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Abstract

Double Q-learning is a popular reinforcement learning algo-
rithm in Markov decision process (MDP) problems. Clipped
Double Q-learning, as an effective variant of Double Q-
learning, employs the clipped double estimator to approxi-
mate the maximum expected action value. Due to the un-
derestimation bias of the clipped double estimator, perfor-
mance of clipped Double Q-learning may be degraded in
some stochastic environments. In this paper, in order to re-
duce the underestimation bias, we propose an action candi-
date based clipped double estimator for Double Q-learning.
Specifically, we first select a set of elite action candidates
with the high action values from one set of estimators. Then,
among these candidates, we choose the highest valued action
from the other set of estimators. Finally, we use the maxi-
mum value in the second set of estimators to clip the action
value of the chosen action in the first set of estimators and
the clipped value is used for approximating the maximum ex-
pected action value. Theoretically, the underestimation bias
in our clipped Double Q-learning decays monotonically as
the number of the action candidates decreases. Moreover, the
number of action candidates controls the trade-off between
the overestimation and underestimation biases. In addition,
we also extend our clipped Double Q-learning to continu-
ous action tasks via approximating the elite continuous ac-
tion candidates. We empirically verify that our algorithm can
more accurately estimate the maximum expected action value
on some toy environments and yield good performance on
several benchmark problems.

Introduction
In recent years, reinforcement learning has achieved more
and more attention. It aims to learn an optimal policy so
that cumulative rewards can be maximized via trial-and-
error in an unknown environment (Sutton and Barto 2018).
Q-learning (Watkins and Dayan 1992) is one of widely stud-
ied reinforcement learning algorithms. As a model-free rein-
forcement learning algorithm, it generates the optimal pol-
icy via selecting the action which owns the largest estimated
action value. In each update, Q-learning executes the max-
imization operation over action values for constructing the
target value of Q-function. Unfortunately, this maximization
∗Corresponding authors
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operator tends to overestimate the action values. Due to the
large positive bias, it is difficult to learn the high-quality pol-
icy for the Q-learning in many tasks (Thrun and Schwartz
1993; Szita and Lőrincz 2008; Strehl, Li, and Littman 2009).
Moreover, such overestimation bias also exists in a variety of
variants of Q-learning such as fitted Q-iteration (Strehl et al.
2006), delayed Q-learning (Ernst, Geurts, and Wehenkel
2005) and deep Q-network (DQN) (Mnih et al. 2015).

Recently, several improved Q-learning methods have been
proposed to reduce the overestimation bias. Bias-corrected
Q-learning (Lee, Defourny, and Powell 2013) adds a bias
correction term on the target value so that the overestimation
error can be reduced. Softmax Q-learning (Song, Parr, and
Carin 2019) and Weighted Q-learning (D’Eramo, Restelli,
and Nuara 2016) are proposed to soften the maximum op-
eration via replacing it with the sum of the weighted action
values. The softmax operation and Gaussian approximation
are employed to generate the weights, respectively. In Aver-
aged Q-learning (Anschel, Baram, and Shimkin 2017) and
Maxmin Q-learning (Lan et al. 2020), their target values are
constructed to reduce the bias and variance via combining
multiple Q-functions.

Double Q-learning (Hasselt 2010; van Hasselt 2013;
Zhang, Pan, and Kochenderfer 2017) is another popular
method to avoid the overestimation bias. In Double Q-
learning, it exploits the online collected experience sample
to randomly update one of two Q-functions. In each update,
the first Q-function selects the greedy action and the second
Q-function evaluates its value. Although Double Q-learning
can effectively relieve the overestimation bias in Q-learning
in terms of the expected value, its target value may occa-
sionally be with the large overestimation bias during train-
ing process. To avoid it, clipped Double Q-learning (Fuji-
moto, Van Hoof, and Meger 2018) directly uses the maxi-
mum action value of one Q-function to clip the target value
of the Double Q-learning. Clipping Double Q-learning can
be viewed as using the clipped double estimator to approx-
imate the maximum expected value. However, the clipped
double estimator suffers from the large underestimation bias.

In order to reduce the large negative bias of the clipped
double estimator, in this paper, we propose an action candi-
date based clipped double estimator for Double Q-learning.
Specifically, we first select a set of action candidates corre-
sponding to high action values in one set of estimators. Then,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7979



among these action candidates, we choose the action with
the highest value in the other set of estimators. At last, the
corresponding action value of the selected action in the first
set of estimators clipped by the maximum value in the sec-
ond set of estimators is used to approximate the maximum
expected value. Actually, in clipped Double Q-learning, the
selected action from one Q-function is independent of the
action evaluation in the other Q-function. Thus, the selected
action may correspond to the low action value in the sec-
ond Q-function, which results in the large underestimation.
Through bridging the gap between the action selection and
action evaluation from both Q-functions, our action candi-
date based clipped Double Q-learning can effectively reduce
the underestimation bias. Theoretically, the underestimation
bias in our clipped Double Q-learning decays monotonically
as the number of action candidates decreases. Moreover, the
number of action candidates can balance the overestimation
bias in Q-learning and the underestimation bias in clipped
Double Q-learning. Furthermore, we extend our action can-
didate based clipped Double Q-learning to the deep version.
Also, based on the action candidate based clipped double es-
timator, we propose an effective variant of TD3 (Fujimoto,
Van Hoof, and Meger 2018) for the continuous action tasks.
Extensive experiments demonstrate that our algorithms can
yield good performance on the benchmark problems.

Background
We model the reinforcement learning problem as an infinite-
horizon discounted Markov Decision Process (MDP), which
comprises a state space S , a discrete action space A, a state
transition probability distribution P : S × A × S → R, an
expected reward function R : S × A → R and a discount
factor γ ∈ [0, 1]. At each step t, with a given state st ∈ S ,
the agent receives a reward rt = R (st, at) and the new state
st+1 ∈ S after taking an action at ∈ A. The goal of the
agent is to find a policy π : S × A → [0, 1] that maximizes
the expected return Eπ [

∑∞
t=0 γ

trt].
In the MDP problem, the action value function

Qπ(s, a) = Eπ [
∑∞
t=0 γ

trt|s0 = s, a0 = a] denotes the ex-
pected return after doing the action a in the state s with the
policy π. The optimal policy can be obtained as: π∗(s) =
arg maxa∈AQ

∗(s, a) where the optimal action value func-
tion Q∗(s, a) satisfies the Bellman optimality equation:

Q∗ (s, a) = R (s, a) + γ
∑
s′∈S
Ps
′

sa max
a′∈A

Q∗ (s′, a′) . (1)

(Double) Q-learning. To approximate Q∗ (s, a), Q-
learning constructs a Q-function and updates it in each step
via Q (st, at) ← Q (st, at) + α

(
yQt −Q (st, at)

)
, where

the target value yQt is defined as below:

yQt = rt + γ max
a′∈A

Q (st+1, a
′) . (2)

Instead, Double Q-learning maintains two Q-functions, QA
andQB , and randomly updates one Q-function, such asQA,
with the target value yDQt as below:

yDQt = rt + γQB
(
st+1, arg max

a′∈A
QA(st+1, a

′)

)
. (3)

Clipped Double Q-learning. It uses the maximum action
value of one Q-function to clip the target value in Double
Q-learning as below to update the Q-function:

yCDQt = rt + γmin
{
QA(st+1, a

∗), QB(st+1, a
∗} , (4)

where a∗ = arg maxaQ
A (st+1, a).

Twin Delayed Deep Deterministic policy gradient
(TD3). TD3 applies the clipped Double Q-learning into
the continuous action control with the actor-critic frame-
work. Specifically, it maintains a actor network µ (s;φ)
and two critic networks Q (s, a;θ1) and Q (s, a;θ2).
Two critic networks are updated via θi ← θi +

α∇θi
E
[(
Q (st, at;θi)− yTD3

t

)2]
. The target value yTD3

t

is defined as below:

yTD3
t = rt + γ min

i=1,2
Q
(
st+1, µ

(
st+1;φ−

)
;θ−i

)
(5)

where φ− and θ−i are the soft updated parameters of φ and
θi. The actor µ (s;φ) is updated viaφ← φ+α∇φJ , where
the policy graident∇φJ is:

∇φJ = E
[
∇aQ (st, a;θ1)|a=µ(st;φ)∇φµ (st;φ)

]
. (6)

Estimating the Maximum Expected Value
Revisiting the Clipped Double Estimator
Suppose that there is a finite set of N (N ≥ 2) independent
random variables X = {X1, . . . , XN} with the expected
values µ = {µ1, µ2, . . . , µN}. We consider the problem of
approximating the maximum expected value of the variables
in such a set: µ∗ = maxiµi = maxiE [Xi]. The clipped
double estimator (Fujimoto, Van Hoof, and Meger 2018) de-
noted as µ̂∗CDE is an effective estimator to estimate the max-
imum expected value.

Specifically, let S =
⋃N
i=1 Si denote a set of samples,

where Si is the subset containing samples for the variable
Xi. We assume that the samples in Si are independent and
identically distributed (i.i.d). Then, we can obtain a set of
the unbiased estimators µ̂ = {µ̂1, µ̂2, . . . , µ̂N} where each
element µ̂i is a unbiased estimator of E [Xi] and can be ob-
tained by calculating the sample average: E [Xi] ≈ µ̂i

def
=

1
|Si|
∑
s∈Si

s. Further, we randomly divide the set of sam-
ples S into two subsets: SA and SB . Analogously, two
sets of unbiased estimators µ̂A =

{
µ̂A1 , µ̂

A
2 , . . . , µ̂

A
N

}
and

µ̂B =
{
µ̂B1 , µ̂

B
2 , . . . , µ̂

B
N

}
can be obtained by sample aver-

age: µ̂Ai = 1
|SA

i |
∑
s∈SA

i
s, µ̂Bi = 1

|SB
i |
∑
s∈SB

i
s. Finally, the

clipped double estimator combines µ̂, µ̂A and µ̂B to con-
struct the following estimator to approximate the maximum
expected value:

µ∗ = maxiµi ≈ min
{
µ̂Ba∗ ,max

i
µ̂i

}
, (7)

where the variable maxi µ̂i is called the single estimator
denoted as µ̂∗SE and the variable µ̂Ba∗ is called the double
estimator denoted as µ̂∗DE .
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Algorithm 1 Action Candidate Based Clipped Double Q-learning
Initialize Q-functions QA and QB , initial state s and the number K of action candiadte.

1: repeat
2: Select action a based on QA (s, ·), QB (s, ·) (e.g., ε-greedy in QA (s, ·) +QB (s, ·)) and observe reward r, next state s′.
3: if update QA then
4: Determine action candidates MK from QB (s′, ·) and define a∗K = arg maxa∈MK

QA (s′, a).
5: QA (s, a)← QA (s, a) + α (s, a) ·

(
r + γmin

{
QB (s′, a∗K) ,maxaQ

A (s′, a)
}
−QA (s, a)

)
.

6: else if update QB then
7: Determine action candidates MK from QA (s′, ·) and define a∗K = arg maxa∈MK

QB (s′, a).
8: QB (s, a)← QB (s, a) + α (s, a) ·

(
r + γmin

{
QA (s′, a∗K) ,maxaQ

B (s′, a)
}
−QB (s, a)

)
.

9: end if
10: s← s′

11: until end

For single estimator, it directly uses the maximum value
in µ̂ to approximate the maximum expected value. Since the
expected value of the single estimator is no less than µ∗, the
single estimator has overestimation bias. Instead, for double
estimator, it first calculates the index a∗ corresponding to
the maximum value in µ̂A, that is µ̂Aa∗ = maxi µ̂

A
i , and then

uses the value µ̂Ba∗ to estimate the maximum expected value.
Due to the expected value of double estimator is no more
than µ∗, it is underestimated.

Although the double estimator is underestimated in terms
of the expected value, it still can’t entirely eliminate the
overestimation (Fujimoto, Van Hoof, and Meger 2018).
By clipping the double estimator via single estimator, the
clipped double estimator can effectively relieve it. However,
due to the expected value of min

{
µ̂Ba∗ ,maxi µ̂i

}
is no more

than that of µ̂Ba∗ , the clipped double estimator may further
exacerbate the underestimation bias in the double estimator
and thus suffer from larger underestimation bias.

Action Candidate Based Clipped Double Estimator
Double estimator is essentially an underestimated estimator,
leading to the underestimation bias. The clipping operation
in the clipped double estimator further exacerbates the un-
derestimation problem. Therefore, although the clipped dou-
ble estimator can effectively avoid the positive bias, it gen-
erates the large negative bias.

In order to reduce the negative bias of the clipped dou-
ble estimator, we propose an action candidate based clipped
double estimator denoted as µ̂∗AC . Notably, the double esti-
mator chooses the index a∗ only from the estimator set µ̂A

and ignores the other estimator set µ̂B . Thus, it may choose
the index a∗ associated with the low value in µ̂B and gen-
erate the small estimation µ̂Ba∗ , leading to the large negative
bias. Different from the double estimator, instead of select-
ing the index a∗ from µ̂A among all indexes, we just choose
it from an index subset called candidates. The set of candi-
dates, denoted as MK , is defined as the index subset corre-
sponding to the largest K values in µ̂B , that is:

MK =
{
i|µ̂Bi ∈ top K values in µ̂B

}
. (8)

The variable a∗K is then selected as the index to maximize
µ̂A among the index subset MK : µ̂Aa∗K = maxi∈MK

µ̂Ai .

If there are multiple indexes owning the maximum value,
we randomly pick one. Finally, by clipping, we estimate the
maximum expected value as below:

µ∗ = maxiµi = maxiE
[
µ̂Bi
]
≈ min

{
µ̂Ba∗K , µ̂

∗
SE

}
. (9)

Consequently, we theoretically analyze the estimation
bias of action candidate based clipped double estimator.

Theorem 1. As the number K decreases, the underestima-
tion decays monotonically, that is E

[
min

{
µ̂Ba∗K

, µ̂∗SE

}]
≥

E
[
min

{
µ̂Ba∗K+1

, µ̂∗SE

}]
, 1 ≤ K < N , where the inequal-

ity is strict if and only if P
(
µ̂∗SE > µ̂Ba∗K

> µ̂Ba∗K+1

)
> 0 or

P
(
µ̂Ba∗K

≥ µ̂∗SE > µ̂Ba∗K+1

)
> 0. Moreover, ∀K : 1 ≤ K ≤

N , E
[
min

{
µ̂Ba∗K

, µ̂∗SE

}]
≥ E [µ̂∗CDE ].

Notably, from the last inequality in Theorem 1, one can
see that our estimator can effectively reduce the large under-
estimation bias in clipped double estimator. Moreover, since
the existed inequality E [µ̂∗SE ] ≥ E

[
min

{
µ̂Ba∗K

, µ̂∗SE

}]
≥

E [µ̂∗CDE ], it essentially implies that the choice of K con-
trols the trade-off between the overestimation bias in single
estimator and the underestimation bias in clipped double es-
timator. For the proof please refer to Appendix A.

The upper bound of E [µ̂∗SE ] (van Hasselt 2013) is:

E [µ̂∗SE ] = E [maxiµ̂i] ≤ µ∗ +

√√√√N − 1

N

N∑
i

Var [µ̂i]. (10)

Since E
[
µ̂Ba∗K

]
decreases monotonically as the number K

increases (see Property 1 in Appendix A), E
[
µ̂Ba∗1

]
is max-

imum. Due to the candidate subset M1 only contains one
candidate corresponding to the largest value in µ̂B , we
can obtain E

[
µ̂Ba∗1

]
= E

[
maxi µ̂

B
i

]
. Similar to the up-

per bound in E [µ̂∗SE ], we can see that E
[
maxi µ̂

B
i

]
≤

µ∗ +
√

N−1
N

∑N
i Var

[
µ̂Bi
]
. Since µ̂Bi is just estimated via
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Algorithm 2 Action Candidate Based TD3
Initialize critic networks Q (·;θ1), Q (·;θ2), and actor networks µ (·;φ1), µ (·;φ2) with random parameters θ1, θ2, φ1, φ2

Initialize target networks θ−1 ← θ1, θ−2 ← θ2, φ−1 ← φ1, φ−2 ← φ2
Initialize replay buffer D

1: for t = 1 : T do
2: Select action with exploration noise a ∼ µ (s;φ1) + ε, ε ∼ N (0, σ) and observe reward r and next state s′.
3: Store transition tuple 〈s, a, r, s′〉 in D.
4: Sample a mini-batch of transitions {〈s, a, r, s′〉} from D.
5: Determine MK = {ai}Ki=1 , ai ∼ N

(
µ
(
s′;φ−2

)
, σ̄
)

and define a∗K = arg maxa∈MK
Q
(
s′, a;θ−1

)
.

6: Update θi ← argminθi
N−1

∑[
r + γmin

{
Q
(
s′, a∗K ;θ−2

)
, Q
(
s′, µ

(
s′;φ−1

)
;θ−1

)}
−Q (s, a;θi)

]2
.

7: if t mod d then
8: Update φi by the deterministic policy gradient:∇φi

J(φi) = 1
N

∑
∇aQθi(s, a)

∣∣
a=µ(s;φi)

∇φi
µ (s;φi).

9: Update target networks: θ−i ← τθi + (1− τ)θ−i , φ−i ← τφi + (1− τ)φ−i .
10: end if
11: end for

SBi containing half of samples rather than Si, Var [µ̂i] ≤
Var

[
µ̂Bi
]

and thus µ∗ +
√

N−1
N

∑N
i Var [µ̂i] ≤ µ∗ +√

N−1
N

∑N
i Var

[
µ̂Bi
]
. So, such larger upper bound may

cause the maximum value E
[
µ̂Ba∗1

]
to exceed the E [µ̂∗SE ].

Meanwhile, based on the monotonicity in Property 1, it fur-
ther implies that when number K is too small, the upper of
E
[
µ̂Ba∗K

]
tends to be larger than the one of E [µ̂∗SE ], which

may cause larger overestimation bias. Therefore, the clip-
ping operation guarantees that no matter how small the num-
ber of the selected candidates is, the overestimation bias of
our estimator is no more than that of the single estimator.

Action Candidate Based Clipped Double
Estimator for Double Q-learning and TD3

In this section, we apply our proposed action candidate
based clipped double estimator into Double Q-learning and
TD3. For the discrete action task, we first propose the action
candidate based clipped Double Q-learning in the tabular
setting, and then generalize it to the deep case with the deep
neural network, that is action candidate based clipped Dou-
ble DQN. For the continuous action task, we combine our
estimator with TD3 and form action candidate based TD3.

Action Candidate Based Clipped Double
Q-learning
Tabular Version In tabular setting, action candidate based
Double Q-learning stores the Q-functions QA and QB , and
learns them from two separate subsets of the online collected
experience. Each Q-function is updated with a value from
the other Q-function for the next state. Specifically, in order
to update QA, we first determine the action candidates:

MK =
{
i|QB(s′, ai) ∈ top K values in QB(s′, ·)

}
. (11)

According to the action value functionQA, the action a∗K is
the maximal valued action in the state s′ among MK . Then,

we update QA via the target value as below:

yAC CDQ = r + γmin
{
QB(s′, a∗K),maxaQ

A(s′, a)
}
. (12)

During the training process, the explored action is calcu-
lated with ε-greedy exploration strategy based on the action
values QA and QB , More details are shown in Algorithm 1.
Note that in the tabular version, the number of action can-
didates balances the overestimation in Q-learning and the
underestimation in clipped Double Q-learning.

Deep Version For the task with the high-dimensional sen-
sory input, we further propose the deep version of action
candidate based clipped Double Q-learning, named action
candidate based clipped Double DQN. In our framework,
we maintain two deep Q-networks and an experience buffer.
In each update, we independently sample a batch of experi-
ence samples to train each Q-network with the target value
in Eq. 12. Similar to the tabular version, the number of ac-
tion candidates can also balance the overestimation in DQN
and the underestimation in clipped Double DQN. In addi-
tion, we verify that the action candidate based clipped Dou-
ble Q-learning can converge to the optimal policy in the fi-
nite MDP setting. The proof can be seen in Appendix B.

Action Candidate Based TD3
As shown in Algorithm 2, the algorithm framework for
the continuous action task follows the design in TD3.
To approximate the optimal action values, we construct
two Q-networks Q (s, a;θ1) and Q (s, a;θ2) and two tar-
get Q-networks Q

(
s, a;θ−1

)
and Q

(
s, a;θ−2

)
. In addition,

two deterministic policy networks µ (s;φ1) and µ (s;φ2),
and two target networks µ

(
s;φ−1

)
and µ

(
s;φ−2

)
are ex-

ploited to represent the optimal decisions corresponding to
Q (s, a;θ1), Q (s, a;θ2), Q

(
s, a;θ−1

)
and Q

(
s, a;θ−2

)
.

Due to the continuity of the actions, it is impossible to
precisely determine the top K action candidates MK like
in the discrete action case. We first exploit our determin-
istic policy network µ

(
s′;φ−2

)
to approximate the global

optimal action a∗ = arg maxaQ
(
s′, a;θ−2

)
. Based on the

estimated global optimal action a∗, we randomly select K
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(a) Number of impressions (×104)

(b) Number of ads

(c) Max probability in range (×10−2)

Figure 1: Comparison on the multi-armed bandits for inter-
net ads in three cases: (a) Varying the number of impres-
sions; (b) Varying the number of ads; (c) Varying the max
probability. The symbol on the bar represents the sign of the
bias. The results are averaged over 2, 000 experiments. We
use 15% of actions as the action candidates.

actions MK in the δ-neighborhood of a∗ as the action can-
didates. Specifically, we draw K samples from a Gaussian
distribution N

(
µ
(
s′;φ−2

)
, σ̄
)
:

MK =
{
ai|ai ∼ N

(
µ
(
s′;φ−2

)
, σ̄
)
, i = 1, 2, . . . ,K

}
, (13)

where the hyper-parameter σ̄ is the standard deviation. Both
Q-networks are updated via the following target value:

yAC TD3 = r + γmin
{
Q
(
s′, a∗K ;θ−2

)
, Q
(
s′, µ

(
s′;φ−1

)
;θ−1

)}
,

(14)

where a∗K = arg maxa∈MK
Q
(
s′, a;θ−1

)
. The parameters

of two policy networks are updated along the direction that
can improve their corresponding Q-networks. For more de-
tails please refer to Algorithm 2.

Experiments
In this section, we empirically evaluate our method on the
discrete and continuous action tasks.

For the discrete action tasks, we conduct the following
three experiments:

• For action candidate based clipped double estimator (AC-
CDE), we compare them with single estimator (Hasselt
2010), double estimator (Hasselt 2010) and clipped dou-
ble estimator (Fujimoto, Van Hoof, and Meger 2018) on
the multi-armed bandits problem.
• For action candidate based clipped Double Q-learning

(AC-CDQ), we compare them with Q-learning (Watkins
and Dayan 1992), Double Q-learning (Hasselt 2010) and
clipped Double Q-learning (Fujimoto, Van Hoof, and
Meger 2018) on grid world game.
• For action candidate based clipped Double DQN (AC-

CDDQN), we compare them with DQN (Mnih et al.
2015), Double DQN (Van Hasselt, Guez, and Silver
2016), Averaged-DQN (Anschel, Baram, and Shimkin
2017) and clipped Double DQN (Fujimoto, Van Hoof,
and Meger 2018) on several benchmark games in MinAtar
(Young and Tian 2019).
For the continuous action tasks, we compare our ac-

tion candidate based TD3 (AC-TD3) with TD3 (Fujimoto,
Van Hoof, and Meger 2018), SAC (Haarnoja et al. 2018)
and DDPG (Lillicrap et al. 2015) on six MuJoCo (Todorov,
Erez, and Tassa 2012) based benchmark tasks implemented
in OpenAI Gym (Dhariwal et al. 2017).

Discrete Action Tasks
Multi-Armed Bandits For Internet Ads In this experi-
ment, we employ the framework of the multi-armed ban-
dits to choose the best ad to show on the website among
a set of M possible ads, each one with an unknown fixed
expected return per visitor. For simplicity, we assume each
ad has the same return per click, such that the best ad is
the one with the maximum click rate. We model the click
event per visitor in each ad i as the Bernoulli event with
mean mi and variance (1 − mi)mi. In addition, all ads
are assumed to have the same visitors, which means that
given N visitors, N/M Bernoulli experiments will be ex-
ecuted to estimate the click rate of each ad. The default con-
figuration in our experiment is N = 30, 000, M = 30
and the mean click rates uniformly sampled from the in-
terval [0.02, 0.05]. Based on this configuration, there are
three settings: (1) We vary the number of visitors N =
{30, 000, 60, 000, . . . , 270, 000, 300, 000}. (2) We vary the
number of ads M = {10, 20, . . . , 90, 100}. (3) We vary the
upper limit of the sampling interval of mean click rate (the
original is 0.05) with values {0.03, 0.04, . . . , 0.09, 0.1}.

To compare the absolute bias, we evaluate the single es-
timator, double estimator, clipped double estimator and AC-
CDE with the square of bias (bias2) in each setting. As
shown in Fig. 1, compared to other estimators, AC-CDE
owns the lowest bias2 in almost all experimental settings. It
mainly benefits from the effective balance of our proposed
estimator between the overestimation bias of single estima-
tor and underestimation bias of clipped double estimator.
Moreover, AC-CDE has the lower bias2 than single estima-
tor in all cases while in some cases it has the larger bias2
than clipped double estimator such as the leftmost columns
in Fig. 1 (a) and (c). It’s mainly due to that although AC-
CDE can reduce the underestimation bias of clipped double
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Figure 2: Learning curves on the four MinAtar benchmark environments. The results are averaged over five independent learning
trials and the shaded area represents half a standard deviation.

estimator, too small number of action candidates may also
in turn cause overestimation bias. Thus, the absolute value
of such overestimation bias may be larger than the one of
the underestimation bias in clipped double estimator. De-
spite this, AC-CDE can guarantee that the positive bias is
no more than single estimator and the negative bias is also
no more than clipped double estimator.

Grid World As a MDP task, in a N ×N grid world, there
are total N2 states. The starting state s0 is in the lower-left
cell and the goal state is in the upper-right cell. Each state
has four actions: east, west, south and north. At any state,
moving to an adjacent cell is deterministic, but a collision
with the edge of the world will result in no movement. Tak-
ing an action at any state will receive a random reward which
is set as below: if the next state is not the goal state, the ran-
dom reward is −6 or +4 and if the agent arrives at the goal
state, the random reward is −30 or +40. With the discount
factor γ, the optimal value of the maximum value action in
the starting state s0 is 5γ2(N−1) −

∑2N−3
i=0 γi. We set N to

5 and 6 to construct our grid world environments and com-
pare the Q-learning, Double Q-learning, clipped Double Q-
learning and AC-CDQ (K = 2, 3) on the mean reward per
step and estimation error (see Fig. 3).

From the top plots, one can see that AC-CDQ (K = 2, 3)
can obtain the higher mean reward than other methods in
both given environments. We further plot the estimation er-
ror about the optimal state value V ∗(s0) in bottom plots.
Compared to Q-learning, Double Q-learning and clipped
Double Q-learning, AC-CDQ (K = 2, 3) show the much
lower estimation bias (more closer to the dash line), which
means that it can better assess the action value and thus
help generate more valid action decision. Moreover, our
AC-CDQ can significantly reduce the underestimation bias
in clipped Double Q-learning. Notably, as demonstrated in
Theorem 1, the underestimation bias in the case of K = 2
is smaller than that in the case of K = 3. And AC-CDQ can
effectively balance the overestimation bias in Q-learning and
the underestimation bias in clipped Double Q-learning.

MinAtar MinAtar is a game platform for testing the
reinforcement learning algorithms, which uses a simpli-
fied state representation to model the game dynamics of
Atari from ALE (Bellemare et al. 2013). In this experi-

Figure 3: The top plots show the mean reward per step and
the bottom plots show the estimated maximum action value
from the state s0 (the black dash line demotes the optimal
state value V ∗(s0)). The results are averaged over 10000 ex-
periments and each experiment contains 10000 steps. We set
the number of the action candidates to 2 and 3, respectively.

ment, we compare the performance of DQN, Double DQN,
Averaged-DQN, clipped Double DQN and AC-CDDQN on
four released MinAtar games including Breakout, Asterix,
Seaquest and Space Invaders. We exploit the convolutional
neural network as the function approximator and use the
game image as the input to train the agent in an end-to-end
manner. Following the settings in (Young and Tian 2019),
the hyper-parameters and settings of neural networks are set
as follows: the batch size is 32; the replay memory size is
100,000; the update frequency is 1; the discounted factor is
0.99; the learning rate is 0.00025; the initial exploration is 1;
the final exploration is 0.1; the replay start size is 5,000. The
optimizer is RMSProp with the gradient momentum 0.95
and the minimum squared gradient 0.01. The experimental
results are obtained after 5M frames.

Fig. 2 represents the training curve about averaged reward
of each algorithm. It shows that compared to DQN, Dou-
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Figure 4: Learning curves on the several MinAtar bench-
mark environments for AC-CDDQN with different numbers
of the action candidates.

ble DQN Averaged-DQN and clipped Double DQN, AC-
CDDQN can obtain better or comparable performance while
they have the similar convergence speeds in all four games.
Especially, for Asterix, Seaquest and Space Invaders, AC-
CDDQN can achieve noticeably higher averaged rewards
compared to the clipped Double DQN and obtain the gains
of 36.3%, 74.4% and 19.8%, respectively. Such significant
gain mainly owes to that AC-CDDQN can effectively bal-
ance the overestimation bias in DQN and the underestima-
tion bias in clipped Double DQN. Moreover, in Fig. 4 we
also test the averaged rewards of different numbers of ac-
tion candidates K = {2, 3, 4} for AC-CDDQN. The plots
show that AC-CDDQN is consistent to obtain the robust and
superior performance with different action candidate sizes.

Continuous Action Task
MuJoCo Tasks We verify our variant for continuous ac-
tion, AC-TD3, on six MuJoCo continuous control tasks from
OpenAI Gym including Ant-v2, Walker2D-v2, Swimmer-
v2, Pusher-v2, Hopper-v2 and Reacher-v2. We compare our
method against the DDPG and two state of the art methods:
TD3 and SAC. In our method, we exploit the TD3 as our
baseline and just modify it with our action candidate mech-
anism. The number of the action candidate is set to 32. We
run all tasks with 1 million timesteps and the trained policies
are evaluated every 5, 000 timesteps.

We list the training curves of Ant-v2 and Swimmer-v2
in the top row of Fig. 5 and more curves are listed in Ap-
pendix C. The comprehensive comparison results are listed
in Table 1. From Table 1, one can see that DDPG performs
poorly in most environments and TD3 and SAC can’t handle
some tasks such as Swimmer-v2 well. In contrast, AC-TD3
consistently obtains the robust and competitive performance
in all environments. Particularly, AC-TD3 owns comparable
learning speeds across all tasks and can achieve higher aver-
aged reward than TD3 (our baseline) in most environments
except for Hopper-v2. Such significant performance gain
demonstrates that our proposed approximate action candi-
date method in the continuous action case is effective empir-
ically. Moreover, we also explain the performance advantage
of our AC-TD3 over TD3 from the perspective of the bias
(see the bottom row of the Fig. 5). The bottom plots show
that in Ant-v2 and Swimmer-v2, AC-TD3 tends to have a

Figure 5: Top row: Learning curves for the OpenAI Gym
continuous control tasks. The shaded region represents half
a standard deviation of the average evaluation over 10 tri-
als. Bottom plots: the estimation of the expected return with
respect to the initial state s0 of the game. The dash lines rep-
resent the real discounted return.

lower estimation bias than TD3 about the expected return
with regard to the initial state s0, which potentially helps the
agent assess the action at some state better and then generate
the more reasonable policy.

AC-TD3 TD3 SAC DDPG

Pusher -22.7 ± 0.39 -31.8 -76.7 -38.4
Reacher -3.5 ± 0.06 -3.6 -12.9 -8.9

Walker2d 3800.3 ± 130.95 3530.4 1863.8 1849.9
Hopper 2827.2 ± 83.2 2974.8 3111.1 2611.4

Swimmer 116.2 ± 3.63 63.2 33.6 30.2
Ant 4391 ± 205.6 3044.6 3646.5 1198.64

Table 1: Averaged rewards over last 30% episodes during
training process.

Conclusion

In this paper, we proposed an action candidate based clipped
double estimator to approximate the maximum expected
value. Furthermore, we applied this estimator to form the
action candidate based clipped Double Q-learning. Theoreti-
cally, the underestimation bias in clipped Double Q-learning
decays monotonically as the number of action candidates
decreases. The number of the action candidates can also
control the trade-off between the overestimation and under-
estimation. Finally, we also extend our clipped Double Q-
learning to the deep version and the continuous action tasks.
Experimental results demonstrate that our proposed methods
yield competitive performance.
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