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Abstract

We propose a new GAN-based unsupervised model for disen-
tangled representation learning. The new model is discovered
in an attempt to utilize the Information Bottleneck (IB) frame-
work to the optimization of GAN, thereby named IB-GAN.
The architecture of IB-GAN is partially similar to that of In-
foGAN but has a critical difference; an intermediate layer of
the generator is leveraged to constrain the mutual information
between the input and the generated output. The intermedi-
ate stochastic layer can serve as a learnable latent distribu-
tion that is trained with the generator jointly in an end-to-end
fashion. As a result, the generator of IB-GAN can harness the
latent space in a disentangled and interpretable manner. With
the experiments on dSprites and Color-dSprites dataset, we
demonstrate that IB-GAN achieves competitive disentangle-
ment scores to those of state-of-the-art β-VAEs and outper-
forms InfoGAN. Moreover, the visual quality and the diver-
sity of samples generated by IB-GAN are often better than
those by β-VAEs and Info-GAN in terms of FID score on
CelebA and 3D Chairs dataset.

Introduction
Learning a good representation of data is one of the es-
sential topics in machine learning research. Although the
goodness of learned representation depends on the task, a
general consensus on the useful properties of representation
has been discussed through many recent studies (Bengio,
Courville, and Vincent 2013; Ridgeway 2016; Achille and
Soatto 2018a). A disentanglement, one of such useful prop-
erties of representation, is often described as statistical in-
dependence of the data generative factors, which is semanti-
cally well aligned with human intuition (e.g., chair types or
leg shapes on Chairs dataset (Aubry et al. 2014) and age or
gender on CelebA dataset (Liu et al. 2015)). Distilling each
important factor of data into a single independent direction
of representation is hard to be done but invaluable for many
other downstream tasks (Ridgeway 2016; Achille and Soatto
2018a; Higgins et al. 2017b, 2018).

Recently, various models have been proposed for dis-
entangled representation learning (Hinton, Krizhevsky, and
Wang 2011; Kingma et al. 2014; Reed et al. 2014; Math-
ieu et al. 2016; N et al. 2017; Denton and vighnesh Birod-
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Figure 1: Latent generative factors captured by IB-GAN on
(a) dSprites and (b) Color-dSprites dataset. From top to bot-
tom, each row corresponds to the factors of color, shape,
scale, rotation, position Y, and position X.

kar 2017; Jha et al. 2018). Despite their impressive re-
sults, they either require knowledge of ground-truth gener-
ative factors or weak-supervision (e.g., domain knowledge
or partial labels). In contrast, among many unsupervised ap-
proaches (Dumoulin et al. 2017; Donahue, Krähenbühl, and
Darrell 2016; Chen et al. 2016; Higgins et al. 2017a; Burgess
et al. 2018; Kim and Mnih 2018; Chen et al. 2018), the
two most popular approaches maybe β-VAE (Higgins et al.
2017a) and InfoGAN (Chen et al. 2016).
β-VAE (Higgins et al. 2017a) demonstrates that encour-

aging the KL-divergence term of the Variational Autoen-
coder (VAE) objective (Kingma and Welling 2014; Rezende,
Mohamed, and Wierstra 2014) by multiplying a constant
β > 1 induces strong statistical independence among the
factors of latent representation. However, a high β value can
strengthen the KL regularization too much, leading to worse
reconstruction fidelity than the standard VAE. On the other
hand, InfoGAN (Chen et al. 2016) is another fully unsuper-
vised approach based on Generative Adversarial Network
(GAN) (Goodfellow et al. 2014). It enforces the generator
to learn disentangled representation by increasing the mu-
tual information (MI) between the generated samples and
the latent code. Although InfoGAN can learn independent
factors well on relatively simple datasets such as MNIST
(LeCun, Cortes, and Burges 2010), it struggles to do so on
more complicated datasets such as CelebA (Liu et al. 2015)
or 3D Chairs (Aubry et al. 2014). Reportedly, the disentan-
gling performance of learned representation by InfoGAN is
not as good as that of β-VAE and its variant models (Higgins
et al. 2017a; Kim and Mnih 2018; Chen et al. 2018).
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Meanwhile, there have been many efforts (Kim and Mnih
2018; Chen et al. 2018; Mathieu et al. 2019) to identify
the mechanisms of disentanglement-promoting behavior in
β-VAE. Based on the ELBO decomposition (Hoffman and
Johnson 2016; Makhzani and Frey 2017), it is revealed that
the KL-divergence term in VAE can be factorized to the to-
tal correlation term (Watanabe 1960; Hoffman and John-
son 2016), which essentially enforces the factorization of
the marginal encoder and thus promotes the independence
of learned representations in β-VAE. Besides, some other
studies (Burgess et al. 2018; Alemi et al. 2017, 2018) identi-
fied that the KL regularization term in β-VAE corresponds to
the mutual information (MI) minimization in the variational
inference (VI) formulation (Jordan et al. 1999; Wainwright
and Jordan 2008) of the Information Bottleneck (IB) theory
(Tishby, Pereira, and Bialek 1999; Alemi et al. 2017, 2018).

Based on the aforementioned studies, it is clear that the
weakness of GAN-based disentangled representation learn-
ing comes from the fact that the model lacks any representa-
tion encoder or constraining mechanism for the representa-
tion. In the conventional GAN model, a latent representation
z is sampled from a fixed latent distribution such as normal
distribution, and the generator of GAN maps the whole nor-
mal distribution to the target images. Due to this, the latent
representation z can be utilized in a highly entangled way;
an individual dimension of z to not correspond well to the
semantic features of data. Although InfoGAN supports an
inverse mapping from data to latent code c, it still does not
support disentangled relation as data is inverted to a fixed
prior distribution.

In this paper, we present a new GAN-based unsupervised
model for disentangled representation learning. Specifically,
a new GAN architecture is discovered in an attempt to solve
the GAN’s objective with IB framework, thereby named IB-
GAN (Information Bottleneck GAN). The resulting architec-
ture derived from variational inference (VI) formulation of
the IB-GAN objective is partially similar to that of InfoGAN
but has a critical difference; an intermediate layer of the
generator is leveraged to constrain the mutual information
between the input and the generated data. The intermediate
stochastic layer can serve as a learnable latent distribution
that is trained with the generator jointly in an end-to-end
fashion. As a result, the generator of IB-GAN can harness
the latent space in a disentangled and interpretable manner
similar to β-VAE, while inheriting the merit of GANs (e.g.,
the model-free assumption on generators or decoders, pro-
ducing good sample quality).

We summarize contributions of this work as follows:

1. IB-GAN is a novel GAN-based model for unsupervised
learning of disentangled representation. IB-GAN can be
seen as an extension to the InfoGAN, supplementing an
information constraining mechanism that InfoGAN lacks
in the perspective of IB theory.

2. The resulting IB-GAN architecture derived from the vari-
ational inference (VI) formulation of the IB framework
supports a trainable latent distribution via intermediate la-
tent encoder between input and the generated data.

3. With the experiments on dSprites (Higgins et al. 2017a)

and Color-dSprites dataset (Burgess et al. 2018; Locatello
et al. 2019), IB-GAN achieves competitive disentangle-
ment scores to those of state-of-the-art β-VAEs (Burgess
et al. 2018; Higgins et al. 2017a; Kim and Mnih 2018;
Chen et al. 2018) and outperforms InfoGAN (Chen et al.
2016). The visual quality and diversity of samples gener-
ated by IB-GAN are often better than those by β-VAEs
and InfoGAN on CelebA(Liu et al. 2015) and 3DChairs
(Aubry et al. 2014).

Background
InfoGAN: Information Maximizing GAN
Generative Adversarial Networks (GAN) (Goodfellow et al.
2014) formulate a min-max adversarial game between two
neural networks, a generator G and a discriminator D:

min
G

max
D
LGAN(D,G)

= Ep(x)[log(D(x))] + Ep(z)[log(1−D(G(z))]. (1)

The discriminator D aims to distinguish well between real
samples x ∼ p(x) and synthetic samples created by the gen-
erator G(z) with random noise z ∼ p(z), while the genera-
tor G is trained to produce realistic sample that is indistin-
guishable from true sample. Under an optimal discriminator
D∗, Eq.(1) theoretically minimizes the Jensen-Shannon di-
vergence between the synthetic and the true sample distri-
bution: JS(G(z)||p(x)). However, Eq.(1) does not have any
specific guidance on how G utilizes a mapping from z to
x. That is, the variation of z in any independent dimension
often yields entangled effects on a generated sample x.

InfoGAN (Chen et al. 2016) is capable of learning disen-
tangled representations without any supervision. To do so,
the objective of InfoGAN accommodates a mutual informa-
tion maximization term between an additional latent code c
and a generated sample x = G(z, c):

min
G

max
D
LInfoGAN(D,G)

= LGAN(D,G)− I(c,G(z, c)), (2)

where I(·, ·) denote MI. Also, c and z are latent code and not
interpretable (or in-compressible) noise respectively. To op-
timize Eq.(2), the variational lower-bound of MI is exploited
similarly to the IM algorithm (Barber and Agakov 2004).

Information Bottleneck Principle
Let the input variableX and the target variable Y distributed
according to some joint data distribution p(x, y). The goal
of IB (Tishby, Pereira, and Bialek 1999; Alemi et al. 2017,
2018; Peng et al. 2019) is to obtain a compressive represen-
tation Z from the input X , while maintaining the predictive
information about the target Y as much as possible. The ob-
jective for the IB is

max
qφ(z|x)

LIB = I(Z, Y )− βI(Z,X), (3)

where I(·, ·) denotes MI and β ≥ 0 is a Lagrange mul-
tiplier. Therefore, IB aims at obtaining the optimal repre-
sentation encoder1 qφ(z|x) that simultaneously balances the

1φ is the parameter of representation encoder model.
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Figure 2: An illustration of IB-GAN. It adopts a representa-
tion encoder eψ(r|z) and a KL-divergence loss derived from
IB theory. Since the encoder qφ(r|z) is assumed as Gaus-
sian, it is convenient to define m(r) as Gaussian. The MSE
loss is computed by the decoder log qφ(z|x) in Eq.(11).

tradeoff between the maximization and minimization of both
MI terms. Accordingly, the learned representation Z can act
as a minimal sufficient statistic of X for predicting Y . The
IB principle provides an intuitive meaning for the good rep-
resentation from the perspective of information theory. Re-
cent studies (Burgess et al. 2018; Achille and Soatto 2018a;
Zhao, Song, and Ermon 2018) show that the variational in-
ference (VI) formulation (Jordan et al. 1999; Wainwright
and Jordan 2008) of IB Eq.(3) is equivalent to the objec-
tive of β-VAE when the task is self-reconstruction (e.g.,
Y = X).

IB-GAN: Information Bottleneck GAN
The motivation for IB-GAN is straight forwards. We can
identify that InfoGAN’s objective in Eq.(2) lacks a MI min-
imization term compare to the IB objective in Eq.(3). Thus,
we utilize the MI minimization term to InfoGAN’s objective
to get the IB-GAN objective as follows:

min
G

max
D
LIB-GAN(D,G)

= LGAN(D,G)−
[
IL(z,G(z))− βIU (z,G(z))

]
, (4)

s.t. IL(z,G(z)) ≤ Ig(z,G(z)) ≤ IU (z,G(z)), (5)

where IL(·, ·) and IU (·, ·) denote the lower and upper-
bound of generative MI2 respectively. One important change
in Eq.(4) compared to Eq.(2) is adopting the upper-bound of
MI with a trade-off coefficient β, analogously to that of β-
VAE and the IB objective3. More discussion regarding this
parameter is presented in the next section, and the effect is
explored in the experimental section.

2The generative mutual information (MI) is described as
Ig(Z,X) = Epθ(x|z)p(z)[pθ(x|z)p(z)/pθ(x)p(z)]. This formu-
lation of MI is also exhibited in InfoGAN and IM algorithm (Chen
et al. 2016; Barber and Agakov 2004).

3The incompressible noise variable z is not necessarily required
for modeling InfoGAN (Srivastava et al. 2017; Zhao, Song, and
Ermon 2018). So, we can omit the incompressible noise z. Here, z
has the same role as the latent code c in InfoGAN.

Algorithm 1 IB-GAN training algorithm

Input: batch size B, hyperparameters β, and the learning
rates ηφ, ηθ, ηψ , and ηw of the parameter of reconstructor,
generator, encoder, and discriminator model respectively.
while not converged do

Sample
{
z1, . . . , zB

}
∼ p(z)

Sample
{
x1, . . . , xB

}
∼ p(x)

Sample
{
r1, . . . , rB

}
∼ eψ(r|zi) for i ∈ {1 . . . B}

Sample
{
x1g, . . . , x

B
g

}
∼ pθ(x|ri) for i ∈ {1 . . . B}

Sample
{
ẑ1, . . . , ẑB

}
∼ qφ(z|xig) for i ∈ {1 . . . B}

gφ ← ∇φ 1
B

∑
i (ẑ

i − zi)2
gw ← −∇w 1

B

∑
i log σ(Dw(x

i
g)) + log(1− σ(Dw(x

i))

gθ ← ∇θ 1
B

∑
i log σ(Dw(x

i
g))− (ẑi − zi)2

gψ ← ∇ψ 1
B

∑
i log σ(Dw(x

i
g))− (ẑi − zi)2 +

βKL(eψ(r|zi)||m(r))
φ← φ− ηφgφ; w ← w − ηwgw;
θ ← θ − ηθgθ; ψ ← ψ − ηψgψ

end while

Optimization of IB-GAN
For the optimization of Eq.(4), we first define a tractable
lower-bound of the generative MI in Eq.(5) using the similar
derivation exhibited in (Chen et al. 2016; Agakov and Barber
2005; Alemi and Fischer 2018). For the brevity, we use prob-
abilistic model notion (i.e., pθ(x|z) = N (Gθ(z),1) for the
generator. Then, the variational lower-bound IL(z,G(z)) of
the generative MI in Eq.(5) is given as

Ig(z,G(z)) = Epθ(x|z)p(z)[log
pθ(x|z)p(z)
pθ(x)p(z)

]

≥ IL(z,G(z)) = Epθ(x|z)p(z)[log
qφ(z|x)
p(z)

] (6)

= Epθ(x|z)p(z)[log qφ(z|x)] +H(z). (7)

In Eq.(6), the lower-bound holds thanks to positivity
of KL-divergence. A variational reconstructor qφ(z|x)
is introduced to approximate the quantity pθ(z|x) =
pθ(x|z)p(z)/pθ(x). Intuitively, by improving the recon-
struction of an input code z from a generated sample x =
G(z) using the qφ(z|x), we can promote the statistical de-
pendency between the generator G(z) and the input latent
code z (Chen et al. 2016; Barber and Agakov 2004).

In contrast to the lower-bound, obtaining a practical vari-
ational upper-bound of the generative MI in Eq.(5) is not
trivial. If we follow the similar approach discussed in previ-
ous studies (Alemi et al. 2017, 2018), the variational upper-
bound IU (z,G(z)) of the generative MI is derived as

Ig(z,G(z)) = Epθ(x|z)p(z)[log
pθ(x|z)HHp(z)

pθ(x)HHp(z)
]

≤ IU (z,G(z)) = Epθ(x|z)p(z) log[
pθ(x|z)
d(x)

], (8)

where d(x) approximates the generator marginal pθ(x) =∑
z pθ(x|z)p(z). In theory, we can choose any approxima-

tion model d(x). However, one important concern here is
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that it is difficult to correctly identify a proper approxima-
tion model for d(x) in practice. Given that the upper-bound
IU (z,G(z)) is identical to KL(pθ(x|z)||d(x)) in Eq.(8),
d(x) acts as an image prior. Thus, any improper choice of
d(x) may severely downgrade the quality of synthesized
samples from the generator pθ(x|z). We might mitigate this
by introducing another GAN loss for the KL divergence, but
the effective prior model d(x) is still missing.

For this reason, we propose another formulation of the
variational upper-bound on the generative MI, inspired by
the recent studies of deep-learning with IB principle (Tishby
and Zaslavsky 2015; Achille and Soatto 2018a,b). We define
an additional stochastic model eψ(r|z) that takes a noise in-
put vector z and produces an intermediate stochastic rep-
resentation r. In other words, we let x = G(r(z)) in-
stead of x = G(z); then we can express the generator4 as
pθ(x|z) =

∑
r pθ(x|r)eψ(r|z). Subsequently, a new varia-

tional upper-bound IU (z,R(z)) can be obtained as
Ig(z,G(R(z)))

≤ I(z,R(z)) = Eeψ(r|z)p(z)[log
eψ(r|z)HHp(z)

eψ(r)HHp(z)
] (9)

≤ IU (z,R(z)) = Eeψ(r|z)p(z) log[
eψ(r|z)
m(r)

]. (10)

The first inequality in Eq.(9) holds due to the Markov prop-
erty (Tishby and Zaslavsky 2015): if any generative process
follows Z → R → X , then I(Z,X) ≤ I(Z,R). The sec-
ond inequality in Eq.(10) holds from the positivity of KL
divergence. Any model for m(r) can be flexibly used to
approximate the representation marginal eψ(r) (e.g., Gaus-
sian). This new formulation of the variational upper-bound
in Eq.(10) allows us to constrain the generative MI without
directly affecting the generator in Eq.(8) via the intermediate
representation encoder model eψ(r|z) and the prior m(r).

Finally, from the lower-bound in Eq.(7) and the upper-
bound in Eq.(10), a variational approximation of Eq.(4) can
be obtained as

min
G,qφ,eψ

max
D
L̃IB-GAN(D,G, qφ, eψ)

= LGAN(D,G)−
(
Ep(z)[Epθ(x|r)eψ(r|z)[log qφ(z|x)]

− βKL(eψ(r|z)||m(r))]
)
. (11)

We define the encoder eψ(r|z) as a stochastic model
N(µψ(z), σψ(z)) and the prior m(r) as N(0,1), as done
in VAEs (Kingma and Welling 2014). The optimization of
Eq.(11) can be done by alternatively updating the param-
eters of the generator pθ(x|r), the representation encoder
eψ(r|z), the variational reconstructor qφ(z|x) and the dis-
criminator D using any SGD-based algorithm. A reparam-
eterization trick (Kingma and Welling 2014) is employed
to backpropagate gradient signals to the stochastic encoder.
The overall architecture of IB-GAN is presented in Figure 2,
and the training procedure is described in Algorithm 1.

Related Work and Discussion
Connection to rate-distortion theory. IB theory is a
generalization of the Rate-Distortion (RD) theory (Tishby,

4In this case, we let pθ(x|r) = N (Gθ(r),1).

Pereira, and Bialek 1999), in which the rate R is the code
length per data sample to be transmitted through a noisy
channel, and the distortion D represents the approxima-
tion error of reconstructing the input from the source code
(Alemi et al. 2018; Shannon 1948). The goal of RD-theory
is to minimizeD without exceeding a certain level of rateR,
formulated as minR,D D+βR, where β ∈ [0,∞] decides a
theoretically achievable optimum in the auto-encoding limit
(Alemi et al. 2018).

IB-GAN can be described in terms of the RD-theory.
Here, the goal is to deliver an input code z through a noisy
channel (i.e., deep neural networks). Both r and x are re-
garded as the encoding of input z. The distortion in IB-GAN
corresponds to the reconstruction error of the input z esti-
mated from the variational encoder qφ(z|x(r)).

The rate R of the intermediate representation r is related
to KL(eψ(r|z)||m(r)), which measures the inefficiency (or
the excess rate) of the representation encoder eψ(r|z) in
terms of how much it deviates from the approximating repre-
sentation prior m(r). Hence, β in Eq.(11) controls the com-
pressing level of the information contained in r for recon-
structing input z. It constrains the amount of shared infor-
mation between the input code z and the output image by
the generator x = G(r(z)) without directly regularizing
the output image itself. In addition, the GAN loss LGAN in
Eq.(11) can be understood as a rate constraint of the image in
the context of RD-theory since the GAN loss approximates
JS(G(z)||p(x)) (Goodfellow et al. 2014) between the gen-
erator and the empirical data distribution p(x).

Comparison between IB-GAN and β-VAE. The result-
ing architecture of IB-GAN is partly analogous to that of
β-VAE since both are derived from the IB theory5. β-VAE
tends to generate blurry output images due to large β (Kim
and Mnih 2018; Chen et al. 2018). Setting β to large value
minimizes the excess rate of encoding z in β-VAE, but this
also increases the reconstruction error (or the distortion)
(Alemi et al. 2018). In contrast, IB-GAN may not directly
suffer from this shortcoming of β-VAE. The generator of IB-
GAN learns to encode image x by minimizing the rate (i.e.,
JS(G(r)||p(x))) inheriting the merit of InfoGANs (e.g., an
implicit decoder model can be trained to produce a good
quality of images). One possible drawback of IB-GAN ar-
chitecture is that it does not directly map the representation
encoder to output r from the real image x: q(r|x). To ob-
tain the representation r back from the real data x, we need
a two-step procedure: sampling z from the learned recon-
structor qφ(z|x) and putting it to the representation encoder
eψ(r|z). However, the latent representation r obtained from
this procedure is quite compatible with those of β-VAEs as
we will see in the experimental section.

Disentanglement-promoting behavior of IB-GAN. The
disentanglement-promoting behavior of β-VAE is encour-
aged by the KL divergence. Since the prior distribution is of-
ten assumed as a fully factored Gaussian distribution, the KL

5IB-GAN’s objective is derived from the generative MI, while
β-VAE’s objective is derived from the representational MI in
(Alemi et al. 2017, 2018).
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divergence term in VAE objective can be decomposed into
the form containing a total correlation (TC) term (Watanabe
1960; Hoffman and Johnson 2016), which essentially en-
forces the statistical factorization of the representation (Kim
and Mnih 2018; Chen et al. 2018; Burgess et al. 2018). In IB-
GAN, a noise z is treated as the input source instead of im-
age x. Therefore, the disentangling mechanism of IB-GAN
is slightly different from that of β-VAE.

The disentanglement-promoting behavior of IB-GAN can
be described in term of the RD-theory as follow: (1) The effi-
cient encoding scheme for the (intermediate) latent represen-
tation r can be learned by minimizing KL(eψ(r|z)||m(r))
with a factored Gaussian prior m(r), which promotes sta-
tistical factorization of the coding r similar to that of VAE.
(2) The efficient encoding scheme for x is defined by min-
imizing the divergence between G(z) and the data dis-
tribution p(x) via the discriminator, which promotes the
encoding of x to be a realistic image. (3) Maximizing
IL(z,G(z)) in IB-GAN indirectly maximizes I(r,G(r))
too since I(z,G(z)) ≤ I(r,G(r)) from the Markov propri-
ety (Tishby and Zaslavsky 2015). That is, maximizing the
lower-bound of MI increases the statistical dependency be-
tween the coding r and x = G(r), while both encoding r
and x need to be efficient in terms of their rates (e.g., the
upper-bound of MI and the GAN loss). Therefore, an inde-
pendent directional change in the representation encoding r
tends to be well aligned with a predominant factor of varia-
tion in the image x.

Other characterizations of IB-GAN. IB-GAN can softly
constrain the generative MI by the variational upper-bound
derived in Eq.(10). In this regard, the variational encoder of
IB-GAN can be seen as a hierarchical trainable prior for the
generator. If β in Eq.(11) is zero, the IB-GAN objective re-
duces to that of InfoGAN. In contrast, if β is too large such
that the KL-divergence term is almost zero, then there would
be no difference between the samples from the representa-
tion encoder eψ(r|z) and the distortion prior m(r). Then,
both representation r and generated data x contain no infor-
mation about z at all, resulting in the signal from the recon-
structor being meaningless to the generator. If we further ex-
clude the lower-bound of MI in Eq.(11), the IB-GAN objec-
tive reduces to that of vanilla GAN with an input r ∼ m(r).

Variational bounds on generative MI. Maximizing the
variational lower-bound of generative MI has been em-
ployed in IM algorithm (Agakov and Barber 2005) and In-
foGAN (Chen et al. 2016). Recently, Alemi and Fischer
(Alemi and Fischer 2018) propose the lower-bound of gen-
erative MI, named GILBO, as a data-independent mea-
sure that can quantify the complexity of the learned rep-
resentations for trained generative models. They discover
that the lower-bound is correlated with the image quality
metrics of generative models such as INCEPTION (Bar-
ratt and Sharma 2018) and FID (Heusel et al. 2017) scores.
On the other hand, we propose a new approach of upper-
bounding the generative MI, based on the causal relation-
ship of deep learning architecture, and show the effective-
ness of the upper-bound by measuring the disentanglement
scores (Kim and Mnih 2018) on the learned representation.

Experiments
We experiment IB-GAN on various datasets. For quanti-
tative evaluation, we measure the disentanglement metrics
proposed in (Kim and Mnih 2018) on dSprites (Higgins
et al. 2017a) and Color-dSprites (Burgess et al. 2018; Lo-
catello et al. 2019) dataset. For qualitative evaluation, we vi-
sualize latent traversal results of IB-GAN and measure FID
scores (Szegedy et al. 2015) on CelebA (Liu et al. 2015) and
3D Chairs (Aubry et al. 2014) dataset.

Architecture. We follow DCGAN (Radford, Metz, and
Chintala 2016) with batch normalization (Ioffe and Szegedy
2015) for both generator and discriminator of IB-GAN. We
let the reconstructor qφ(z|x) share the same front-end fea-
tures with the discriminator D(x) for the efficient use of
parameters as in the conventional InfoGAN (Chen et al.
2016) model. Also, an MLP-based representation encoder
eψ(r|z) is used before the generator G(r). Optimization is
performed with RMSProp (Tieleman and Hinton 2012) with
a momentum of 0.9. The batch size is 64 in all experiments.
We constrain true and synthetic images to be normalized
as [−1, 1]. Lastly, we use almost identical architecture for
the generator, discriminator, reconstructor, and representa-
tion encoder in all of our experiments, except the different
sizes of channel parameters depending on the datasets. We
defer more details of the IB-GAN architecture to Appendix.

Quantitative Results
Although it is not easy to evaluate the disentanglement
of representation, some quantitative metrics (Higgins et al.
2017a; Kim and Mnih 2018; Chen et al. 2018) have
been proposed based on the synthetic datasets that provide
ground-truth generative factors such as dSprites (Higgins
et al. 2017a) or Color-dSprites (Burgess et al. 2018; Lo-
catello et al. 2019). We evaluate our approach with the met-
ric of (Kim and Mnih 2018) on the dSprites and Color-
dSprites datasets since many other state-of-the-art models
are evaluated in this setting in (Locatello et al. 2019), in-
cluding standard VAE (Kingma and Welling 2014; Rezende,
Mohamed, and Wierstra 2014), β-VAE (Higgins et al.
2017a), TC-VAE (Chen et al. 2018) and FactorVAE (Kim
and Mnih 2018).

Disentanglement performance. According to IB (or RD)
theory (Alemi et al. 2018), we can set any real values to β.
For the quantitative evaluation, we perform hyperparameter
search in the range of β ∈ [0, 1]. We focus on investigat-
ing the effect of β ∈ [0, 1] on the MI and the disentangling
promoting behavior. Table 1 compares the disentanglement
performance metric of Kim and Mnih (2018) between meth-
ods on the dSprites and Color-dSprites (Burgess et al. 2018;
Locatello et al. 2019) dataset. The optimal average disen-
tanglement scores 0.80 and 0.79 on the two datasets are ob-
tained at β = 0.141 and β = 0.071, respectively. In our
experiment, the disentanglement scores of IB-GAN exceed
those of GAN (Goodfellow et al. 2014), VAE (Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014) and
InfoGAN (Chen et al. 2016), and are comparable to those of
β-VAE. For the VAE baselines, we follow the model archi-
tectures and experimental settings of (Locatello et al. 2019).
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(a) IU (z,G(z)) vs β. (b) IL(z,G(z)) vs β. (c) Disentanglement score vs β.

Figure 3: Effects of β on the converged upper/lower-bound of MI and disentanglement metric scores (Kim and Mnih 2018).

Figure 4: The plot of variational upper-bound and lower-
bound of MI with independent KL(e(ri|z)||m(ri)) values
for all ri (i = 1, . . . , 10) and disentanglement scores (Kim
and Mnih 2018) over 150K training iterations. The vertical
dashed black line represents the iteration at the highest dis-
entanglement score.

For the GAN baselines, we use the subset of components of
IB-GAN: generator and discriminator for the vanilla GAN
and additional reconstructor for the InfoGAN.

Traversal examples. Figure 1(a) presents the visual in-
spection of the latent traversal (Higgins et al. 2017a) with
the learned IB-GAN model on dSprites. The IB-GAN suc-
cessfully learns 5 out of 5 ground-truth factors from the
dSprites, including Y and X positions, scales, rotations and
shapes, which align well with the KL scores in Figure 4. Fig-
ure 1(b) presents that IB-GAN captures 6 out of 6 ground-
truth factors additionally including the color factor on Color-
dSprites (Burgess et al. 2018; Locatello et al. 2019).

Convergence. Figure 4 shows the variations of
KL(e(ri|z)||m(ri)) for 10-dimensional r (i.e.,
i = 1, . . . , 10) over training iterations on dSprites when
β = 0.212. The increasing curves indicate that information
capture by ri for x increases as the learned representation
is informative to reconstruct the input correctly. Moreover,
each ri increases at different points; it implies that the
variational encoder eψ(r|z) of IB-GAN slowly adapts to
capture the independent factors of variations in dSprites as
the upper-bound of MI increases. The similar behavior is
reported in β-VAE (Burgess et al. 2018). More results of
convergence plots are presented in Appendix.

Models dSprites Color-dSprites
GAN 0.40± 0.05 0.35± 0.04
InfoGAN 0.61± 0.03 0.55± 0.08
IB-GAN 0.80± 0.07 0.79± 0.05
VAE 0.61± 0.04 0.59± 0.06
β-VAE 0.69± 0.09 0.74± 0.06
FactorVAE 0.81± 0.07 0.82± 0.06
β-TCVAE 0.79± 0.06 0.80± 0.07

Table 1: Comparison of disentanglement metric values (Kim
and Mnih 2018). The average scores of IB-GAN is obtained
from 10 random seeds.

The effect of β. We inspect the effect of β on the con-
vergence of upper and lower MI bounds and the disentan-
glement score (Kim and Mnih 2018) on dSprites. We take a
median value over the 150K training iterations in each trial,
and then average the values over 10 different trials per β in
a range of [0, 1]. Figure 3(a) and 3(b) illustrate the expected
converged value of upper and lower MI bounds over the dif-
ferent β. When β = 0, the upper MI bound in the IB-GAN
objective disappears; hence, the representation encoding r
can diverge from the prior distribution m(r) without any re-
striction, resulting in a high divergence. When a small β > 0
is set, the MI upper bound constraint affects the optimization
procedure. Thus the divergence between r and its prior de-
creases drastically. After then, the MI upper bound seems
to decrease gradually as the β gets larger, consequently the
lower MI bound decreases as well. Lastly, Figure 3(c) shows
the effect of β on the disentanglement scores. The average
disentanglement score varies according to β, supporting that
we could control the disentangling-promoting behavior of
IB-GAN with the upper-bound of generative MI and β. Es-
pecially, the optimal disentanglement scores are achieved
when β is in a range of [0.071, 0.212].

Qualitative Results
Following (Chen et al. 2016; Higgins et al. 2017a; Chen
et al. 2018; Kim and Mnih 2018), we evaluate the quali-
tative results of IB-GAN by inspecting latent traversals. As
shown in Figure 5(a), IB-GAN discovers various human rec-
ognizable attributes such as azimuth, gender, and skin tone
on CelebA dataset. We also present the results of IB-GAN
on 3D Chairs in Figure 5(b), where IB-GAN disentangles
azimuth, scales, and leg types of chairs. These attributes are
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Figure 5: Latent traversals of IB-GAN that captures the factors of (a) azimuth, gender and skin tone attributes on CelebA and
(b) scale, leg and azimuth on 3D Chairs. More factors captured by IB-GAN are presented in Appendix.

Figure 6: Comparison of random samples on CelebA and
3D Chairs dataset: (a) VAE, (b) β-VAE, (c) FactorVAE, (d)
β-TCVAE, and (e) IB-GAN and (f) real images.

hardly captured by the original InfoGAN (Chen et al. 2016;
Higgins et al. 2017a; Kim and Mnih 2018; Chen et al. 2018),
demonstrating the effectiveness of the proposed model.

Figure 6 illustrates randomly sampled images generated
by IB-GAN and the VAE baselines. Figure 6 shows that
the images obtained from IB-GAN are often sharper and
more realistic than those obtained from β-VAE and its vari-
ants (Higgins et al. 2017a; Kim and Mnih 2018; Chen et al.
2018). More qualitative results are presented in Appendix.

FID scores. In Table 2, the FID score (Szegedy et al. 2015)
of IB-GAN is significantly lower than those of VAEs and
comparable to those of GANs, indicating that the generator
of IB-GAN can produce diverse and qualitative image gener-
ation, while not only capturing various factors of variations
from the dataset. One reason for the generalization perfor-
mance improvement in IB-GAN is the flexibility of learning
the prior distribution. In contrast, other GAN baselines only
rely on the pre-specified prior distributions. VAEs tend to
degrade the reconstruction of the image due to their strong
independent assumption on the representation.

Models CelebA 3D Chairs
VAE 129.7 56.2
β-VAE 131.0 91.3
FactorVAE 109.7 44.7
β-TCVAE 125.0 57.3

GAN 8.4 27.9
InfoGAN 9.3 25.6
IB-GAN 7.4 25.5

Table 2: FID scores on CelebA and 3D Chairs dataset. The
lower FID score, the better quality, and diversity of samples.

Conclusion
The proposed IB-GAN model is a new unsupervised GAN-
based model for disentangled representation learning. In-
spired by IB theory, we employ the MI minimization term
to InfoGAN’s objective to get the IB-GAN objective. The
resulting architecture derived from the variational inference
(VI) formulation of IB-GAN’s objective is partially similar
to that of InfoGAN but has a critical difference; an interme-
diate layer of the generator is leveraged to constrain the mu-
tual information between the input and the generated data.
The intermediate stochastic layer can serve as a learnable la-
tent representation distribution that is trained with the gener-
ator jointly in an end-to-end fashion. As a result, the genera-
tor of IB-GAN can harness the latent space in a disentangled
and interpretable manner similar to β-VAE, while inheriting
the merit of GANs (e.g., the model-free assumption on gen-
erators or decoders, producing good sample quality). Our
experimental results demonstrate that IB-GAN shows good
performance on disentangled representation learning com-
parable with β-VAEs and outperforms InfoGANs. More-
over, the qualitative results also exhibit that IB-GAN can be
trained to generate diverse and high-quality visual samples
while capturing various factors of variations on CelebA and
3D Chairs dataset.
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