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Abstract

Graph convolutional networks (GCNs) are powerful tools
for graph-structured data. However, they have been recently
shown to be vulnerable to topological attacks. To enhance
adversarial robustness, we go beyond spectral graph theory to
robust graph theory. By challenging the classical graph Lapla-
cian, we propose a new convolution operator that is provably
robust in the spectral domain and is incorporated in the GCN
architecture to improve expressivity and interpretability. By
extending the original graph to a sequence of graphs, we also
propose a robust training paradigm that encourages transfer-
ability across graphs that span a range of spatial and spectral
characteristics. The proposed approaches are demonstrated in
extensive experiments to simultaneously improve performance
in both benign and adversarial situations.

Introduction
Graph convolutional networks (GCNs) are powerful exten-
sions of convolutional neural networks (CNN) to graph-
structured data. Recently, GCNs and variants have been ap-
plied to a wide range of domains, achieving state-of-the-art
performances in social networks (Kipf and Welling 2017),
traffic prediction (Rahimi, Cohn, and Baldwin 2018), recom-
mendation systems (Ying et al. 2018), applied chemistry and
biology (Kearnes et al. 2016; Fout et al. 2017), and natural
language processing (Atwood and Towsley 2016; Hamilton,
Ying, and Leskovec 2017; Bastings et al. 2017; Marcheggiani
and Titov 2017), just to name a few (Zhou et al. 2018; Wu
et al. 2019).

GCNs belong to a family of spectral methods that deal
with spectral representations of graphs (Zhou et al. 2018; Wu
et al. 2019). A fundamental ingredient of GCNs is the graph
convolution operation defined by the graph Laplacian in the
Fourier domain:

gθ ? x := ĝθ(L)x, (1)

where x ∈ Rn is the graph signal on the set of vertices V
and ĝθ is a spectral function applied to the graph Laplacian
L := D − A (where D and A are the degree matrix and
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the adjacency matrix, respectively). Because this operation
is computational intensive for large graphs and non-spatially
localized (Bruna et al. 2014), early attempts relied on a pa-
rameterization with smooth coefficients (Henaff, Bruna, and
LeCun 2015) or a truncated expansion in terms of of Cheby-
shev polynomials (Hammond, Vandergheynst, and Gribonval
2011). By further restricting the Chebyshev polynomial or-
der by 2, the approach in (Kipf and Welling 2017) referred
henceforth as the vanilla GCN pushed the state-of-the-art
performance of semi-supervised learning. The network has
the following layer-wise update rule:

H(l+1) := ψ
(
AH(l)W (l)

)
, (2)

where H(l) is the l-th layer hidden state (with H(1) := X
as nodal features),W (l) is the l-th layer weight matrix, ψ is
the usual point-wise activation function, and A is the convo-
lution operator chosen to be the degree weighted Laplacian
with some slight modifications (Kipf and Welling 2017). Sub-
sequent GCN variants have different architectures, but they
all share the use of the Laplacian matrix as the convolution
operator (Zhou et al. 2018; Wu et al. 2019).

Why Not Graph Laplacian?
Undoubtedly, the Laplacian operator (and its variants, e.g.,
normalized/powered Laplacian) plays a central role in spec-
tral theory, and is a natural choice for a variety of spectral
algorithms such as principal component analysis, clustering
and linear embeddings (Chung and Graham 1997; Belkin and
Niyogi 2002). So what can be problematic?

From a spatial perspective, GCNs with d layers cannot
acquire nodal information beyond its d-distance neighbors;
hence, it severely limits its scope of data fusion. Recent works
(Lee et al. 2018; Abu-El-Haija et al. 2018, 2019; Wu et al.
2019) alleviated this issue by directly powering the graph
Laplacian.

From a spectral perspective, one could demand better spec-
tral properties, given that GCN is fundamentally a particular
(yet effective) approximation of the spectral convolution (1).
A key desirable property for generic spectral methods is
known as “spectral separation,” namely the spectrum should
comprise a few dominant eigenvalues whose associated eigen-
vectors reveal the sought structure in the graph. A well-known
prototype is the Ramanujan property, for which the second
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Figure 1: From the original graph, we generate a series of graphs, which are weighted by parameters of influence strengths,
sparsified, and eventually combined to form a variable power graph.

leading eigenvalue of a r-regular graph is no larger than
2
√
r − 1, which is also enjoyed asymptotically by random r-

regular graphs (Friedman 2004) and Erdős-Rényi graphs that
are not too sparse (Feige and Ofek 2005). In a more realistic
scenario, consider the stochastic block model (SBM), which
attempts to capture the essence of many networks, includ-
ing social graphs, citation graphs, and even brain networks
(Holland, Laskey, and Leinhardt 1983).
Definition 1 (Simplified stochastic block model). The graph
G with n nodes is drawn under SBM(n, k, aintra, ainter) if
the nodes are evenly and randomly partitioned into k com-
munities, and nodes i and j are connected with probability
aintra/n ∈ [0, 1] if they belong to the same community, and
ainter/n ∈ [0, 1] if they are from different communities.

It turns out that for community detection, the top k
leading eigenvectors of the adjacency matrix A play an
important role. In particular, for the case of 2 communi-
ties, spectral bisection algorithms simply take the second
eigenvector to reveal the community structure. This can be
also seen from the expected adjacency matrix E[A] under
SBM(n, 2, aintra, ainter), which is a rank-2 matrix with the top
eigenvalue 1

2 (aintra + ainter) and eigenvector 1, and the sec-
ond eigenvalue 1

2 (aintra − ainter) and eigenvector σ such that
σi = 1 if i is in community 1 and σi = −1 otherwise. More
generally, the second eigenvalue is of particular theoretical
interests because it controls at the first order how fast heat
diffuses through graph, as depicted by the discrete Cheeger
inequality (Lee, Gharan, and Trevisan 2014).

While one would expect taking the second eigenvector of
the adjacency matrix suffices, it often fails in practice (even
when it is theoretically possible to recover the clusters given
the signal-to-noise ratio). This is especially true for sparse
networks, whose average nodal degrees is a constant that does
not grow with the network size. This is because the spectrum
of the Laplacian or adjacency matrix is blurred by “outlier”
eigenvalues in the sparse regime, which is often caused by
high degree nodes (Kaufmann, Bonald, and Lelarge 2016).
Unsurprisingly, powering the Laplacian would be of no avail,
because it does not change the eigenvectors or the ordering of
eigenvalues. In fact, those outliers can become more salient
after powering, thereby weakening the useful spectral signal
even further. Besides, pruning the largest degree nodes in

the adjacency matrix or normalizing the Laplacian cannot
solve the issue. To date, the best results for pruning does
not apply down to the theoretical recovery threshold (Coja-
Oghlan 2010; Mossel, Neeman, and Sly 2012; Le, Levina,
and Vershynin 2015); either outliers would persist or one
could prune too much that the graph is destroyed. As for nor-
malized Laplacian, it may overcorrect the large degree nodes,
such that the leading eigenvectors would catch the “tails” of
the graph, i.e., components weakly connected to the main
graph. See the Appendix for an experimental illustration.

In summary, graph Laplacian may not be the ideal
choice due to its limited spatial scope of information fu-
sion, and its undesirable artefacts in the spectral domain.

If Not Laplacian, Then What?
In searching for alternatives, potential choices are many, so
it is necessary to clarify the goals. In view of the aforemen-
tioned pitfalls of the graph Laplacian, one would naturally
ask the question:

Can we find an operator that has wider spatial scope,
more robust spectral properties, and is meanwhile inter-
pretable and can increase the expressive power of GCNs?

From a perspective of graph data analytics, this question
gauges how information is propagated and fused on a graph,
and how we should interpret “adjacency” in a much broader
sense. An image can be viewed as a regular grid, yet the
operation of a CNN filter goes beyond the nearest pixel to a
local neighborhood to extract useful features. How to draw
an analogy to graphs?

From a perspective of robust learning, this question sheds
light on the basic observation that real-world graphs are often
noisy and even adversarial. The nice spectral properties of
a graph topology can be lost with the presence or absence
of edges. What are some principled ways to robustify the
convolution operator and graph embeddings?

In this paper, we propose a graph learning paradigm that
aims at achieving this goal, as illustrated in Figure 1. The key
idea is to generate a sequence of graphs from the given graph
that capture a wide range of spectral and spatial behaviors.
We propose a new operator based on this derived sequence.

Definition 2 (Variable power operator). Consider an un-
weighted and undirected graph G. Let A[k] denote the k-

8005



64

66

68

70

72

70 70.5 71 71.5 72

Citeseer

77.6

78.4

79.2

80

80.8

81 81.5 82 82.5 83

Cora

75.2

76

76.8

77.6

78.4

79.2

78.5 79 79.5 80 80.5

Pubmed

GCN (baseline) VPN(ours) r-GCN (ours)
A

dv
er

sa
ri

al
 

A
cc

ur
ac

y
(%

)

Clean data accuracy (%)

N-GCN [2] MixHop [3]

Figure 2: Our proposed framework can improve both clean and adversarial (10% attack by ADW3
(Bojchevski and Günnemann

2019)) accuracy for semi-supervised learning benchmarks.

distance adjacency matrix, i.e.,
[
A[k]

]
ij

= 1 if and only if
the shortest distance (in the original graph) between nodes i
and j is k. The variable power operator of order r is defined
as:

A
(r)
θ =

r∑
k=0

θkA
[k], (3)

where θ := (θ0, . . . , θr) is a set of parameters.

Clearly, A(r)
θ is a natural extension of the classical ad-

jacency matrix (i.e., r = 1 and θ0 = θ1 = 1). With power
order r > 1, one can increase the spatial scope of information
fusion on the graph when applying the convolution operation.
The parameters θk also has a natural explanation—the mag-
nitude and the sign of θk can be viewed as “global influence
strength” and “global influence propensity” at distance k,
respectively, which also determines the participation factor
of each graph in the sequence in the aggregated operator.

Furthermore, we provide some theoretical justification of
the proposed operator by establishing the following asymp-
totic property of spectral separation under the important SBM
setting, which is, nevertheless, not enjoyed by the classical
Laplacian operator or its normalized or powered versions.
(All proofs are given in the Appendix.)
Theorem 3 (Asymptotic spectral separation of vari-
able power operator). Consider a graph G drawn from
SBM(n, 2, aintra, ainter). Assume that the signal-to-noise ratio
ξ22/ξ1 > 1, where ξ1 = 1

2 (aintra + ainter) and ξ2 = 1
2 (aintra −

ainter) (c.f., (Decelle et al. 2011)). Suppose r is on the order
of c log(n) for a constant c, such that c log(ξ1) < 1/4. Given
nonvanishing θk for k > r/2, the variable power operator
A

(r)
θ has the following spectral properties: (i) the leading

eigenvalue is on the order of Θ (‖θ‖1ξr1), the second leading
eigenvalue is on the order of Θ (‖θ‖1ξr2), and the rest are
bounded by ‖θ‖1nεξr/21 O(log(n)) for any fixed ε > 0; and
(ii) the two leading eigenvectors are sufficient to recover the
two communities asymptotically (i.e., as n goes to infinity).

Theorem 3 is the weighted analogue of Theorem 2
from (Abbe et al. 2018). Intuitively, the above theoretical
result suggests that the variable power operator is able to

“magnify” benign signals from the latent graph structure while
“suppressing” noises due to random artefacts. This is expected
to improve spectral methods in general, especially when the
benign signals tend to be overwhelmed by noises. For the rest

of the paper, we will apply this insight to propose a robust
graph learning paradigm in Section , as well as a new GCN ar-
chitecture in Section . We also provide empirical evidence of
the gain from this theory in Section and conclude in Section
.

Related Works
Beyond nearest neighbors. Several works have been pro-
posed to address the issue of limited spatial scope by power-
ing the adjacency matrix (Lee et al. 2018; Wu et al. 2019; Li
et al. 2019). However, simply powering the adjacency does
not extract spectral gap and may even make the eigenspec-
trum more sensitive to perturbations. (Abu-El-Haija et al.
2018, 2019) also introduced weight matrices for neighbors
at different distances. But this could substantially increase
the risk of overfitting in the low-data regime and make the
network vulnerable to adversarial attacks.

Robust spectral theory. The robustness of spectral
methods has been extensively studied for graph partition-
ing/clustering (Li et al. 2007; Balakrishnan et al. 2011;
Chaudhuri, Chung, and Tsiatas 2012; Amini et al. 2013;
Joseph, Yu et al. 2016; Diakonikolas et al. 2019). Most re-
cently, operators based on self-avoiding or nonbacktracking
walks have become popular for SBM (Massoulié 2014; Mos-
sel, Neeman, and Sly 2013; Bordenave, Lelarge, and Mas-
soulié 2015), which provably achieve the detection threshold
conjectured by (Decelle et al. 2011). Our work is partly moti-
vated by the graph powering approach by (Abbe et al. 2018),
which leveraged the result of (Massoulié 2014; Bordenave,
Lelarge, and Massoulié 2015) to prove the spectral gap. The
main difference with this line of work is that these operators
are studied only for spectral clustering without incorporating
nodal features. Our proposed variable power operator can be
viewed as a kernel version of the graph powering operator
(Abbe et al. 2018), thus substantially increasing the capability
of learning complex nodal interactions while maintaining the
spectral property.

Robust graph neural network. While there is a surge of
adversarial attacks on graph neural networks (GNNs) (Dai
et al. 2018; Zügner and Günnemann 2019; Bojchevski and
Günnemann 2019), very few methods have been proposed for
defense (Sun et al. 2018). Existing works employed known
techniques from computer vision (Szegedy et al. 2014; Good-
fellow, Shlens, and Szegedy 2015; Szegedy et al. 2016), such
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as adversarial training with “soft labels” (Chen et al. 2019)
or outlier detection in the hidden layers (Zhu et al. 2019),
but they do not exploit the unique characteristics of graph-
structured data. Importantly, our approach simultaneously
improves performance in both the benign and adversarial
tests, as shown in Figure 2 (details are presented in Section ).

Graph Augmentation: Robust Training
Paradigm

Exploration of the spectrum of spectral and spatial be-
haviors. Given a graph G, consider a family of its powered
graphs,

{
G(2), . . . ,G(r)

}
, where G(k) is obtained by connect-

ing nodes with distance less than or equal to k. This “graph
augmentation” procedure is similar to “data augmentation”,
because instead of limiting the learning on a single graph
that is given, we artificially create a series of graphs that
are closely related to each other in the spatial and spectral
domains.

As we increase the power order, the graph also becomes
more homogenized. In particular, it can help near-isolated
nodes (i.e., low-degree vertices), since they become con-
nected beyond their nearest neighbors. By comparison, sim-
ply raising the adjacency matrix to its r-th power will make
them appear even more isolated, because it inadvertently pro-
motes nodes with high degrees or nearby loops much more
substantially as a result of feedback. Furthermore, the pow-
ered graphs can extract spectral gaps in the original graph
despite local irregularities, thus boosting the signal-to-noise
ratio in the spectral domain.

Transfer of knowledge from the powered graph se-
quence. Consider a generic learning task on a graph G with
data D. The loss function is denoted by `(W;G,D) for a par-
ticular GCN architecture parametrized byW . For instance,
in semi-supervised learning,D consists of features and labels
on a small set of nodes, and ` is the cross-entropy loss over
all labeled examples. Instead of minimizing over `(W;G,D)
alone, we use all the powered graphs:

`(W;G,D) +
r∑

k=2

αk`(W;G(k),D), (r-GCN)

where αk ≥ 0 gauges how much information one desires
to transfer from powered graph G(k) to the learning process.
By minimizing the (r-GCN) objective, one seeks to optimize
the network parameterW on multiple graphs simultaneously,
which is beneficial in two ways: (i) in the low-data regime,
like semi-supervised learning, it helps to reduce the variance
to improve generalization and transferability; (ii) in the ad-
versarial setting, it robustifies the network since it is more
likely that the perturbed network is contained in the wider
spectrum during training.

From Fixed to Variable Power Network
By using the variable power operator illustrated in Figure 1,
we substantially increase the search space of graph operators.
The proposed operator also leads to a new family of graph
algorithms with broader scope of spatial fusion and enhanced

spectral robustness. As the power grows, the network even-
tually becomes dense. To manage this increased complexity
and make the network more robust against adversarial attacks
in the feature domain, we propose a pruning mechanism.

Graph sparsification. Given a graph G := (V, E [1]), con-
sider its powered version G(r) := (V, E(r)) and a sequence
of intermediate graphs G[2], . . . ,G[r], where G[k] := (V, E [k])
is constructed by connecting two vertices if and only if the
shortest distance is k in G. Clearly, {E [k]}rk=1 forms a parti-
tion of E(r). For each node i ∈ V , denote its r-neighborhood
by Nr(i) := {j ∈ V | dG(i, j) ≤ r}, which is identical to
the set of nodes adjacent to i in G[r]. Next, for each edge
within this neighborhood, we associate a value using some
suitable distance metric φ to measure “aloofness.” For in-
stance, it can be the usual Euclidean distance or correlation
distance in the feature space. Based on this formulation, we
prune an edge e := (i, j) in E(r) if the value is larger than
a threshold τ(i, j), and denote the edge set after pruning
Ē(r). Then, we can construct a new sequence of sparsified
graphs, G[k] with edge sets Ē [k] = E [k] ∩ Ē(r) and adjacency
matrix Ā[k]. Hence, the variable power operator is given by
Ā

(r)
θ =

∑r
k=0 θkĀ

[k]. Due to the influence of high-degree
nodes in the spectral domain, one can adaptively choose the
thresholds τ(i, j) to mitigate their effects. Specifically, we
choose τ to be a small number if either i or j are nodes
with high degrees, thereby making the sparsification more
influential in densely connected neighborhoods than weakly
connected parts.

Layer-wise update rule. To demonstrate the effectiveness
of the proposed operator, we adopt the vanilla GCN strategy
(2). Importantly, we replace the graph convolutional operator
A with the variable power operator to obtain the variable
power network (VPN):

A = D−
1
2 (I + Ā

(r)
θ )D−

1
2 , (VPN)

where Dii = 1 + |{j ∈ V | dG(i, j) = 1}|. The introduction
of I is reminiscent of the “renormalization trick” (Kipf and
Welling 2017), but it can be also viewed as a regularization
strategy in this context, which is well-known to improve the
spectral robustness (Amini et al. 2013; Joseph, Yu et al. 2016).
This construction immediately increases the scope of data
fusion by a factor of r.
Proposition 4. By choosingA with (VPN) in the layer-wise
update rule (2), the output at each node from a L-layer GCN
depends on neighbors within L ∗ r hops.

Since we proved that the variable power operator has nice
spectral separation in Theorem 3, VPN is expected to pro-
mote useful spectral signals from the graph topology (similar
to the preservation of useful information in images (Jacobsen,
Smeulders, and Oyallon 2018), our method preserves useful
information in the graph topology). This claim is substanti-
ated with the following proposition.
Proposition 5. Given a graph with two hidden communities.
Consider a 2-layer GCN architecture with layer-wise update
rule (2). Suppose that A has a spectral gap. Further, assume
that the leading two eigenvectors are asymptotically aligned
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Figure 4: Accuracy of first 100 frequency components of VPN (red) and adjacency matrix (blue).

with 1 and ν, i.e., the community membership vector, and
that both are in the range of feature matrix X . Then, there
exists a configuration ofW (1) andW (2) such that the GCN
outputs can recover the community with high probability.

Experiments
The proposed methods are evaluated against several recent
models, including vanilla GCN (Kipf and Welling 2017) and
its variant PowerLaplacian where we simply replace the adja-
cent matrix with its powered version, three baselines using
powered Laplacian IGCN (Li et al. 2019), SGC (Wu et al.
2019) and LNet (Liao et al. 2019), the recent method Mix-
Hop (Abu-El-Haija et al. 2019) which attempts to increase
spatial scope fusion, as well as a state-of-the-art baseline
and RGCN (Zhu et al. 2019), which is also aimed at improv-
ing the robustness of Vanilla GCN. All baseline methods on
based on their public codes.

Revisiting Stochastic Block Model
SBM dataset. We generated a set of networks under SBM
with 4000 nodes and parameters such that the SNRs range
from 0.58 to 0.91. To disentangle the effects from nodal
features with that from the spectral signal, we set the nodal
features to be one-hot vectors. The label rates are 0.1%, 0.5%
and 1%, the validation rate is 1%, and the rest of the nodes
are testing points.

Performance. Since the nodal features do not contain any
useful information, learning without topology such as multi-
layer perceptron (MLP) is only as good as random guessing.

The incorporation of graph topology improves classification
performance—the higher the SNR (i.e., ξ22/ξ1, see Theo-
rem 3), the higher the accuracy. Overall, as shown in Figure
3, the performance of the proposed method (VPN) is supe-
rior than other baselines, which either use Laplacian (GCN,
Chebyshev, RGCN, LNet) or its powered variants (IGCN,
PowerLaplacian).

Spectral separation and Fourier modes. From the eigen-
spectrum of the convolution operators, we see that the spec-
tral separation property is uniquely possessed by VPN, whose
first two leading eigenvectors carry useful information about
the underlying communities: without the help of nodal fea-
tures, the accuracy is 87% even with label rate of 0.5%. Let Φ
denote the Fourier modes of the the adjacency matrix or VPN,
and X be the nodal features (i.e., identity matrix). We ana-
lyze the information from spectral signals (e.g., the k-th and
k+ 1-th eigenvectors) by estimating the accuracy of an MLP
with filtered nodal features, namely Φ:,k:(k+1)Φ

>
:,k:(k+1)X ,

as shown in Figure 4. The accuracy reflects the information
content in the frequency components. We see that the two
leading eigenvectors of VPN are sufficient to perform classi-
fication, whereas those of the adjacency matrix cannot make
accurate inferences.

Semi-supervised Node Classification
Experimental setup. We followed the setup of (Yang, Co-
hen, and Salakhutdinov 2016; Kipf and Welling 2017) for
citation networks Citeseer, Cora and Pubmed (please refer to
the Appendix for more details).

Graph powering order can influence spatial and spec-
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Model Citeseer Cora Pubmed
ManiReg (Belkin, Niyogi, and Sindhwani 2006) 60.1 59.5 70.7
SemiEmb (Weston et al. 2012) 59.6 59.0 71.1
LP (Zhu, Ghahramani, and Lafferty 2003) 45.3 68.0 63.0
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) 43.2 67.2 65.3
ICA (Lu and Getoor 2003) 69.1 75.1 73.9
Planetoid (Yang, Cohen, and Salakhutdinov 2016) 64.7 75.7 77.2
Vanilla GCN (Kipf and Welling 2017) 70.3 81.5 79.0
PowerLaplacian 70.5 80.5 78.3
IGCN(RNM) (Li et al. 2019) 69.0 80.9 77.3
IGCN(AR) (Li et al. 2019) 69.3 81.1 78.2
LNet (Liao et al. 2019) 66.2± 1.9 79.5± 1.8 78.3± 0.3
RGCN (Zhu et al. 2019) 71.2± 0.5 82.8± 0.6 79.1± 0.3
SGC (Wu et al. 2019) 71.9± 0.1 81.0± 0.0 78.9± 0.0
MixHop (Abu-El-Haija et al. 2019) 71.4± 0.8 81.9± 0.4 80.8± 0.6

r-GCN (this paper) 71.3± 0.5 81.7± 0.2 79.3± 0.3
VPN (this paper) 71.7± 0.6 82.3± 0.3 79.8± 0.4

Table 1: Results for semi-supervised node classification. We highlighted the best and the second best performances, where we
broke the tie by choosing the one with the smallest standard deviation.
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attack. The error
bar indicates standard deviation over 20 independent simulations.
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increases. Dahsed lines correspond to vanilla GCN.

tral behaviors. Our theory suggests powering to the order of
log(n); in practice, orders of 2 to 4 suffice (Figure 6). Here,
we chose the power order to be 4 for r-GCN on Citeseer and
Cora, and 3 for Pubmed, and reduced the order by 1 for VPN.

Performance. By replacing Laplacian with VPN, we see

an immediate improvement in performance (Table 1). We also
see that a succinct parametrization of the global influence
relation in VPN is able to increase the expressivity of the
network. For instance, the learned θ at distances 2 and 3 for
Citeseer are 3.15e-3 and 3.11e-3 with p-value less than 1e-5.
This implies that the network tends to put more weights in
closer neighbors.

Defense Against Evasion Attacks
To evaluate the robustness of the learned network, we consid-
ered the setting of evasion attacks, where the model is trained
on benign data but tested on adversarial data.

Adversarial methods. Five strong global attack methods
are considered, including DICE (Zügner and Günnemann
2019), Aabr and ADW3

(Bojchevski and Günnemann 2019),
Meta-Train and Meta-Self (Zügner and Günnemann 2019).
We further modulated the severity of attack methods by vary-
ing the attack rate, which corresponds to the percentage of
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edges to be attacked.
Robustness evaluation. In general, both r-GCN and VPN

are able to improve over baselines for the defense against
evasion attacks, e.g., Figure 5 for the ADW3

attack (detailed
results for other attacks are listed in the Appendix). It can be
also observed that the proposed methods are more robust in
Citeseer and Cora than Pubmed. In addition to the low label
rates, we conjectured that topological attacks are more diffi-
cult to defend for networks with prevalent high-degree nodes,
because the attacker can bring in more irrelevant vertices by
simply adding a link to the high-degree nodes.

Informative and robust low-frequency spectral signal.
It has been observed by (Wu et al. 2019; Maehara 2019) that
GCNs share similar characteristics of low-pass filters, in the
sense that nodal features filtered by low-frequency Fourier
modes lead to accurate classifiers (e.g., MLP). However, one
key question left unanswered is how to obtain the Fourier
modes. In their experiments, they derive it from the graph
Laplacian. By using VPN to construct the Fourier modes,
we show that the information content in the low-frequency
domain can be improved.

More specifically, we first perform eigendecomposition
of the graph convolutional operator (i.e., graph Laplacian or
VPN) to obtain the Fourier modes Φ. We then reconstruct
the nodal features X using only the k-th and the k + 1-th
eigenvectors, i.e., Φ:,k:(k+1)Φ

>
:,k:(k+1)X . We then use the

reconstructed features in MLP to perform the classification
task in a supervised learning setting. As Figure 7 shows,
features filtered by the leading eigenvectors of VPN lead

to higher classification accuracy compared to the classical
adjacency matrix.

For the adversarial testing, we construct a new ba-
sis Φ̃ based on the attacked graph, and then use
Φ̃:,k:(k+1)Φ̃

>
:,k:(k+1)X as test points for the MLP trained

in the clean data setting. As can be seen in Figure 8, mod-
els trained based on VPN filtered features also have better
adversarial robustness in evasion attacks. Since the eigenval-
ues of the corresponding operator exhibit low-pass filtering
characteristics, the enhanced benign and adversarial accuracy
of VPN is attributed to the increased signal-to-noise ratio
in the low-frequency domain. This is in alignment with the
theoretical proof of spectral gap developed in this study.

Conclusion
This study goes beyond classical spectral graph theory to
defend GCNs against adversarial attacks. We challenge the
central building block of existing methods, namely the graph
Laplacian, which is not robust to noisy links. For adversarial
robustness, spectral separation is a desirable property. We pro-
pose a new operator that enjoys this property and can be incor-
porated in GCNs to improve expressivity and interpretability.
Furthermore, by generating a sequence of powered graphs
based on the original graph, we can explore a spectrum of
spectral and spatial behaviors and encourage transferability
across graphs. The proposed methods are shown to improve
both benign and adversarial accuracy over various baselines
evaluated against a comprehensive set of attack strategies.
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Bojchevski, A.; and Günnemann, S. 2019. Adversarial Attacks on
Node Embeddings via Graph Poisoning. In International Confer-
ence on Machine Learning, 695–704.

Bordenave, C.; Lelarge, M.; and Massoulié, L. 2015. Non-
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