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Abstract

Modifying the reward-biased maximum likelihood method
originally proposed in the adaptive control literature, we pro-
pose novel learning algorithms to handle the explore-exploit
trade-off in linear bandits problems as well as generalized
linear bandits problems. We develop novel index policies that
we prove achieve order-optimality, and show that they achieve
empirical performance competitive with the state-of-the-art
benchmark methods in extensive experiments. The new poli-
cies achieve this with low computation time per pull for linear
bandits, and thereby resulting in both favorable regret as well
as computational efficiency.

1 Introduction

The problem of decision making for an unknown dynamic
system, called stochastic adaptive control (Kumar 1985; Ku-
mar and Varaiya 2015), was examined in the control theory
community beginning in the 1950s. It was recognized early
on by Feldbaum (Feldbaum 1960a,b) that control played a
dual role, that of exciting a system to learn its dynamics,
as well as satisfactorily regulating its behavior, therefore
dubbed as the problem of “dual control.” This leads to a
central problem of identifiability: As the controller begins to
converge, it ceases to learn about the behavior of the system
to other control actions. This issue was quantified by Borkar
and Varaiya (Borkar and Varaiya 1979) within the setting of
adaptive control of Markov chains. Consider a stochastic sys-
tem with a state-space X, control or action set U, modelled
as a controlled Markov chain with transition probabilities
Prob(z(t + 1) = jlz(t) = i,u(t) = u) = p(i,7; u, 6,) de-
pendent on an unknown parameter 6, lying in a known set
©, where z(t) is the state of the system at time step ¢, and
u(t) is the action taken at that time. Given a one-step reward
function r(i,u), let ¢ : X x ©® — U denote the optimal
stationary control law as a function of NS G) for the long-
term average reward problem: max 7 Zt o Lr(x (), u(t)),
ie, u(t) = o(x(t),0) is the optlmal action to take if
the true parameter is 6. Since 0, is unknown, consider a
“certainty-equivalent” approach: At each time step ¢, let
OmL(t) € argmaxycg Zi;(l) logp(z(s), (s + 1),u(s),0)
denote the Maximum Likelihood (ML) estimate of 0., with
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ties broken according to any fixed priority order. Then ap-
ply the action u(t) = ¢(z(t), aML(t)) to the system. It was
shown in (Kumar and Becker 1982) that under an irreducibil-
ity assumption, the parameter estimates aML(t) converge to a
random limit 6 satisfying

p(i, j, ¢(i,0),0) = p(i, j, (i,0),6.) (1)

That is, the closed-loop transition probabilities under the
control law ¢(-, ) are correctly determined. However, the
resulting feedback control law ¢(-, §) need not be optimal for
the true parameter 6,.

A key observation that permitted a breakthrough on this
problem was made by Kumar and Becker (Kumar and Becker
1982). Denote by J(¢, 8) the long-term average reward in-
curred when the stationary control law ¢ is used if the true
parameter is 6, and by J(0) := Max,J(¢,0) the optimal
long-term average reward attainable when the parameter is 6.
Then,

Vi, j € X.

. (a (c)

J0) 2 76(-0).0) 2 J(6(-0),0.) < J6.). @)
where the key equality (b) that the long-term reward under
#(-, 0) is the same under the parameters 6 and 6., follows from
the equivalence of the closed-loop transition probabilities (1),
while (a) and (c) hold trivially since (-, ) is optimal for
6, but is not necessarily optimal for 6,.. Therefore the max-
imum likelihood estimator is biased in favor of parameters
with smaller reward. To counteract this bias, (Kumar and
Becker 1982) proposed delicately biasing the ML parameter
estimation criterion in the reverse way in favor of parame-
ters with larger reward by adding a term «(¢).J(6) to the
log-likelihood, with a(t) > 0, a(t) — +oo, and 242 — 0.
This results in the Reward-Biased ML Estimate (RBMLE):

é\RBMLE (t) e

+Zlogp

argmax
9o

(s + 1), u(s), 9)}.

{o®
3)

This modification is delicate since a(t) = o(t), and therefore
retains the ability of the ML estimate to estimate the closed-
loop transition probabilities, i.e., (1) continues to hold, for



any “frequent” limit point 6 (i.e., that which occurs as a limit
along a sequence with positive density in the integers). Hence
the bias J(¢) < J(6.) of (2) continues to hold. However,
since a(t) — 400, the bias in favor of parameters with larger

rewards ensures that

J(0) = J(6.), (©)

as shown in (Kumar and Becker 1982, Lemma 4). From

(2) and (4) it follows that J(¢(, -, 0),0.) = J(6.), whence
#(-,0) is optimal for the unknown 6.

The RBMLE method holds potential as a general-purpose
method for the learning of dynamic systems. However, its
analysis was confined to long-term average optimality, which
only assures that the regret is o(t). Pre-dating the Upper Con-
fidence Bound (UCB) method of Lai and Robbins (Lai and
Robbins 1985), RBMLE has largely remained unexplored
vis-a-vis its finite-time performance as well as empirical per-
formance on contemporary problems. Motivated by this, there
has been recent interest in revisiting the RBMLE. Recently,
its regret performance has been established for classical multi-
armed bandits for the exponential family of measures (Liu
et al. 2020). However, classical bandits do not allow the
incorporation of “context,” which is important in various ap-
plications (Li et al. 2010; Lu, Pal, and Pal 2010; Chapelle
and Li 2011; Li, Karatzoglou, and Gentile 2016; Tewari and
Murphy 2017). Therefore, the design and the proofs in (Liu
et al. 2020) cannot directly apply to the more structured con-
textual bandit model. In this paper, we examine the RBMLE
method both for linear contextual bandits as well as a more
general class of generalized linear bandits. Linear bandits and
their variants have been popular models for abstracting the
sequential decision making in various applications, such as
recommender systems (Li et al. 2010) and medical treatment
(Tewari and Murphy 2017).

This paper extends the RBMLE principle and obtains sim-
ple index policies for linear contextual bandits as well as their
generalizations that have provable order-optimal finite-time
regret performance as well as empirical performance compet-
itive with the best currently available. The main contributions
of this paper are as follows:

* We extend the RBMLE principle to linear contextual ban-
dits by proposing a specific type of reward-bias term. We
introduce into RBMLE the modification of using a Gaus-
sian pseudo-likelihood function, both for usage in situa-
tions where the distribution of the rewards is unknown, as
well as to derive simple index policies. Different from the
popular UCB-based policies, whose indices usually con-
sist of two components: a maximum likelihood estimator
and a confidence interval, RBMLE directly incorporates a
reward-bias term into the log-likelihood function to guide
the exploration instead of using concentration inequalities.
The derived RBMLE index is thereby different from the
existing indices for linear bandits.

* We show that the so modified RBMLE index attains a regret
bound of O(v/T log T'), which is order-optimal (within a
logarithmic factor) for general, possibly non-parametric,
sub-Gaussian rewards. To the best of our knowledge, this
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is the first provable finite-time regret guarantee of the clas-
sic RBMLE principle for contextual bandits. This bound
shaves a factor of O(y/T€) from Thompson Sampling
(LinTS) (Agrawal and Goyal 2013), a factor of O(y/log T')

from (Chu et al. 2011), and a factor of O(1/log” T') from
Gaussian Process Upper Confidence Bound (GPUCB) with
linear kernels (Srinivas et al. 2010), and achieves the same
regret bound as the Information Directed Sampling (IDS)
(Kirschner and Krause 2018) and Improved Gaussian Pro-
cess Upper Confidence Bound (IGP-UCB) (Chowdhury
and Gopalan 2017).

* We extend the techniques to the generalized linear models
and show that the same regret bound of O(v/T log T') can
still be attained in the general case. This shaves a factor of
v1ogT" from (Filippi et al. 2010), and achieves the same
regret bound as UCB-GLM in (Li, Lu, and Zhou 2017).

* We conduct extensive experiments to demonstrate that the
proposed RBMLE achieves an empirical regret competitive
with the state-of-the-art benchmark methods while being
efficient in terms of computation time. Notably, the regret
performance of RBMLE is the most robust across differ-
ent sample paths. The results validate that the proposed
algorithm enjoys favorable regret and computation time.

2 Problem Setup

We consider the stochastic contextual bandit problem with
K < 400 arms, possibly large. At the beginning of each de-
cision time ¢ € N, a d-dimensional context vector z; , € R4,
with ||z, ]| < 1, is revealed to the learner, for each arm
a € [K]. The contexts {x .} are generated by an adaptive
adversary, which determines them in an arbitrary way based
on the history of all the contexts and rewards. Given the
contexts, the learner selects an arm a; € [K] and obtains
the corresponding reward r;, which is conditionally indepen-
dent of all the other rewards in the past given the context
{x¢,q,}. We define (i) x; := x4 4,, (i) X; asthe (t — 1) x d
matrix in which the s-th row is ], for all s € [t — 1], (iii)
R; := (r1,- - ,7r4—1)T row vector of the observed rewards
up to time ¢ — 1, and (iv) F; = (z1,a1,71, - , ;) denotes
the o-algebra of all the causal information available right be-
fore r; is observed. We assume that the rewards are linearly
realizable, i.e., there exists an unknown parameter 6, € R4
with ||0.||2 < 1, and a known, strictly increasing link func-
tion i : R — R such that E[r¢|F;] = u(61z;). We assume
that y is continuously differentiable, with its derivative p’
having a supremum L, and an infimum &, > 0.! We call
this the generalized linear bandit problem.

Let a} := arg maxj<;<x 012, ; be an arm that yields the
largest conditional expected reward E[r;|F;] at time ¢ (with
ties broken arbitrarily), and x; := xy4;. The objective of
the learner is to maximize its total over a finite time horizon
T, i.e., the learner aims to minimize the total conditional
expected pseudo-regret, which we shall refer to simply as the

'A further discussion about this assumption is in Appendix H.



“cumulative regret,” defined as

T
R(T) := > p(0Ta}) — p(6Txy). )
t=1

We call the problem a standard linear bandits problem
if (i) the reward is 7y = O1x; + &4, (ii) &; is a noise with

Ele¢|x;] = 0, and (iii) the rewards are conditionally o-sub-
Gaussian, i.e.,

Elexp(pe:)|Fi] < exp (p?0?/2). (6)

Wlog, we assume o = 1. For standard linear bandits the link
function p is an identity and x,, = 1.

3 RBMLE for Standard Linear Bandits

We begin with the derivation of the RBMLE index and its
regret analysis for linear contextual bandits.

3.1 Index Derivation for Standard Linear Bandits

Let ¢(F3; 0) denote the log-likelihood of the historical ob-
servations when the true parameter is 6. Let A be a positive
constant. At each ¢, the learner takes the following two steps.

1. Let§, = argmax {£(F;;0)+a(t) mex 00— 20003}
6 ac

2. Choose any arm a; that maximizes 67 Tt,q-

The term a(t) maxi<q<x 0724 4 is the reward-bias. A mod-
ification to the RBMLE is the additional quadratic regular-
ization term %HHHg, a la ridge regression. Wlog, we assume
that A > 1.

The above strategy can be simplified to an index strategy.
Define the index of an arm a at time ¢ by

A2
Lo = max {((Fi:0) + a(t) - 0720 = 51013}, D)

and simply choose an arm a; that has maximum index. The
indexability proof is in Appendix A.

To derive indices, it is necessary to know what the log-
likelihood £(Fy; @) is. However, in practice, the true distri-
bution of the noise €; is unknown to the learner or it may
not even follow any parametric distribution. We employ the
Gaussian density function as a surrogate:

t—1

U(F;0) = _% Z(eTis —ry)? -

s=1

t—1

log(2m). (8)

Hence 6, is any maximizer of { —Z’;;ll (0Txs—rs)*+2a(t)-
maxXj<ae<K HT.Z’t)a — AHGH%}

It is shown in Section 3.2 that despite the likelihood mis-
specification, the index derived from the Gaussian density
achieves the same regret bound for general non-parametric
sub-Gaussian rewards.

The LinRBMLE index has the following explicit form, as
proved in Appendix B:

Corollary 1 For the Gaussian likelihood (8), there is a
unique maximizer of (7) for every arm a,

Ora = Vi (XT Ry + a(t)m1,0), ©)
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where V; := X[ X; + Al. The arm a; chosen by the Lin-
RBMLE algorithm is

~ 1
{Oraes+a@lewil? . (0

ap = argmax
1<i<K

where GAQ := V; ' X[ Ry is the least squares estimate of 6.

We summarize the LinRBMLE algorithm in Algorithm 1.

Algorithm 1 LinRBMLE Algorithm

1: Input: «(t), A
2: Imitialization: V] < \I
3: fort=1,2,--- do

4: Observe the contexts {x; 4 } for all the arms
5 Select the action a; = argmax, {0] z; .+
1 .
La(t)|zia |‘2/'fl} and obtain 7
6: Update Vi1 < Vi + 24 0,2] ,,
7: end for

Remark 1 Similar to the well-known LinUCB index
0T ze i + vl|xe v, (Li et al. 2010), the LinRBMLE in-
dex is also defined as the sum of the least squares estimate
and an additional exploration term. Despite this high-level
resemblance, LinRBMLE has two salient features: (i) As
mentioned in Section 1, the LinRBMLE index is different
from the UCB-based indices as it directly incorporates a
reward-bias term into the log-likelihood function to guide the
exploration instead of using concentration inequalities; (ii)
Under LinRBMLE, the ratio between the exploration terms
of any two arms i, j is HQ:HH%/;l/foJ H%/f“ which is more
contrastive than Hl’t’iHthl/th’jHVvtfl of LinUCB. With a
proper bias term, this design of LinRBMLE implicitly en-
courages more exploration (since ||z ; ||V;1 is a confidence
interval). As will be seen in Section 3.2, with a proper bias
term (e.g., a(t) = /1), this additional exploration does not
sacrifice the regret bound. Moreover, as suggested by the
regret statistics in Section 5, this design makes LinRBMLE
empirically more robust across different sample paths, which
is of intrinsic interest.

3.2 Regret Bound for the LinRBMLE Index

We begin the regret analysis with a bound on the “immediate
regret Ry = 01 (z} — x4).

29

Lemma 1 Under the standard linear bandit model,

~ 1
Ry <102 = Ollv, - 127 v+ = 5@ 2f]5,

(1)

1
Sa®ll .

The proof of Lemma 1 is in Appendix C.

+ 110 = Oullvi - llzelly, - +

Remark 2 Lemma 1 highlights the main difference between
the analysis of the UCB-based algorithms (e.g., (Abbasi-
Yadkori, Pal, and Szepesvari 2011; Chu et al. 2011)) and
that of the LinRBMLE algorithm. To arrive at a regret up-
per bound for LinRBMLE, it is required to handle both



1. While it could

be challenging to quantify each individual term, we show in
Theorem 1 that a tight regret upper bound can be obtained by
jointly analyzing these two terms.

10T = Oullv, - ll=f lly,-+ and ga(t)]z7I7,-

Theorem 1 below presents the regret bound for the Lin-
RBMLE algorithm; it is proved in Appendix D. Let

Go(t, ) == U\/dlog ((A+1) /(X)) + A%,

Gu(t) = \/2d1og (A + 1) /d)

Theorem 1 For the LinRBMLE index (10), with probability
at least 1 — 9, the cumulative regret satisfies

(12)

(13)

T
1
Ry < (Go(T, 5)) —
Z (; 2a(t)) (14)
1
+VTGo(T,6)G(T) + Fa(T) (G1(T))*.
Consequently, by choosing the bias term a(t) = /%, the

O(dVTlogT).

Remark 3 As mentioned in Section 1, in aspect of 7', Lin-
RBMLE achieves a better regret bound than several popular
benchmark methods, including LinTS (Agrawal and Goyal
2013), SupLinUCB (Chu et al. 2011), and GPUCB with a
linear kernel (Srinivas et al. 2010). Moreover, LiInRBMLE
achieves the same regret bound as that of IDS (Kirschner and
Krause 2018) and IGP-UCB (Chowdhury and Gopalan 2017)
which are two of the most competitive benchmarks. In Sec-
tion 5, we show via simulations that LinRBMLE achieves an
empirical regret competitive with IDS while being much
more computationally efficient. LinRBMLE also has the
same regret bound as that of LinUCB (Abbasi-Yadkori, Pal,
and Szepesvari 2011). As LinRBMLE addresses exploration
in a fundamentally different manner as discussed in Remark
1, the corresponding regret proof also differs from those of
the UCB-base policies, as highlighted in Remark 2. From the
simulations, we further observe that LinRBMLE significantly
outperforms LinUCB in terms of both empirical mean re-
gret and regret statistics. LinRBMLE also matches the lower
bound in both d and T for infinite arm set. We give a more
detail discussion in Remark 7.

regret bound is R(T') =

4 RBMLE for Generalized Linear Bandits

4.1 Index Derivation for Generalized Linear
Bandits

For the generalized linear case, as before, let 0, be any max-
imizer of {(Fy;0) + a(t) - maxi<acw 07200 — 2)0]3}-
However, a major difference vis-a-vis the standard linear case
is that L,, > x,,. To handle this, we incorporate an additional
factor 7)(t) that is a positive-valued, strictly increasing func-
tion that satisfies lim;_, o 7(t) = 00, and choose any arm a;
that maximizes {¢(Fy; 01.0) +n(t)u(t) -0 s 0.0 — 311040 H;}
The regret analysis below suggests that it is sufficient to
choose n(t) to be slowly increasing, e.g., n(t) = 1 + log t.
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Next, we generalize the notion of a surrogate Gaussian
likelihood discussed in Section 3.1 by considering the density
functions of the canonical exponential families:

p(relz:) = exp(riaff. — b(x{0.) +c(r)),  (15)

where b(-) : R — R is a strictly convex function that sat-
isfies V/(z) = p(z), forall z € R,and ¢(-) : R — R
is the normalization function. The exponential family con-
sists of a variety of widely used distributions, including bi-
nomial, Gaussian, and Poisson distributions. By the prop-
erties of the exponential family, v'(z]6.) = E[r¢|z:] and
b’ (276.) = V[ryz¢] > 0. By (21) and the strict convexity
of b(+), €(Fi;0) + «(t) - 0Ty 4 is strictly concave in 6 and
therefore has a unique maximizer. By the first-order sufficient
condition, ¢; , is the unique solution to

t—1
Z (T‘SI’S — u(xle_t_,a)xs) - )\éna +a(t)zy,, =0. (16)
s=1

Note that (15) is used only for index derivation and is not
required in the regret analysis in Section 4.2. We summarize
the resulting GLM-RBMLE algorithm for the generalized
linear case in Algorithm 2.

Remark 4 The technical reason behind incorporating 7)(t)
into GLM-RBMLE is as follows: As will be seen in (101)-
(102) in Appendix F, the immediate regret R; is upper

and this inequality resembles (37) for the linear case. To fur-
ther bound the RHS of (101), we need the leading coefficient

— 1 to be negative. To ensure this, we propose
to set n({f to be a positive, strictly i 1ncreas1ng function with
lim; o 77(t) = oo such that L? /(2x27(t)) < 1 for all suffi-
ciently large ¢. For the linear case, we can simply let n(t) = 1

since L, = i, = 1 and L? /2x?, < 1 automatically holds.

Algorithm 2 GLM-RBMLE Algorithm

1: Input: «(t), A, n(t)

2: fort=1,2,--- do

3: Observe the contexts {x; o} for all the arms

4 Calculate 0y o for ea_ch a by solving 22;11 (?"SCES—
N(x-sret,a)l's> - )\gt,a + Ol(t)l't’a =0

5: Select the action a; = argmax, {{(F;0;.q)+
n(t)a(t)0] 1.0 — %Héta”;} and obtain 7;

6: end for

4.2 Regret Bound for GLM-RBMLE for
Generalized Linear Bandits

We begin the regret analysis of GLM-RBMLE by introducing
the following definitions.

Define Ty := min{t € N : %fin(t < 3}. Recall that

G1(t) is defined in (13). For ease of exposition, we also
define the function

d
Ga(t,0) ;::'\/21
i

1
+ log =

2t
1
g(1+ 5

d) a7



We also define Cy := 2L, [k}, + 1/ /R, Co := 2L3 /K2 +
Ly /[y, and C3 := L2 /2.

Theorem 2 For the GLM-RBMLE index, with probability

at least 1 — ¢, the cumulative regret satisfies

R(T) < To + C1a(T)(G1(T))* + CoV'T G (T)Go (T, 6)

T

+C3(G2(T,8))* S (1/a(t)). (18)
Therefore, if a(t) = Q(v/1), then R(T) = O( (T) log T);
If a(t) = O(Vt), then R(T) = O(( Zt o) logT)
Hence, by choosing a(t) = \f t, R(T) = (d\/>log T).

Remark 5 This bound improves that in (Filippi et al. 2010)
by a v/log 1" factor and is the same as that of UCB-GLM (Li,
Lu, and Zhou 2017).

S Numerical Experiments

To evaluate the performance of the proposed RBMLE meth-
ods, we conduct a comprehensive empirical comparison with
other state-of-the-art methods vis-a-vis three aspects: effec-
tiveness (cumulative regret), efficiency (computation time per
decision vs. cumulative regret), and scalability (in number of
arms and dimension of contexts). We paid particular attention
to fairness of comparison and reproducibility of results. To
ensure sample-path sameness for all methods, we compared
each method over a pre-prepared dataset containing the con-
text of each arm and the outcomes of pulling each arm over
all rounds. Hence, the outcome of pulling an arm is obtained
by querying the pre-prepared data instead of calling the ran-
dom generator and changing its state. A few benchmarks such
as LinTS and Variance-based Information Directed Sampling
(VIDS) that rely on outcomes of random sampling in each
round of decision-making are separately evaluated with the
same prepared data and with the same seed. To ensure the
reproducibility of experimental results, we set up the seeds
for the random number generators at the beginning of each
experiment and provide all the codes.

To present a comprehensive numerical study similar to
(Russo and Van Roy 2018), the benchmark methods com-
pared include LinUCB (Chu et al. 2011), LinTS (Agrawal
and Goyal 2013), Bayes-UCB (BUCB) (Kaufmann, Cappé,
and Garivier 2012), GPUCB (Srinivas et al. 2010) and its vari-
ant GPUCB-Tuned (GPUCBT) (Russo and Van Roy 2018),
Knowledge Gradient (KG) and its variant KG* (Ryzhov, Fra-
zier, and Powell 2010; Ryzhov, Powell, and Frazier 2012;
Kaminiski 2015), and VIDS (Russo and Van Roy 2018). A
detailed review of these methods is presented in Section 6.
The values of their hyper-parameters are as follows. For Lin-
RBMLE, as suggested by Theorem 1, we choose a(t) = v/t
without any hyper-parameter tuning, and A = 1 whichis a
common choice in ridge regression and is not sensitive to the
empirical regret. We take o = 1 in LinUCB and § = 10~
in GPUCB. We tune the parameter ¢ in GPUCBT for each
experiment and choose ¢ = 0.9 that achieves the best per-
formance. We follow the suggestion of (Kaufmann, Cappé,
and Garivier 2012) to choose ¢ = 0 for BUCB. Respect-
ing the restrictions in (Agrawal and Goyal 2013), we take
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0 = 0.5 and € = 0.9 in LinTS. In the comparison with IDS
and VIDS, we sampled 10? points over the interval [0, 1] for ¢
and take M = 10* in sampling (Algorithm 4 and 6 in (Russo
and Van Roy 2018)). In the Bayesian family of benchmark
methods (LinTS, BUCB, KG, KG*, GPUCB, GPUCBT, and
VIDS), the prior distribution over the unknown parameters
0. is N'(04, I;). The comparison contains 50 trials of experi-
ments and 7" rounds in each trial. We consider both contexts,

“static,” where the context for each arm is fixed in each exper-

iment trial, and “time-varying,” where the context for each
arm changes from round to round.

The procedure for generating the synthetic dataset is as fol-
lows: (i) All contexts are drawn randomly from N (04, 101,)
and normalized by their /5 norm; (ii) At time ¢, the reward of
each arm 7 is sampled independently from N (p(6%2¢;), 1).
In each test case, we consider a fixed 6, and randomly gen-
erate the contexts, which lead to different mean rewards
across the arms. This scheme for generating the synthetic
dataset has been widely adopted in the bandit literature, such
as (Abbasi-Yadkori, Pal, and Szepesvari 2011; Dumitrascu,
Feng, and Engelhardt 2018; Kirschner and Krause 2018); (iii)
As IDS-based approaches are known to be time-consuming,
we choose d = 3 as suggested by (Kirschner and Krause
2018) for the experiments involving regret comparison in
order to finish enough simulation steps within a reasonable
amount of time. For the scalability experiments, we reduce
the number of rounds 7" to allow the choice of larger d’s.

Effectiveness. Figure 1 and Table 1 illustrate the effective-
ness of LiInRBMLE in terms of cumulative regret. We observe
that for both static and time-varying contexts, LinRBMLE
achieves performance only slightly worse than the best per-
forming algorithm, which is often GPUCBT or VIDS. How-
ever, compared to these two, LinRBMLE has some salient
advantages. In contrast to LinRBMLE, GPUCBT has no guar-
anteed regret bound and requires tuning the hyper-parameter
c to establish its outstanding performance. This restricts its
applicability if pre-tuning is not possible. Compared to VIDS,
the computation time of LinRBMLE is two orders of mag-
nitude smaller, as will be shown in Figure 2. As shown in
Table 1, LinRBMLE also exhibits better robustness with an
order of magnitude or two smaller std. dev. compared to
VIDS and many other benchmark methods. In Figure 1(a),
VIDS appears to have not converged, but a detailed check
reveals that this is only because its performance in some tri-
als is much worse than in other trials. The robustness is also
reflected in variation across problem instances, e.g., the per-
formance of VIDS is worse in the problem of Figure 1(b) than
in the problem of Figure 1(a), while the performance of Lin-
RBMLE is consistent in these two examples. The robustness
of LinRBMLE across different sample paths can be largely
attributed to the inclusion of the Reward Bias term «(t) in
the index (10), which encourages more exploration even for
those sample paths with small ||z ;| 1. It is worth mention-
ing that the advantage of VIDS compared to other methods is
less obvious for time-varying contexts. Experimental results
reported in (Russo and Van Roy 2018) are restricted to the
static contexts. More statistics of final cumulative regret in
Figure 1 are provided in the appendix.

Efficiency. Figure 2 presents the averaged cumulative re-



gret versus average computation time per decision. We ob-
serve that LinRBMLE and GPUCBT have points closest to
the origin, signifying small regret simultaneously with small
computation time, and outperform the other methods.

Scalability. Table 2 presents scalability of computation
time per decision as K and d are varied. We observe that both
LinRBMLE and GPUCBT, which are often the best among
the benchmark methods have low computation time as well
as better scaling when d or K are increased. LiInRBMLE is
slightly better than LinUCB in terms of computation time
under various K and d since the calculation of LinUCB index
requires an additional square-root operation. Such scalability
is important for big data applications such as recommender
and advertising systems.

For generalized linear bandits, a similar study on effec-
tiveness, efficiency, and scalability for GLM-RBMLE and
popular benchmark methods is detailed in Appendix G.

6 Related Work

The RBMLE method was originally proposed in (Kumar and
Becker 1982). It was subsequently examined in the Marko-
vian setting in (Kumar and Lin 1982; Kumar 1983b; Borkar
1990), and in the linear quadratic Gaussian (LQG) system
setting in (Kumar 1983a; Campi and Kumar 1998; Prandini
and Campi 2000). A survey, circa 1985, of the broad field
of stochastic adaptive control can be found in (Kumar 1985).
Recently it has been examined from the point of examining
its regret performance in the case of non-contextual bandits
with exponential family of distributions in (Liu et al. 2020).
Other than that, there appears to have been no work on exam-
ining its performance beyond long-term average optimality,
which corresponds to regret of o(t).

The linear stochastic bandits and their variants have been
extensively studied from two main perspectives, namely the
frequentist and the Bayesian approaches. From the frequentist
viewpoint, one major line of research is to leverage the least
squares estimator and enforce exploration by constructing an
upper confidence bound (UCB), introduced in the LINREL
algorithm by (Auer 2002). The idea of UCB was later ex-
tended to the LinUCB policy, which is simpler to implement
and has been tested extensively via experiments (Li et al.
2010). While being simple and empirically appealing ap-
proaches, the primitive versions of the above two algorithms
are rather difficult to analyze due to the statistical dependen-
cies among the observed rewards. To obtain proper regret
bounds, both policies were analyzed with the help of a more
complicated master algorithm. To address this issue, (Dani,
Hayes, and Kakade 2008) proposed to construct a confidence
ellipsoid, which serves as an alternative characterization of
UCB, and proved that the resulting algorithm achieved an
order-optimal regret bound (up to a poly-logarithmic factor).
Later, sharper characterizations of the confidence ellipsoid
were presented by (Rusmevichientong and Tsitsiklis 2010)
and (Abbasi-Yadkori, Pal, and Szepesvari 2011) thereby im-
proving the regret bound. Given the success of UCB-type
algorithms for linear bandits, the idea of a confidence set was
later extended to the generalized linear case (Filippi et al.
2010; Li, Lu, and Zhou 2017) to study a broader class of
linear stochastic bandit models. Differing from the above
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UCB-type approaches, as a principled frequentist method,
the RBMLE algorithm guides the exploration toward poten-
tially reward-maximizing model parameters by applying a
bias to the log-likelihood. Most related is the work by (Liu
et al. 2020), which adapted the RBMLE principle for stochas-
tic multi-armed bandits and presented the regret analysis as
well as extensive numerical experiments. However, (Liu et al.
2020) focused on the non-contextual bandit problems, and the
presented results cannot directly apply to the more structured
linear bandit model.

Instead of viewing model parameters as deterministic un-
known variables, the Bayesian approaches assume a prior
distribution to facilitate the estimation of model parameters.
As one of the most popular Bayesian methods, Thompson
sampling (TS) (Thompson 1933) approaches the exploration
issue by sampling the posterior distribution. For linear ban-
dit models, TS has been tested in large-scale experiments
(Chapelle and Li 2011) and shown to enjoy order-optimal
regret bounds in various bandit settings (Agrawal and Goyal
2013; Russo and Van Roy 2016; Abeille, Lazaric et al. 2017;
Agrawal and Goyal 2017; Dumitrascu, Feng, and Engelhardt
2018). On the other hand, Bayesian strategies can also be
combined with the notion of UCB for exploration, as in the
popular GPUCB (Srinivas et al. 2010) and Bayes-UCB (Kauf-
mann, Cappé, and Garivier 2012) algorithms. However, to the
best of our knowledge, there is no regret guarantee for Bayes-
UCB in the linear bandit setting (Urteaga and Wiggins 2017).
Alternative exploration strategies for linear bandits have also
been considered from the perspective of explicit information-
theoretic measures. (Russo and Van Roy 2018) proposed a
promising algorithm called information-directed sampling
(IDS), which makes decisions based on the ratio between the
square of expected regret and the information gain. As the
evaluation of mutual information requires computing high-
dimensional integrals, VIDS, a variant of IDS, was proposed
to approximate the information ratio by sampling, while still
achieving competitive empirical regret performance. Com-
pared to IDS and its variants, the proposed RBMLE enjoys a
closed-form index and is therefore computationally more effi-
cient. Another promising solution is the Knowledge Gradient
(KG) approach (Ryzhov, Powell, and Frazier 2012; Ryzhov,
Frazier, and Powell 2010), which enforces exploration by
taking a one-step look-ahead measurement. While being em-
pirically competitive, it remains unknown whether KG and
its variants have a provable near-optimal regret bound. In con-
trast, the proposed RBMLE enjoys provable order-optimal
regret for standard linear as well as generalized linear bandits.

7 Conclusion

In this paper, we extend the Reward Biased Maximum Like-
lihood principle originally proposed for adaptive control, to
contextual bandits. LinRBMLE leads to a simple index policy
for standard linear bandits. Through both theoretical regret
analysis and simulations, we prove that the regret perfor-
mance of LinRBMLE is competitive with the state-of-the-art
methods while being computationally efficient. Given the
favorable trade-off of regret and computation time, RBMLE
is a promising approach for contextual bandits.
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Figure 1: Cumulative regret averaged over 50 trials with 7" = 3 x 10% and K = 10: (a) and (b) are under static contexts; (c) and
(d) are under time-varying contexts; (a) and (c) are with 6, = (—0.3,0.5,0.8); (b) and (d) are with with , = (—0.7,—0.6,0.1).

Alg. | RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG | KG* | LinTS | VIDS
Mean 1.86 54T 6.04 3.88 0.90 1652 | 3.86 | 1343 | 12.20
StdDev | 042 1487 | 11.78 119 053 | 2668 | 1046 | 2.20 | 74.66
Q.10 145 0.04 0.07 2.30 0.32 0.03 | 0.07 | 1083 | 0.15
Q25 162 0.07 0.10 3.01 0.59 0.05 | 0.10 | 1244 | 029
Q.50 179 0.15 0.14 378 0.79 0.18 | 0.18 | 1358 | 045
Q75 1.96 1.00 130 456 1.09 2383 | 0.34 | 1425 | 0.79
Q.90 231 1934 | 2300 | 574 1.66 | 6489 | 1894 | 1573 | 238
Q.95 2.75 3047 | 3631 | 501 198 | 7596 | 27.18 | 16.78 | 9.40

Table 1: Statistics of the final cumulative regret in Figure 1(a). The best and the second-best are highlighted. ‘Q’ and “Std.Dev”
stand for quantile and standard deviation of the total cumulative regret over 50 trails, respectively. All the values displayed here
are scaled by 0.01 for more compact notations.
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Figure 2: Average computation time per decision vs. averaged cumulative regret for (a) Figure 1(a); (b) Figure 1(b); (c) Figure
1(c); (d) Figure 1(d).

Algorithm RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG | KG* | LinTS | VIDS
d =100, K =100 0.127 0.149 1.157 0.147 0.145 1.107 | 0401 | 0.192 | 5.054
d =200, K =100 0.213 0.24 1.237 0.234 0.233 1.168 | 0.488 | 0.561 9.239
d = 300, K = 100 0.303 0.339 1.467 0.334 0.332 1.386 | 0.599 | 1.374 | 19.876
d =100, K = 200 0.233 0.273 2.25 0.268 0.266 2.155 | 1.021 | 0.205 | 6.218
d =200, K =200 0.373 0.421 2.455 0.41 0.409 231 | 1.168 | 0.586 | 13.838
d =300, K =200 0.452 0.503 2.636 0.496 0.495 2.455 | 1.258 | 1.418 | 28.652

Table 2: Average computation time per decision for static contexts, under different values of K and d. All numbers are averaged
over 50 trials with 7' = 102 and in 10~2 seconds. The best is highlighted.
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Ethical Impact

Linear bandits as well as the generalized models serve as a
powerful framework for sequential decision making in vari-
ous critical applications, such as clinical trials (Varatharajah
et al. 2018), mobile health (Tewari and Murphy 2017), person-
alized recommender (Li et al. 2010) and online advertising
systems (Chapelle and Li 2011), etc. The rising volume of
datasets in these applications requires learning algorithms
that are more effective, efficient and scalable. The study in
this paper contributes a new family of frequentist approaches
to this community. These approaches are proved to be order-
optimal and demonstrate strong empirical performance with
respect to measures of effectiveness, efficiency and scalabil-
ity. As such, the proposed approaches are expected to further
improve user experience in applications and benefit busi-
ness stakeholders. The proposed approaches are inspired by
an early adaptive control framework. This framework has
been applied in many adaptive control applications (Kumar
1985; Kumar and Lin 1982; Kumar 1983b,a; Borkar 1990;
Campi and Kumar 1998; Prandini and Campi 2000). How-
ever, analysis of its finite-time performance has been missing
for decades. Our study takes a very first step towards under-
standing its finite-time performance in the contextual bandit
setting.

Unfortunately, as in many other contextual bandit stud-
ies, our model does not take into account the fairness issue
in learning the unknown parameters. For instance, it may
happen that during the learning process, contextual bandit
algorithms may consistently discriminate against some spe-
cific groups of users based on their social, economic, racial
and sexual characteristics. Ensuring fairness may therefore
require additional constraints on automated selection proce-
dures. Such a study can contribute to general studies on the
undesirable biases of machine learning algorithms (Joseph
et al. 2016).
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