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Abstract

Many recent invertible neural architectures are based on cou-
pling block designs where variables are divided in two subsets
which serve as inputs of an easily invertible (usually affine)
triangular transformation. While such a transformation is in-
vertible, its Jacobian is very sparse and thus may lack ex-
pressiveness. This work presents a simple remedy by noting
that subdivision and (affine) coupling can be repeated recur-
sively within the resulting subsets, leading to an efficiently
invertible block with dense, triangular Jacobian. By formulat-
ing our recursive coupling scheme via a hierarchical architec-
ture, HINT allows sampling from a joint distribution p(y,x)
and the corresponding posterior p(x |y) using a single in-
vertible network. We evaluate our method on some standard
data sets and benchmark its full power for density estimation
and Bayesian inference on a novel data set of 2D shapes in
Fourier parameterization, which enables consistent visualiza-
tion of samples for different dimensionalities.

Introduction
Invertible neural networks based on the normalizing flow
principle have recently gained increasing attention for gen-
erative modeling, in particular networks built on a coupling
block design (Dinh, Sohl-Dickstein, and Bengio 2017).
Their success is due to a number of useful properties:
(a) they can tractably model complex high-dimensional
probability densities without suffering from the curse-of-
dimensionality, (b) training via the maximum likelihood ob-
jective is generally very stable, (c) their latent space opens
up opportunities for model interpretation and manipulation,
and (d) the same trained model can be used for both efficient
data generation and efficient density calculation.

While autoregressive models can also be trained as nor-
malizing flows and share properties (a) and (b), they sac-
rifice efficient invertibility for expressive power and thus
lose properties (c) and (d). In contrast, lack of expressive
power of a single invertible block is a core limitation of in-
vertible networks, which needs to be compensated by ex-
tremely deep models with dozens or hundreds of blocks,
e.g., the GLOW architecture (Kingma and Dhariwal 2018).
While invertibility allows to back-propagate through very
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Figure 1: Sparse (left) and dense (right) triangular Jacobian
of a standard coupling block and of our recursive design,
respectively. Nonzero parts of the Jacobian in gray.

deep networks with minimal memory footprint (Gomez et al.
2017), more expressive invertible building blocks are still of
great interest. The superior performance of autoregressive
approaches such as (Van den Oord et al. 2016) is due to the
stronger interaction between variables, reflected in a dense
triangular Jacobian matrix, at the expense of cheap inver-
sion. The theory of transport maps (Villani 2008) provides
certain guarantees of universality for triangular maps, which
do not hold for the standard coupling block design with a
comparatively sparse Jacobian (figure 1, left).

Here, we propose an extension to the coupling block de-
sign that recursively fills in the previously unused portions of
the Jacobian using smaller coupling blocks. This allows for
dense triangular maps (figure 1, right), or any intermediate
design if the recursion is stopped before, while retaining the
advantages of the original coupling block architecture. Fur-
thermore, the recursive structure of this mapping can be used
for efficient conditional sampling and Bayesian inference.
Splitting the variables of interest into two subsets x and y,
a single normalizing flow model can be built that allows ef-
ficient sampling from both the joint distribution p(x,y) and
the conditional p(x |y). It should be noted that our extension
would also work for convolutional architectures like GLOW.

Finally, we introduce a new family of data sets based on
Fourier parameterizations of two-dimensional curves. In the
normalizing flow literature, there is an abundance of two-
dimensional toy densities that provide an easy visual check
for correctness of the model output. However, the sparsity of
the basic coupling block only becomes an issue beyond two
dimensions where it is challenging to visualize the distribu-
tion or individual samples. Pixel-based image data sets, on
the other hand, quickly are too high dimensional for a mean-
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ingful assessment of the quality of the estimated densities.
A step towards visualizable data sets of intermediate

size has been made in (Kruse et al. 2019), but their four-
dimensional problems are still too simple to demonstrate
the advantages of the recursive coupling approach described
above. To fill the gap, we describe a way to generate data
sets of arbitrary dimension, where each data point parame-
terizes a closed curve in 2D space that is easy to visualize.
Increasing the input data dimension allows the representa-
tion of distributions of more and more complex curves.

To summarize, the contributions of this paper are: (a) a
simple, efficiently invertible flow model with dense, trian-
gular Jacobian; (b) a hierarchical architecture to model joint
as well as conditional distributions; (c) a novel family of data
sets allowing easy visualization for arbitrary dimensions.

The remainder of this work consists of a literature review,
some mathematical background, a description of our method
and supporting numerical experiments, followed by closing
remarks.

Related Work
Normalizing flows were popularized in the context of deep
learning chiefly by the work of (Rezende and Mohamed
2015) and (Dinh, Krueger, and Bengio 2015). By now, a
large variety of architectures exist to realize normalizing
flows. The majority falls into one of two groups: coupling
block architectures and autoregressive models. For a com-
prehensive overview and background information on invert-
ible neural networks and normalizing flows see (Kobyzev,
Prince, and Brubaker 2019) or (Papamakarios et al. 2019).

Additive and then affine coupling blocks were first intro-
duced by (Dinh, Krueger, and Bengio 2015; Dinh, Sohl-
Dickstein, and Bengio 2017), while (Kingma and Dhari-
wal 2018) went on to generalize the permutation of vari-
ables between blocks by learning the corresponding matri-
ces, besides demonstrating the power of flow networks as
generators. Subsequent works have focused on replacing the
(componentwise) affine transformation at the heart of such
networks, which limits expressiveness, e.g., by replacing
affine couplings with more expressive monotonous splines
(Durkan et al. 2019), albeit at the cost of evaluation speed.

On the other hand, there is lso a rich body of work on
autoregressive (flow) networks (Huang et al. 2018; Kingma
et al. 2016; Van den Oord et al. 2016; Van den Oord, Kalch-
brenner, and Kavukcuoglu 2016; Papamakarios, Pavlakou,
and Murray 2017). More recently, (Jaini, Selby, and Yu
2019) applied second-order polynomials to improve expres-
sive power over typical autoregressive models and proved
that their model is a universal density approximator. While
such models provide excellent density estimation compared
to coupling architectures (Liao, He, and Shu 2019; Ma et al.
2019), generating samples is often not a priority and can be
prohibitively slow.

There are other approaches, outside those two subfields,
that also seek a favorable trade-off between expressive
power and efficient invertibility. Residual Flows (Behrmann
et al. 2019; Chen et al. 2019) impose Lipschitz constraints
on a standard residual block, which guarantees invertibility

with a full Jacobian and enables approximate maximum-
likelihood training but requires an iterative procedure for
sampling. Similarly, (Song, Meng, and Ermon 2019) uses
lower triangular weight matrices that can be inverted via
fixed-point iteration. The normalizing flow principle is for-
mulated continuously as a differential equation (DE) by
(Grathwohl et al. 2019), which allows free-form Jacobians
but requires integrating a DE for each network pass. (Karami
et al. 2019) introduce another method with dense Jacobian,
based on invertible convolutions in the Fourier domain.

In terms of modeling conditional densities with invert-
ible neural networks, (Ardizzone et al. 2019a) proposed an
approach that divides the network output into conditioning
variables and a latent vector, training the flow part with
a maximum mean discrepancy objective (MMD, Gretton
et al. 2012) instead of maximum likelihood. Later (Ardiz-
zone et al. 2019b) introduced a simple conditional coupling
block to construct a conditional normalizing flow.

Mathematical Background
For an input vector x ∈ RN , a standard, invertible coupling
block is abstractly defined by

x′ = fC(x) =

[
x1

C
(
x2 |x1

)] = [x′1
x′2

]
, (1)

where x1 = x0:bN/2c and x2 = xbN/2c:N are the first and
second half of the input vector and x′2 = C(x2 |x1) is an
easily invertible transform of x2 conditioned on x1. Its in-
verse is then simply given by

x = f91C (x′) =

[
x′1

C91
(
x′2 |x′1

)] . (2)

For affine coupling blocks (Dinh, Sohl-Dickstein, and Ben-
gio 2017), C takes the form C(u |v) = u � exp

(
s(v)

)
+

t(v) with s and t unconstrained feed-forward networks. The
logarithm of the Jacobian determinant of such a block can
be computed very efficiently as

log
∣∣ detJfC(x)

∣∣ = log

∣∣∣∣det ∂fC(x)

∂x

∣∣∣∣ = sum(s(x1)). (3)

To ensure that all entries of x are transformed and interact
with each other, a pipeline that alternates between coupling
blocks and random orthogonal matrices Q is constructed,
where the orthogonal block x′ = fQ(x) = Qx can trivially
be inverted as x = f91Q (x′) = Q>x′ with log-determinant
log
∣∣detJfQ(x)∣∣ = 0.

Normalizing Flows and Transport Maps
To create a normalizing flow, this ‘pipeline’ T = fC1 ◦fQ1 ◦
fC2 ◦ fQ2 ◦ . . . is trained via maximum likelihood loss

L(x) = 1
2‖T (x)‖

2
2 − log |JT (x)| (4)

to transport the data distribution pX to a standard normal
latent distribution pZ = N (0, I). The map T can then be
used to sample from pX by drawing a sample z(i) from pZ in
the latent space and by passing it through the inverse model
S = T 91 to obtain x(i) = S(z(i)).
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Using the change-of-variables formula, the density at a
given data point x can also be calculated as pX(x) =
pZ(T (x)) · |detJT (x)|. The mathematical basis of this pro-
cedure is the theory of transport maps (Villani 2008), which
are employed in exactly the same way to push a reference
density (e.g. Gaussian) to a target density (e.g. the data dis-
tribution, (Marzouk et al. 2016)). In fact, up to a constant,
namely the (typically inaccessible) fixed entropy H(pX) of
the data distribution, the expected value of the objective in
equation (4) is the Kullback-Leibler (KL) divergence be-
tween the data distribution pX and the push-forward of the
latent density S#pZ :

DKL(pX ‖S#pZ) =

∫
pX(x) log

pX(x)

S#pZ(x)
dx

= Ex∼pX [L(x)] +H(pX). (5)
Normalizing flows represent one parametrised family of
maps over which equation (4) can be minimized. Other ex-
amples include polynomial (Marzouk et al. 2016), kernel-
based (Liu and Wang 2016) or low-rank tensor (Dolgov et al.
2020) approximations.

Note also that each pair fCi ◦ fQi in T is a composi-
tion of an orthogonal transformation and a triangular map,
where the latter is better known in the field of transport
maps as a Knothe-Rosenblatt rearrangement (Marzouk et al.
2016). This can be interpreted as a non-linear generalization
of the classic QR decomposition (Stoer and Bulirsch 2013).
Whereas the triangular part encodes the possibility to repre-
sent non-linear transformations, the orthogonal part reshuf-
fles variables to foster dependence of each part of the input
to the final output, thereby drastically increasing the repre-
sentational power of the map T .

Bayesian Inference with Conditional Flows
Inverse problems arise when one possesses a well-
understood model for the forward mapping x → y from
hidden parameters x to observable outcomes y, e.g. in the
form of an explicit likelihood p(y |x) or a Monte-Carlo sim-
ulation. However, the actual object of interest is the inverse
mapping y → x from observations to parameters. Accord-
ing to Bayes’ theorem, this requires estimation of the pos-
terior conditional density p(x |y). Such Bayesian inference
problems arise frequently in the sciences and are generally
very hard.

Normalizing flows can be used in several ways to estimate
conditional densities. The approach in this paper is inspired
by (Marzouk et al. 2016) and exploits the link to Knothe-
Rosenblatt maps highlighted above. As described below, see
figure 3 (left), it suffices to constrain the possible rearrange-
ments of variables in the coupling blocks, i.e. the choice of
the orthogonal blocks fQi, to enable conditional sampling.
This was first noted in (Detommaso et al. 2019).

Independently, (Ardizzone et al. 2019b) and (Winkler
et al. 2019) introduced conditional coupling blocks that al-
low an entire normalizing flow to be conditioned on external
variables. By conditioning the transport T between pX(x)
and pZ(z) on the corresponding values of y as z = T (x |y),
its inverse T 91(z |y) can be used to turn the latent distribu-
tion pZ(z) into an approximation of the posterior p(x |y).

fR

x Q

� +

Q · fR(x)
s(x1) t(x1)

fR(x1)

fR(x2)

Figure 2: A recursive affine coupling block. The inner func-
tions fR(xi) take again the form of the outer gray block, re-
peated until the maximum hierarchy depth is reached. Each
such coupling block in itself has a triangular Jacobian.

Method
We extend the basic coupling block design in two ways.

The Recursive Coupling Block
As visualized in figure 1 (left), the Jacobian Jf of a sim-
ple coupling block is very sparse, i.e. many possible interac-
tions between variables are not modelled. However the effi-
cient determinant computation in equation (3) works for any
lower triangular Jf , and indeed theorem 1 of (Hyvärinen and
Pajunen 1999) states that a single triangular transformation
can, in theory, already represent arbitrary distributions.

The following recursive coupling scheme fR makes use of
this potential and fills the empty areas below the diagonal:
Given x ∈ RN and a hierarchy depth K ∈ N, we define
recursively, for k = K,K − 1, . . . , 1:

x′ = fR,k(x) =


fC(x), if Nk≤3,[

fR,k91(x1)
Ck
(
fR,k91

(
x2

) ∣∣x1

)] , else, (6)

where for each k, x1 = x0:bNk/2c and x2 = xbNk/2c:Nk
,

Nk is the size of the current input vector and NK = N .
Note that each sub-coupling has its own coupling function
Ck with independent parameters. The inverse transform is

x = f91R,k(x
′)=


f91C (x′), if Nk ≤ 3,[

f91R,k91(x
′
1)

f91R,k91

(
C91
k

(
x′2

∣∣∣ f91R,k91(x
′
1)
))], else.

(7)

For K = dlog2Ne, this procedure leads to the dense
lower triangular Jacobian visualized in figure 1 (right), the
log-determinant of which is simply the sum of the log-
determinants of all sub-couplings Ck. A visual representa-
tion of the architecture can be seen in figure 2.

However, since the (sub-)coupling blocks are affine, fR,K
can only represent an approximation of the exact Knothe-
Rosenblatt map and it is still necessary, as for standard cou-
pling blocks, to create a normalizing flow by composing sev-
eral recursive coupling blocks interspersed with orthogonal
transformations fQ. Thus, in practice, it is also more eco-
nomical to limit the depth of the hierarchy to 2 or 3. This
already increases the amount of interaction between individ-
ual variables considerably, while limiting the computational
overhead, but it allows to use much shallower networks. The
trade-off between number of blocks and hierarchy depth will
be studied for the Fourier shapes data set in this work.
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Figure 3: Top: Single HINT block with recursive coupling, and its Jacobian matrix. Transformation of x is influenced by y, but
not vice-versa, imposing a hierarchy on variables. Bottom: Using HINT flows for conditional sampling/Bayesian inference.

Hierarchical Invertible Neural Transport
While the recursive coupling block defined above is moti-
vated by the search for a more expressive architecture, it is
also ideally suited for estimating conditional flows and thus
for Bayesian inference.

Specifically, in a setting with paired data (xi,yi), where
subsequently we want a sampler for x conditioned on y, we
can provide both variables as input to the flow, separating
them in the first hierarchy level for further transformation
at the next recursion level. Crucially, x and y variables are
never permuted between lanes, thus only feeding forward in-
formation from the y-lane to the x-lane as shown in figure 3
(top left). Instead of one large permutation operation over all
variables, as in the hierarchical coupling block design in fig-
ure 2, we apply individual permutations Qy and Qx to each
respective lane at the beginning of the block. A normalizing
flow model constructed in this way performs hierarchical
invertible neural transport, or HINT for short.

The output of a HINT model is a latent code with two
components, z = [zy, zx]

> = T (y,x), but the training ob-
jective stays the same as in equation (4):

L(y,x) = 1
2‖T (y,x)‖

2
2 − log |JT (y,x)| (8)

As with a standard normalizing flow, the joint density of in-
put variables is the pull-back of the latent density via T :

pT (y,x) = S#pZ(z) = S#N (0, I|y|+|x|), (9)

where S = T−1. But because the y-lane in HINT can be
evaluated independently of the x-lane, we can determine the
partial latent code zy for a given y and hold it fixed (fig-
ure 3, bottom left), while drawing zx from the x-part of the
latent distribution (bottom right). This yields samples from
the conditional density:

x = Sx([zy, zx]) ∼ pT (x |y) with zy = Ty(y), (10)

where superscripts x and y respectively denote x- and y-
lanes of the transformations. This means HINT gives access
to both the joint density of x and y, as well as the conditional
density of x given y, e.g. for Bayesian inference.

Computational Complexity
The number of couplings doubles in every recursion level,
whereas the workload per coupling decreases exponentially,

so that the total order of complexity of HINT and RealNVP
is the same. All sub-networks s and twithin one level are in-
dependent of each other and can be processed in a single par-
allel pass on the GPU (see appendix). Only the final affine
transformations and some bookkeeping operations must be
executed sequentially, but at negligible cost compared to the
other tensor operations. Our first, non-parallel implementa-
tion of HINT is 2-10 times slower than RealNVP.

Experiments
We perform experiments on classical UCI data sets (Dua and
Graff 2017) and a new data set called “Fourier shapes”. We
introduce this new data set to balance four conflicting goals:

1. The dimension of the data should be high enough for
HINT’s hierarchical decomposition to make a difference.

2. The dimension should be low enough to allow for accurate
quantitative evaluation and comparison of results.

3. Learning the joint distribution should be challenging due
to complex interactions between variables.

4. Visualizations should allow intuitive qualitative compari-
son of the differences between alternative approaches.

Our new data set represents families of 2-dimensional con-
tours in terms of the probability density of their Fourier co-
efficients and fulfills the above requirements: The dimen-
sion of the problem can be easily adjusted by controlling
the complexity of the shapes under consideration and the
number of Fourier coefficients (1,2). Shapes with sharp cor-
ners and long-range symmetries require accurate alignment
of many Fourier coefficients (specifically, of their phases, 3
– see appendix). Humans can readily recognize the quality
of a shape representation in a picture (4).

Our experiments show considerable improvements of
HINT over RealNVP. To clearly demonstrate these advan-
tages, we heavily restrict the networks’ parameter budgets –
larger networks would be much more accurate, but exhibit
less meaningful differences. Models were trained on an RTX
2080 Ti GPU. Hyper-parameters are listed in the appendix.1

1Code + data at https://github.com/VLL-HD/HINT.
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BLOCKS DIM REAL-NVP RECURSIVE

POWER 6 −0.054± 0.017 −0.027 ± 0.018
4 GAS 8 7.620± 0.136 7.662 ± 0.094

MINIBOONE 42 −19.296± 0.395 −14.547 ± 0.164

POWER 6 0.093 ± 0.002 0.080± 0.007
8 GAS 8 8.062± 0.177 8.137 ± 0.055

MINIBOONE 42 −16.625± 0.119 −14.117 ± 0.163

Table 1: Normal and recursive coupling compared on UCI
benchmarks in terms of average log-likelihood (mean ± std
over 3 training runs; higher is better ↑).

UCI Density Estimation Benchmarks
The tabular UCI data sets (Dua and Graff 2017) are popular
for comparing density models. Using public code for pre-
processing2, we compare several flow models with REAL-
NVP and RECURSIVE coupling blocks in terms of the aver-
age log-likelihood on the test set. To tease out shortcomings,
each model is “handicapped” to a budget of 500k (POWER,
GAS) or 250k (MINIBOONE) trainable parameters.

Table 1 shows that the recursive design achieves similar
or better test likelihood in all cases, even when the low di-
mensionality (DIM) of the data allows little recursion.

Fourier Shapes Data Set
A curve g(t) ∈ R2, parameterized by 2M+1 complex 2d
Fourier coefficients am ∈ C2, can be traced as

g(t) =
∑M
m=−M am · e2π·i·m·t (11)

with parameter t running from 0 to 1. This parameterization
will always yield a closed, possibly self-intersecting curve
(McGarva and Mullineux 1993).

Vice-versa, we can calculate the Fourier coefficients

am =
1

L

L−1∑
l=0

pl · e−2π·i·m·l/L, for m ∈ [−M,M ], (12)

to approximately fit a curve through a sequence of L points
pl ∈ R2, l = 0, . . . , L − 1. By increasing M , higher order
terms are added to the parameterization in equation (11) and
the shape is approximated in greater detail. An example of
this effect for a natural shape is shown in figure 4 (right).
Note that the actual dimensionality of the parameterization
in our data set is |x| = 4 · (2M + 1), as each complex 2d
coefficient am is represented by four real numbers.

We perform experiments on two specific data sets, first
using curves of order M = 2, i.e. |x| = 20, to represent a
distribution of simple shapes that arise from the intersection
of two randomly placed circles with a fixed ratio of radii and
a fixed distance. The resulting Lens shapes can be seen in
figure 5 (left), together with the highly structured correlation
matrix of Fourier parameters xi that yield such shapes.

The second data set uses M = 12, i.e. |x| = 100, to
represent Cross shapes which are generated by crossing two

2https://github.com/LukasRinder/normalizing-flows

Fourier terms M
3 7
21
41

Figure 4: Left: A 2d polygon obtained from the segmentation
of a natural image. Middle: The vertices pl of the polygon
forming the basis for computing the Fourier coefficients in
equation (12). Right: Tracing the curve g(t) according to
equation (11), for different numbersM of Fourier terms am.

bars of random length, width and lateral shift at a right an-
gle, oriented randomly, but positioned close to the origin.
This results in a variation of Xs, Ls and Ts, some of which
are shown in figure 5 (right) together with the even more
complicated (100× 100) parameter correlation matrix.

Density estimation. For density estimation, a single-block
and a two-block network are trained on the Lens-shapes data,
once with standard coupling blocks and once with the new
recursive design. All networks have the same total parameter
budget – details in the appendix.

Samples from the two-block models and absolute differ-
ences to the true parameter correlation matrices are shown
in figure 6 (left). Qualitatively, samples from the recursive
model are visually more faithful and have smaller errors in
the correlation matrices. Quantitatively, we compare over
three training runs per model using the following metrics:

• Maximum mean discrepancy (MMD, Gretton et al.
2012) measures the dissimilarity of two distributions us-
ing only samples from both. Following (Ardizzone et al.
2019a), we use MMD with an inverse multi-quadratic ker-
nel and average the results over 100 batches from the data
prior and from each trained model. Lower is better.

• Average log-likelihood (LL) of the test data under the
model, i.e. − 1

2T (x)
2 + log|JT (x)| − log(2πN2 ) where

N is the data dimensionality. Higher is better.

• Average intersection-over-union (IOU) between gener-
ated shapes and the best fitting shape that follows the con-
struction rules of the data set. See appendix for details on
the fitting procedure. Higher is better.

• Average Hausdorff distance (H-DIST) between the con-
tours of the generated shapes and those of the best fitting
shapes, as above. Lower is better.

Table 2 shows how recursive coupling blocks outperform
the conventional design. The difference is especially strik-
ing for the single-block network, as a non-recursive coupling
block leaves half the variables untouched and is thus inher-
ently unable to model the data distribution properly.

We also trained standard and recursive networks with 4
and 8 coupling blocks on the larger Cross-shapes data set.
Representative samples from the 4-block models are shown
in figure 6 (right) together with the best fitting, actual Cross
shape. Here, it is even more clearly visible that the recursive
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Figure 5: Left: Samples from the Lens shapes data set, and true correlation matrix of Fourier coefficients for a large batch of Lens
shapes. Right: The same for Cross shapes. Red lines behind the Fourier curves show the original geometry they approximate.

Figure 6: Samples from REAL-NVP (top) and RECURSIVE (bottom) coupling block networks, trained on the Lens shapes (left)
and the Cross shapes (right) from figure 5. The closest fitting shapes from the true distributions are depicted in red for reference.
Here and in subsequent figures, the fifth panel shows the absolute differences between true and sampling correlation matrices.

BLOCKS REAL-NVP RECURSIVE

MMD ↓ 0.370± 0.000 0.140 ± 0.002
1 LL ↑ 2.021± 0.001 2.861 ± 0.006

IOU ↑ 0.449± 0.010 0.688 ± 0.014
H-DIST ↓ 0.519± 0.005 0.109 ± 0.005

MMD ↓ 0.012± 0.001 0.009 ± 0.004
2 LL ↑ 3.141± 0.036 3.219 ± 0.005

IOU ↑ 0.789± 0.024 0.819 ± 0.006
H-DIST ↓ 0.063± 0.007 0.057 ± 0.000

Table 2: Comparing REAL-NVP and RECURSIVE coupling
for sampling and density estimation for the Lens-shapes data
(plotting mean ± standard deviation over 3 training runs).

model produces samples with better geometry, i.e right an-
gles, straight lines and symmetries in the expected locations.

A quantitative comparison in terms of LL, IOU and H-
DIST is presented in table 3, with recursive coupling consis-
tently outperforming standard REAL-NVP blocks.

Bayesian Inference on Fourier Shapes
To set-up Bayesian inference tasks, we formulate forward
mappings x → y from x to observable features y. Since
these features are incomplete shape descriptors, the inverse
y→ x is ambiguous, and p(x |y) is learned with HINT.

Given a Lens shape, our forward mapping locates its two
tips and returns their horizontal and vertical distances dh
and dv . The tips’ absolute positions and the side of the lens’
“bulge” remain undetermined by these features.

The forward mapping for Cross shapes returns four geo-
metrical features. These are the 2d coordinates of the center,
i.e where the bars cross, plus the angle of and thickness ratio
between the two bars. What remains free, are the absolute

BLOCKS 4× RNVP 4× REC 8× RNVP 8× REC

LL ↑ 3.419 3.627 3.329 3.637
IOU ↑ 0.594 0.823 0.588 0.823
H-DIST ↓ 0.134 0.077 0.138 0.073

Table 3: Comparison of flow models for Cross shapes with
normal (RNVP) and recursive coupling (REC), respectively.

thickness, as well as the length and lateral shift of the bars.
Finally, noise σ ∼ N (0, 1

20I) is added to the output of
each forward mapping to obtain observed data vectors y.

We trained a conditional flow model (cINN) and HINT
with 1, 2, 4 and 8 blocks for Bayesian inference on the Lens
shapes. A quantitative comparison, in terms of MMD, IOU
and H-DIST, is given in table 4. Here, however, MMD does
not compare to samples from the prior pX(x), but to samples
from an estimate of the true posterior p(x |y), estimated via
Approximate Bayesian Computation (ABC, Csilléry et al.
2010), as in (Ardizzone et al. 2019a), see appendix.

In table 4 we see that HINT consistently produces bet-
ter shapes (measured by IOU and H-DIST), especially in the
case of a single block, and it exhibits better conditioning (as
evidenced by MMD) for all but the 8-block model, most
likely due to the limited parameter budget, which leaves
some of the sub-networks underparameterized. A similar ef-
fect can be observed in the LL (not shown in table 4), when
only measuring the log-likelihood of the x-lane in HINT
and simply excluding contributions from the y-lane.

Qualitative results in figures 7 and 8, for the Lens and for
the Cross shapes, respectively, confirm the superior perfor-
mance of HINT also visually, in particular producing signif-
icantly better angles and symmetries for the Cross shapes.
This is quantitatively supported in the metrics in table 5.
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Figure 7: Samples from a conditional coupling net (CINN, left) and from HINT (right), trained Lens shapes. Green dotted lines
mark the largest diameter of each shape; red lines show how it should look according to the data y. Both models do well with
4 blocks (bottom), but only HINT generates reasonable samples with a single coupling block (top). Last panels as in figure 6.

Figure 8: Samples from a conditional coupling net (CINN, left) and from HINT (right) with 4 (top) or 8 (bottom) blocks,
trained on Cross shapes. The expected center, angle and thickness ratio of the Cross according to the data y are shown in green,
the best fitting Cross shape in red. Visually, HINT reproduces shapes from the data set much better. Last panels as in figure 6.

BLOCKS CINN HINT

MMD ↓ 0.746± 0.000 0.030 ± 0.001
1 IOU ↑ 0.456± 0.001 0.849 ± 0.003

H-DIST ↓ 0.521± 0.006 0.051 ± 0.001

MMD ↓ 0.048± 0.012 0.016 ± 0.001
2 IOU ↑ 0.839± 0.011 0.869 ± 0.005

H-DIST ↓ 0.054± 0.002 0.044 ± 0.002

MMD ↓ 0.020± 0.003 0.010 ± 0.001
4 IOU ↑ 0.865± 0.006 0.875 ± 0.007

H-DIST ↓ 0.046± 0.002 0.043 ± 0.002

MMD ↓ 0.007 ± 0.002 0.011± 0.003
8 IOU ↑ 0.864± 0.003 0.876 ± 0.003

H-DIST ↓ 0.046± 0.001 0.043 ± 0.001

Table 4: Conditional (CINN) vs. hierarchical (HINT) cou-
pling for Bayesian inference on Lens shapes (mean ± stan-
dard deviation over 3 training runs). See text for details.

Recursion Depth vs. Number of Blocks
Seeing that recursive coupling blocks outperform standard
ones, we also tested if using more standard coupling blocks
closes the gap. We looked at several combinations of num-
ber of blocks, recursion depth and parameter budget on the
Cross-shapes data. In summary, the first two recursion levels
improve performance more than additional coupling blocks.
Beyond that, we see diminishing returns, as the limited pa-
rameter budget gets distributed over too many subnetworks.

BLOCKS 4×CINN 4×HINT 8×CINN 8×HINT

LL ↑ 3.625 3.724 3.609 3.766
IOU ↑ 0.654 0.843 0.590 0.859
H-DIST ↓ 0.116 0.073 0.119 0.066

Table 5: Fidelity of Cross shapes generated by conditional
(CINN) and hierarchical (HINT) flows, respectively.

Full results are in the appendix.

Conclusion
We presented recursive coupling blocks and HINT, a new in-
vertible architecture for normalizing flow, improving on the
traditional coupling block in terms of expressive power by
densifying the triangular Jacobian, while keeping the advan-
tages of an accessible latent space. This keeps the efficient
sampling and density estimation of RealNVP, which is often
compromised by other approaches to denser Jacobians, e.g.
auto-regressive flows. To evaluate the model, we introduced
a versatile family of data sets based on Fourier decompo-
sitions of simple 2D shapes that can be visualized easily,
independent of the chosen dimension. In terms of future im-
provements, we expect that our formulation can be made
more computationally efficient through the use of e.g. mask-
ing operations, enabling more advanced parallelization.

APPENDIX Supplementary material and most up-to-date
paper version found under https://arxiv.org/abs/1905.10687
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