular graphs
satisfy a formal set of rules: all atoms must have a proper

1: Input: List of fragments f1.x = [f1... fk], where f;
contains atom indices in the ¢-th fragment; N—target
graph size, power of 2.

2: Qutput: Atom order with * indicating padding posi-
tions (x indicates N sequential paddings).

3: if K =1and|f1| < N/2 then

4:  Randomly add padding: with 50% probability re-
turn cat(pad(fi, N/2),*n/2), otherwise return
Cat(*N/Qa pad(fh N/2))

end if

6: Find possible splitting positions B: b € B if left

and right parts fit into subtrees: |f1.,|] < N/2 and

| for1:ic| < NJ/2

if | B| > 0 then

8:  Sample any index b € B that minimizes the number

of bonds between f1.; and fp11.x.

9:  Recursively add padding to left and right parts:

10:  return cat (pad(fl:ba N/2), pad(foy1:x, N/2)>
11: else

12:  Add padding to the right

13: return Cat(fl;K7*N7|f1:K‘)

14: end if

bl

~

valency, and a graph must have only one component. These
constraints can be learned implicitly from the data or ex-
plicitly by specifying grammar rules (Kusner, Paige, and
Hernandez-Lobato 2017; O’Boyle and Dalke 2018; Krenn
et al. 2019).

Multiple generative models for molecular graphs were
proposed. Graph recurrent neural network (GraphRNN)
(You et al. 2018b) and molecular recurrent neural net-
work (MolecularRNN) (Popova et al. 2019) use node
and edge generators: node generator sequentially produces
nodes; edge generator sequentially predicts edge types for
all the previous nodes from the hidden states of a node
generator. Molecular generative adversarial network (Mol-
GAN) (De Cao and Kipf 2018) trains a critic on gener-
ated graphs and passes the gradient to the generator using
deep deterministic policy gradient (Lillicrap et al. 2015).
Graph variational autoencoder (GraphVAE) (Simonovsky
and Komodakis 2018) encodes and decodes molecules using
edge-conditioned graph convolutions (Simonovsky and Ko-
modakis 2017). Graph autoregressive flow (GraphAF) (Shi
et al. 2020) iteratively produces nodes and edges; discrete
one-hot vectors are dequantized, and tokens are decoded us-
ing argmax. The most similar work to ours is a graph non-
volume preserving transformation (GraphNVP) (Madhawa
et al. 2019) model. GraphNVP generation is not autoregres-
sive: the model produces a dequantized adjacency matrix us-
ing normalizing flow, turns it into a discrete set of edges by
computing argmax, and obtains atom types using a normal-
izing flow. MoFlow (Zang and Wang 2020) exploits a two-
stage graph generation process similar to GraphNVP: first,
it generates an adjacency matrix with Glow architecture and
then recovers node attributes with additional coupling lay-



Method FCD/Test ({) Frag/Test (1) Unique@10k (1) Novelty (1)
Graph-based models

MolecularRNN 23.13 0.56 98.6% 99.9%

GraphVAE 49.39 0.0 5% 100%

GraphNVP 29.95 0.62 99.7 % 99.9%

GraphAF (BFS) 21.84 0.651 97% 99.9%

MoFlow 28.05 0.685 100% 99.99%

Proposed model

MolGrow (fragment-oriented)

MolGrow (BFS) 9.96 + 0.795
MolGrow (BFS on fragments) 16.1 +1.03
MolGrow (random permutation) 40.2 +4.71
MolGrow (GAT instead of CAGE) 6.52 +0.3
MolGrow (No positional embedding)  6.77 &£ 0.555

6.284 +0.986 0.9294 £+ 0.025

99.28 + 0.62 %

99.26 +£0.12 %

0.933 £0.01 100 £ 0.0 % 99.4 £ 0.08 %
0.868 £ 0.02 100 £0.0 % 100 £ 0.0%
0.05 £0.04 59 £+ 38.1% 100 £ 0.0 %
0.941 £0.013 99.4+0.3 % 99.3 £0.06 %
0.937 £ 0.006 99.5+0.18 % 99.4 £ 0.06 %

SMILES and fragment-based models

CharRNN (from MOSES benchmark)
VAE (from MOSES benchmark)
JTN-VAE (from MOSES benchmark)

0.099 +0.012
0.422 +0.023

0.073 £0.024 0.9998 £ 0.000
0.9994 + 0.000
0.9962 =+ 0.000

99.73 £0.03%
99.84 +£0.12 %
100 £+ 0.0%

84.19 £+ 5.09%
69.49 £ 0.69%
91.53 £ 0.58%

Table 1: Distribution learning metrics on MOSES dataset. Baseline models from (Popova et al. 2019; Simonovsky and Ko-
modakis 2018; Madhawa et al. 2019; Shi et al. 2020; Zang and Wang 2020)

ers. Unlike GraphNVP and MoFlow, we generate the graph
hierarchically and inject noise on multiple levels. We also
produce nodes and edges simultaneously. Tran et al. (2019)
model discrete data directly with straight-through gradient
estimators. Application of such model to graph structured
data is yet to be explored.

All graph generative models mentioned above are not
permutation invariant, and most of these models employ
a fixed atom order. GraphVAE aligns generated and target
graphs using Hungarian algorithm, but has high computa-
tional complexity. Vinyals, Bengio, and Kudlur (2016) re-
port that order matters in set to set transformation problems
with specific orderings giving better results. Most models
learn on a breadth-first search (BFS) atom ordering (You
et al. 2018b). In BFS, new nodes are connected only to
the nodes produced on the current or previous BFS lay-
ers, avoiding long range dependencies. Alternatively, graph
generative models could use a canonical depth-first search
(DES) order (Weininger, Weininger, and Weininger 1989).
Note that unlike graph-based generators, string-based gener-
ators seem to improve from augmenting atom orders (Bjer-
rum 2017).

Several works studied fragment-based molecular genera-
tion. Jin, Barzilay, and Jaakkola (2018) replace molecular
fragments with nodes to form a junction tree. They then pro-
duce molecules by sampling a junction tree and then ex-
panding it into a full molecule. The authors expanded this
approach to incorporate larger fragments as tokens (motifs)
(Jin, Barzilay, and Jaakkola 2020).

Experiments

We consider three problems: distribution learning, global
molecular property optimization and constrained optimiza-
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tion. For all the experiments, we provide model and opti-
mization hyperparameters in supplementary material A; the
source code for reproducing all the experiments is provided
in supplementary materials. We consider hydrogen-depleted
graphs, since hydrogens can be deduced from atom valence.

Distribution Learning

In distribution learning task, we assess how well models cap-
ture the data distribution. We compare generated and a test
sets using Fréchet ChemNet distance (FCD/Test) (Preuer
et al. 2018). FCD/Test is a Wasserstein-1 distance between
Gaussian approximations of ChemNet’s penultimate layer
activations. We also computed cosine similarity between
fragment frequency vectors in the generated and test sets.
We report the results on MOSES (Polykovskiy et al. 2020)
dataset in Table 1. MolGrow outperforms previous node-
level graph generators by a large margin. Note that SMILES-
based generators (CharRNN and VAE) and fragment-level
generator (JTN-VAE) outperform all node-level graph mod-
els. We hypothesize that such representations impose strong
prior on the generated structures. We provide samples from
graph-based models in Figure 4. Note that baseline mod-
els tend to produce macrocycles which were not present in
the training set; molecules produced with GraphNVP con-
tain too few rings. Ablation study demonstrates the advan-
tage of fragment-oriented ordering and CAGE over standard
graph attention network GAT (Velickovié et al. 2017). We
provide the results on QM9 (Ramakrishnan et al. 2014) and
ZINC250k (Kusner, Paige, and Herndndez-Lobato 2017)
datasets in supplementary material B. In Figure 6 of Supple-
mentary materials, we show how resampling different latent
codes affect the generated structure.



Method Penalized logP QED
Ist 2nd 3rd Ist 2nd 3rd
ZINC250k 4.52 4.30 4.23 0.948 0.948 0.948
Graph-based models
GCPN 7.98 7.85 7.80 0.948 0.947 0.946
MolecularRNN  8.63 6.08 4.73 0.844 0.796 0.736
GraphNVP - - - 0.833 0.723 0.706
GraphAF 12.23 11.29 11.05 0.948 0.948 0.948
MoFlow - - - 0.948 0.948 0.948
Proposed model
Genetic 14.01 +0.36 1395+042 13.92+042 0948+0.0 0948+0.0 0.948=+0.0
Genetic, Top 11.66 4+ 0.31 11.65 £ 0.31 11.63+£0.31 0948+ 0.0 0948+00 0.948+0.0
Genetic, Bottom  10.29 £ 3.32 10.29+£3.33 10.28+£3.32 0.948+0.0 0.948+0.0 0.948+0.0
Predictor-guided 5.2 4+ 0.34 4.94 + 0.26 4.84 +0.22 0948 £0.0 0948+0.0 0.948=£0.0
REINFORCE 4.81 +£0.28 4.47+0.14 4.39+0.13 0.947 +0.001 0.946 £0.001  0.946 + 0.001
SMILES and fragment-based models
DD-VAE 5.86 5.77 5.64 - - -
Grammar VAE 2.94 2.88 2.80 - - -
SD-VAE 4.04 3.50 2.96 - - -
JT-VAE 5.30 4.93 4.49 0.948 0.947 0.947

Table 2: Molecular property optimization: penalized octanol-water partition coefficient (penalized logP) and quantitative esti-
mation of drug-likeness (QED). Results for baseline models from (You et al. 2018a; Popova et al. 2019; Madhawa et al. 2019;
Shi et al. 2020; Zang and Wang 2020; Polykovskiy and Vetrov 2020; Kusner, Paige, and Herndndez-Lobato 2017; Dai et al.

2018; Jin, Barzilay, and Jaakkola 2018).
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Figure 4: Samples from molecular graph generative models trained on MOSES.

Global Optimization

The goal of a global optimization task is to produce new
molecules that maximize a given chemical property. Sim-
ilar to the previous works, we selected two commonly
used properties: penalized octanol-water partition coeffi-
cient (penalized logP) (Kusner, Paige, and Hernindez-
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Lobato 2017) and quantitative estimation of drug-likeness
(QED) (G6émez-Bombarelli et al. 2018). We considered ge-
netic and predictor-guided optimization strategies.

For genetic optimization, we start by sampling 256 ran-
dom molecules from ZINC250k dataset and computing their
latent codes. Then we hierarchically optimize latent codes



GCPN

GraphAF

Improvement  Similarity Success

Improvement Similarity Success

0.0 4.20+£1.28 0.32£0.12 100%
02 412+1.19 0.32£0.11 100%

13.13 £6.89 0.29+£0.15 100%
11.90 +6.86 0.33£0.12 100%

04 249+1.30 0474+0.08 100% 8.21 £6.51 0.49 £0.09 99.88%

06 0.79+0.63 0.68+0.08 100% 4.98 +6.49 0.66 £ 0.05 96.88%
5 MoFlow MolGrow

Improvement  Similarity Success Improvement Similarity Success

0.0 861+5.44 0.30 £0.20 98.88%
0.2 7.06+5.04 0.43+0.20 96.75%
04 4.71+£4.55 0.61+0.18 85.75%
0.6 2.10+2.86 0.79+£0.14 58.25%

14.84 £5.786 0.048 £0.038 100%

11.99 £ 6.45 0.23 +0.045  99.88%
8.337 £ 6.85 0.44+0.048  99.88%
4.063 £ 5.609 0.65+0.068  97.78%

Table 3: Constrained optimization of penalized octanol-water partition coefficient (logP). Mean=-std over 800 initial molecules

with the worst penalized logP in ZINC250k.

for 3000 iterations. At each iteration we generate a new
population using crossing-over and mutation and keep 256
molecules with the highest reward. In crossing-over, we
randomly permute all molecules in the population to form
256 pairs. For each pair, we uniformly sample latent codes
from spherical linear interpolation (Slerp) trajectory (White
2016) and reconstruct the resulting molecule. We mutate one
level’s latent code at each iteration. Starting with a top level,
we resample 10% of the components from a Gaussian distri-
bution. For genetic optimization, we compare different mu-
tation and crossing-over strategies, including top level opti-
mization with fixed bottom layers and vice versa.

In predictor-guided optimization, we followed the ap-
proach proposed by Jin, Barzilay, and Jaakkola (2018): we
fine-tuned the pre-trained model jointly with a penalized
logP predictor from the high-level latent codes for one epoch
(MAE=0.41 for penalized logP, MAE=0.07 for QED). We
randomly sampled 2560 molecules from a prior distribution
and took 200 constrained gradient ascent steps along the pre-
dictor’s gradient to modify the high-level latent codes; we
resample low-level latent codes from the prior. We decrease
the learning rate after each iteration and keep the best re-
constructed molecule that falls into the constrained region.
Intuitively, the gradient ascent over high-level latent codes
guides the search towards better global structure, while low-
level latent codes produce a diverse set of molecules with
the same global structure and similar predicted values.

We report the scores of the best molecules found during
optimization in Table 2 and provide optimization trajectories
in supplementary information C.

Constrained Optimization

In this section, we apply MolGrow to constrained molecu-
lar optimization. In this task, we optimize a chemical prop-
erty in proximity of the initial molecule. Following the pre-
vious works (Jin, Barzilay, and Jaakkola 2018; You et al.
2018a), we selected 800 molecules with the lowest penalized
octanol-water partition coefficient (logP) and constrain min-
imum Tanimoto similarity § between Morgan fingerprints

(Rogers and Hahn 2010) of the initial and final molecules.
For constrained optimization, we followed the predictor-
guided approach described above and optimize each of 800
starting molecules for 200 steps. In Table 3, we report aver-
age penalized logP improvement and similarity to the ini-
tial molecule. We also report a fraction of molecules for
which we successfully discovered a new molecule with
higher penalized logP. Note that unlike GCPN and GraphAF
baselines, we do not fine-tune the model for each starting
molecule, reducing time and memory costs for optimization.

Conclusion

In this paper, we presented a new hierarchical molecular
graph generative model and outperformed existing node-
level models on distribution learning and molecular prop-
erty optimization tasks. On distribution learning, string- and
fragment-based generators still perform better than node-
level models, since they explicitly handle valency and con-
nectivity constraints. Similar to the previous models, we ob-
tained better performance when learning on a fixed atom
ordering. Our fragment-oriented ordering further improves
the results over BFS. In this work, we compared generated
and test sets using standard distribution learning metrics and
found out that the distributions produced by previous node-
level graph generators differ significantly from the test set,
although these models were trained for distribution learning.
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