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Abstract
Stochastic gradient descent (SGD) is a widely used method for
its outstanding generalization ability and simplicity. Adaptive
gradient methods have been proposed to further accelerate
the optimization process. In this paper, we revisit existing
adaptive gradient optimization methods with a new interpre-
tation. Such new perspective leads to a refreshed understand-
ing of the roles of second moments in stochastic optimiza-
tion. Based on this, we propose Angle-Calibration Moment
method (ACMo), a novel stochastic optimization method. It
enjoys the benefits of second moments with only first mo-
ment updates. Theoretical analysis shows that ACMo is able
to achieve the same convergence rate as mainstream adap-
tive methods. Experiments on a variety of CV and NLP tasks
demonstrate that ACMo has a comparable convergence to
state-of-the-art Adam-type optimizers, and even a better gen-
eralization performance in most cases. The code is available
at https://github.com/Xunpeng746/ACMo.

Introduction
Deep neural network has been widely adopted in different
applications because of its excellent performance, which al-
ways requires a huge amount of data for training. Calculating
the full gradient of data and performing the full gradient de-
scent (GD) become computationally expensive. Therefore,
stochastic gradient descent (SGD) has become very popular
for training deep neural networks. Empirically, in each step
of the training, SGD samples a mini-batch of data and applies
gradient descent with the corresponding stochastic gradients
computed on the mini-batch.

In practice however, the vanilla SGD does not always pro-
duce good results, in which case many SGD variants are
proposed. Especially, relevant work has shown that incorpo-
rating momentum information into SGD can help with its
optimization process. Specifically, by introducing the first
moment, the SGD momentum can help the model escape
from some saddle points, and therefore improve its gener-
alization. Intuitively, vanilla SGD walks along the steepest
path, whereas the added momentum makes the optimization
process smoother and quicker, thus helping the model to
barrel through narrow valleys.

*Work is done while at Bytedance AI Lab.
Copyright © 2021, Association for the Advancement of Artificial
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Additionally, second moments are used to adapt the learn-
ing rate of model parameters (Duchi, Hazan, and Singer
2011), performing smaller updates (i.e. low learning rates)
for parameters associated with frequently occurring features
and larger updates (i.e. high learning rates) for those asso-
ciated with infrequent features. This always accelerates the
optimization process towards the objective. Moreover, Adam
is proposed to utilize both of first and second moments for
enjoying both of their benefits (Kingma and Ba 2015). Cur-
rently, it is one of the most widely used methods for neural
network training.

Although Adam has achieved a great success, we argue
that introducing extra second moments is not necessarily the
best way to boost the optimization efficiency. First, by design-
ing special optimization problems, the solution of adaptive
gradient methods with second moments may fall into a local
minima of pool generalization (Wilson et al. 2017). Second,
keeping a copy of second moments (with the same size as the
parameters) brings high memory overhead, leading to smaller
mini-batch size for training. This may adversely affect the
performance of many applications that are sensitive to train-
ing batch size. Given the above concerns, could we design an
optimization approach that only uses first moments but enjoys
the benefits of both first (better generalization by escaping
saddle points) and second (fast convergence with adaptive
learning) moments?

In this paper, we offer an affirmative to the question by
proposing an Angle-Calibrated Moment method (ACMo)
for stochastic optimization. ACMo takes a further step by
explicitly requiring that the opposite direction of current
descent be in acute angles with both the current gradient and
the directions of historical mini-batch updating. Given the
angle constraint, ACMo is likely to ensure descents for all
mini-batch losses, while guaranteeing sufficient descent of
current mini batches. Although ACMo has abandoned the
second moment, on which many other methods rely, it still
takes the advantage of fast convergence as those methods.
We summarize our contributions below
• We propose ACMo, which is a new SGD variant. To the

best of our knowledge, ACMo is the first approach with-
out relying on second moments, but still has comparable
convergence speed as compared with Adam-type methods.

• We provide a novel view and an intuitive analysis to under-
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stand the effect of second moments, which may shed light
on the following work in this field .

• We provide theoretical results for the gradient norm con-
vergence of ACMo on the nonconvex settings, which il-
lustrates that ACMo can offer the same convergence rate
comparing with the Adam-type optimizers. Experimental
results on different CV and NLP tasks show that, even
without second moments, ACMo can display convergence
speed that is on par with SOTA Adam-type optimizers,
while obtains even better generalization in most cases.

Notations. In the rest of this paper, we have parameters
θ ∈ Rd where d denotes the dimension of parameters. The l2
norm of a given vector θ is expressed by ‖θ‖=

√∑d
i=1 θ

2
i .

With slightly abuse of notation, we represent arithmetic
symbols as element-wise operations for vectors, e.g., a2 =
[a21, a

2
2, . . .]

T ,a/b = [a1/b1, a2/b2, . . .]T . We denote bxc
as the greatest integer less than or equal to the real num-
ber x. Given any integers x, y, where y > 0, we denote x
(mod y) as the remainder of the Euclidean division of x by
y. In the finite-sum loss function, f(θ) = 1

n

∑n
i=1 fi(θ), the

number of instances and the loss of the i-th training data
are represented as n and fi(θ), respectively. Besides, we
denote fA(θ) when we feed a collection of samples, i.e.,
fA(θ) := 1

|A|
∑
i∈A fi(θ). For an optimization algorithm, if

its update paradigm can be formulated as

θt+1 = arg min
θ

f̂At(θ,θt), (1)

we denote eq. 1 as the iteration auxiliary problem (similar to
Nesterov and Polyak (2006)).

Related Work
In this section, we will introduce the development of the
neural network optimizers.

First Moment Optimizers SGD-momentum and Nesterov
accelerated gradient (Nesterov 2013) are widely used in train-
ing large-scale neural networks, but because of the learning
rate issue, their excellent generalization ability is brittle.

Second Moment Optimizers To accelerate the conver-
gence, researchers began to focus on the design of adaptive
gradient methods. Adagrad (Duchi, Hazan, and Singer 2011)
introduced the second moment to obtain a self-adaptive learn-
ing rate, thus freeing researcher of the troubles of parameter
tuning. The update rules of Adagrad can be formulated as
θt+1 = θt−αt ·gt/

√
vt, where gt denotes the stochastic gra-

dient, vt is the accumulation of gradient’s second moments,
i.e., vt =

∑t
τ=1 g

2
τ , and αt is the decreasing learning rate

with αt = Θ(1/
√
t). Theoretically, Adagrad improved the

convergence of regret from O(
√
d/T ) to O(1/

√
T ) for the

convex objectives with sparse gradients. However, in prac-
tice, people realize that adaptive gradient of Adagrad, i.e.,
gt/
√
vt goes to zero very quickly due to the fact that vt ac-

cumulates to large number quickly as the algorithm proceeds,

and they often require optimizers to have a lower memory
cost for training a larger mini-batch. To make it through,
RMSProp (Hinton, Srivastava, and Swersky 2012) uses the
exponential decay in second moments to control the accu-
mulation speed of second moment in Adagrad, and min-max
squared graidient is introduced to implement Adagrad with a
memory-efficient way (Anil et al. 2019).

Adam-type Optimizers To take both the benefits from first
and second moments, Adam was proposed to incorporate
the momentum into RMSProp. The detailed procedure of
Adam can be formulated as θt+1 = θt − αt · mt/

√
vt,

where mt is the exponential decay of momentum, i.e., mt =∑t
τ=1(1 − β1)βt−τ1 gτ , and vt is the exponential decay of

second moments, i.e., vt =
∑t
τ=1(1− β2)βt−τ2 g2

τ .
The faster convergence, robust hyper-parameters and good

performance on bunch of tasks make Adam become one
of the most successful optimizers. Adam was proved to be
divergent in certain convex cases, and Amsgrad was proposed
to correct the direction of Adam (Reddi, Kale, and Kumar
2018).

Although convergence, the generalization ability of adap-
tive algorithms is worse than SGD-momentum in many tasks.
Thus, a lot of studies are proposed to improve the general-
ization performance of Adam-type methods by making some
connections between Adam and SGD-momentum, e.g., ND-
Adam (Zhang et al. 2017), AdamW (Loshchilov and Hutter
2017), SWATS (Keskar and Socher 2017), Adabound (Luo
et al. 2019), PAdam (Chen et al. 2020), etc.

All the aforementioned methods try to find the connection
between Adam and SGD-momentum, thus all these algo-
rithms take the second moment adaptation as a grant. Differ-
ent from previous work, we revisit the original idea of second
moment adaptation, and propose an angle based algorithm
without second moments. Such intuition makes ACMo have
a simpler update, a lower memory overhead, a good general-
ization performance, and a comparable convergence to SOTA
Adam-type optimizers.

Proposed ACMo
In this section, we propose a novel optimizer, the Angle-
Calibrated Moment method (ACMo), for both fast conver-
gence and ideal generalization with only first moments.

We first give some theoretical analysis, showing that incor-
porating second moments into optimization approximately
equals to penalize the projection of the current descent di-
rection on previous gradients. Besides, such penalty helps
facilitate the descent of the current batch loss while not harm-
ing the descent effects of previous iterations as much as pos-
sible. After that, we replace the projection penalty with the
inner product penalty in iteration auxiliary problems, which
partially preserve geometric properties of second moments
(protecting effects of previous updates) to expect a fast con-
vergence. Besides, the new iteration auxiliary problem can
be considered as a general form of SGD-momentum updates
to expect a good generalization ability. Finally, with suffi-
cient descent constraints of the current batch loss, we propose
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ACMo whose update paradigm is

θt+1 = θt − αt
(
gt + βt ·

‖gt‖
‖m̂t−1‖+ δt

· m̂t−1

)
, (2)

where gt and mt are mini-batch gradients and angle-
calibrated moments at iteration t, respectively.

Second Moments Work as Projection Penalty to
Preserve Previous Descent
In this section, we revisit the iterations of existing adaptive al-
gorithms from a novel point of view and denote the essential
effect of second moments which is to penalize the projection
of the current descent direction on previous gradients. Such
penalty is desired to decrease the cumulative loss by guaran-
teeing a certain descent on the current batch loss with little
increasing previous batch loss.

One may notice that almost all the adaptive methods uti-
lize second moments to adjust the individual magnitude of
their updates. However, the efficient calculation of second
moments is only proposed in Adagrad (Duchi, Hazan, and
Singer 2011). Here is the original update of Adagrad:

θt+1 = θt − αtG−1/2t gt, (3)

where Gt =
∑t
τ=1 gτg

T
τ , and gτ denotes the stochastic gra-

dient calculated at iteration τ . The iteration auxiliary problem
of Adagrad corresponding to eq. 3 can be formulated as

θt+1 = arg min
θ

f(θ),

f(θ) := (θ − θt)
T
gt︸ ︷︷ ︸

T1

+
1

2αt
(θ − θt)

T
G

1/2
t (θ − θt)︸ ︷︷ ︸

T2

.

(4)

To investigate the properties of second moments, we pro-
vide f(θ) an upper bound, f̂At(θ), with the Young’s inequal-
ity (Young 1912), and minimize it with another iteration
auxiliary problem formulated as

θ̂t+1 = arg min f̂At(θ),

f̂At(θ) = (θ − θt)
T
gt︸ ︷︷ ︸

T1

+
1

2αt
‖θ − θt‖2︸ ︷︷ ︸
T3

+
1

8αt

t∑
τ=1

∥∥∥(θ − θt)
T
gτ

∥∥∥2︸ ︷︷ ︸
T4

(5)

where At denotes the chosen mini-batch at iteration t. Thus,
the global minima θ̂t+1 of eq. 5 can also be considered as an
approximate solution of eq. 4. Investigating f̂At(θ), we find
T1+T3 is the second-order Taylor polynomial of fAt(θ) near
θt, which is completely the same with the objective function
of SGD iteration auxiliary problem. Besides, the term T4 in
f̂At(θ) can be considered as a penalty for the projections
of current descent θ − θt on the previous gradients gτ . If
we approximate gτ in T4 with ∇fAτ (θt) due to smoothness

Algorithm 1 Angle-Calibrated Moment method.

1: Input: initial point θ0 ∈ X ; step size {αt}, momentum
parameters {βt}

2: set m̂0 = 0
3: for t = 1 to T do
4: gt = ∇fAt(θt)
5: β̂t = βt ‖gt‖ / (‖m̂t−1‖+ δt)

6: m̂t = gt + Ψ(β̂t, β̂t−1) · m̂t−1
7: θt+1 = ΠX (θt − αt · m̂t)
8: end for
9: Return: θo with a discrete distribution as
P (o = i) = αi−1

/(∑T−1
τ=1

)
ατ , 2 ≤ o ≤ T .

assumption, and replace the projection regularization (T4) to
some constraints, we can obtain an approximate optimization
problem with a hard margin formulated as

arg min
θ

(θ − θt)
T
gt +

1

2αt
‖θ − θt‖2

s.t. (θ − θt)
T ∇fAτ (θt) = 0, τ ≤ t.

(6)

The constraints in eq. 6 denote the descent direction, i.e.,
θt+1 − θt is desire to be orthogonal to ∇fAτ (θt) for any
τ ≤ t, which plays a similar role to T4 in eq. 5. In the
following, we provide a explanation about such constraint
optimization problem from a random shuffling perspective.

Before each epoch begins, the whole training dataset A is
usually randomly shuffled, and is partitioned into mini-batch
of equal size {A0,A1, . . . ,Ap−1}. Then the algorithm is fed
with the samples in the fixed order, say, first A0, then A1, and
so on. The whole procedure repeats after each iteration over
the whole dataset. Let∇fAt(θt) be the gradient calculated at
iteration t by using the sample in subset At, where 0 ≤ t < p.
Note that the loss function is the average of all the samples,
e.g., 1

n

∑n
i=1 fi(θ). If we utilize∇fAt(θt) to directly update

parameters like SGD, e.g., θt+1 = θt−α∇fAt(θt), the batch
loss

∑
i∈At fi(θ) will decrease since it aligns with the oppo-

site direction of its gradient, e.g., (θt+1 − θt)
T∇fAt(θt) =

−‖∇fAt(θt)‖2< 0. However, for the loss corresponding to
the sample not in At, e.g., fAτ (θ), τ 6= t, it is highly pos-
sible that (θt+1 − θt)

T∇fAτ (θt) > 0. In other words, only
using −∇fAt(θt) as update direction will decrease the loss
corresponding to At but increase the loss except At. Hence,
with the orthogonal requirements, i.e., the constraints in eq. 6,
one can consider that Adagrad decreases the cumulative loss
by guaranteeing a descent on the current batch loss while
does not increase previous batch loss sharply.

Angle-Calibrated Moments Warrant Descents
In this section, we first enhance the iteration auxiliary prob-
lem eq. 5. Then, we make the opposite direction of current
descent forms acute angles with both current mini-batch gra-
dient and some moments to introduce our ACMo in Algo-
rithm 1.

Enlightened by the analysis in section , we realize that
adding the projection penalty (T4 in eq. 5) is to ensure that
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the descent direction does not increase previous mini-batch
losses. If we replace it with a weighted inner products penalty,
we can even expect the descent direction make decrease of
both the current mini-batch loss and the previous mini-batch
losses. Hence, we can formulate the objective of the new
iteration auxiliary problem as:

f̃At(θ) = (θ − θt)
T
gt +

Lt
2
‖θ − θt‖2 + (θ − θt)

T
ĝt,

where ĝt := β̂t

t∑
τ=1

wτgτ ,

(7)

whereLt denotes the constant of smoothness, andwτ denotes
the weight to measure the approximation confidence about
gτ . For updating θ through minimizing eq. 7, the optimum
of the quadratic function satisfies

∂f̃At(θ)

∂θ
|θ=θt+1

= gt + Lt(θt+1 − θt) + ĝt = 0

⇔θt+1 = θt −
ĝt + gt
Lt

.

(8)

Notice that if we set β̂t = 1 and wτ = βτ0 in eq. 7, eq. 8
corresponds to the update paradigm of SGD-momentum co-
incidentally. Thus, we may get the benefit of generalization
performance from the iteration auxiliary problems. Different
from SGD-momentum, we want to guarantee a sufficient
descent for the loss of current mini-batch. Hence, β̂t is re-
quested to have

β̂t :=
βt ‖gt‖∥∥∥∑t−1

τ=1 wτgτ

∥∥∥+ δt
, βt ≤ 1

⇒β̂t ≤
‖gt‖∥∥∥∑t−1
τ=1 wτgτ

∥∥∥
⇒β̂t

∥∥∥∥∥
t−1∑
τ=1

wτgτ

∥∥∥∥∥ ≤ ‖gt‖ ,
(9)

for Eq. 7. Notice that the last inequality of eq. 9 implies
current mini-batch loss descent as

fAt(θt+1)− fAt(θt)
1

≤(θt+1 − θt)
Tgt +

Lt
2
‖θt+1 − θt‖2

2
= −

[
‖gt‖2+ĝTt gt

Lt

]
+
Lt
2
· ‖gt + ĝt‖2

L2
t

=− ‖gt‖
2

2Lt
+
‖ĝt‖2

2Lt

3

≤ 0, (10)

where 1 follows from the smoothness assumption, 2 is es-
tablished due to eq. 8 and 3 is from eq. 9. Besides, we denote∑t−1
τ=1 wτgτ as m̂t−1 with the following iteration to generate

wτ s automatically,

m̂t = gt + βt ·
‖gt‖

‖m̂t−1‖+ δt
· m̂t−1, (11)
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Figure 1: Cyan: previous moments. Yellow: current mini-
batch negative gradients. Green: descent directions for auxil-
iary problems with the projection regularization, e.g., Ada-
grad. Red: descent directions for auxiliary problems with
ACMo regularization.

where βt and δt are hyper-parameters. From a geometric
perspective, m̂t is the angle bisector of gt and m̂t−1 coinci-
dentally when βt = 1 and δt = 0 (see Figure 1). Then, we
can reformulate the iteration auxiliary problem of ACMo as:

θt+1 = arg min
θ

Lt
2
‖θ − θt‖2 + (θ − θt)

T
gt

+ βt ·
‖gt‖

‖m̂t−1‖+ δt
· (θ − θt)

T
m̂t−1,

(12)

where we can obtain the update paradigm of ACMo as:

θt+1 = θt − αt
(
gt + βt ·

‖gt‖
‖m̂t−1‖+ δt

· m̂t−1

)
. (13)

In summary, we observe that (i) if θt − θt+1 forms acute
angles with both gt and∇fAτ (θt), rather than penalizing the
projection as Adagrad, we can obtain descent on both current
and previous batches; (ii) to handle the case when the estima-
tion of accumulative weighted gradients using m̂t−1 is not
accurate, we expect the current gradient gt to dominate the
descent direction for guaranteeing a sufficient descent of cur-
rent mini-batch loss. Hence, we propose a new first moment
optimizer, which attach the properties of the second moment
to first moment iterations, inspired by the iteration auxil-
iary problem of Adagrad. The proposed algorithm ACMo is
shown in Algorithm 1. Note that, Ψ(·) is a function to guar-
antee a sufficient descent of the iteration auxiliary problem.
In practice, we usually set Ψ(β̂t, β̂t−1) = β̂t.

Theoretical Results
In this section, we provide the convergence about gradient
norm in expectation for our ACMo in nonconvex settings.
Our theoretical results show that ACMo obtains the same
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convergence rate with Adam-type optimizers. All details of
our proof can be found in our supplementary material. We
list assumptions required in convergence analysis, and then
provide the main theoretical results.
Assumption 1. We assume the loss function f(θ) is differ-
entiable, and has L-Lipschitz gradient, i.e., for any feasible
solution θi,θj ∈ Rd, ‖∇fi(θi)−∇fj(θj)‖≤ L‖θi − θj‖.
Assumption 2. We assume the objective f(θ) is lower
bounded, which means minθ f(θ) > −∞.
Assumption 3. For the mini-batch loss fAt(θ) at iteration
t, we assume stochstic gradients, e.g.,∇fAt(θ) and∇fi(θ)
satisfy

E [∇fAt(θ)] = ∇f(θ), ‖∇fAt(θ)‖ ≤ G,

max
i

{
‖∇fi(θ)−∇f(θ)‖2

}
≤ σ2.

Theorem 1. Suppose Assumption 1, 2, 3 hold. If we set ε ≥ 0,
δ ≥ σ, βt ≤ 1/50, 0 < a0 ≤ 3/(4L+ 1240) and

αt =
a0√
t
,Ψ(β̂t+1, β̂t) = min

{
β̂t+1,

√
t+ 1

t
β̂t

}
,

without loss of generality. Then, the output of ACMo satisfies

E
[
‖∇f(θo)‖2

]
≤ C0√

T
+
C1 log(T )√

T

where C0 and C1 are constants independent with T , n, d and
presented in our proof.

Theorem 1 shows that ACMo has the same convergence
rate as Adam-type optimizers (Chen et al. 2019). Comparing
with theoretical results provided in Chen et al. (2020), ours
has additional O(log T/

√
T ) term. Since we do not require

the condition about the sparsity of gradients as Chen et al.
(2019). Besides, we show that rather than requesting the
coefficient sequence of first moments to be non-increasing,
a gently increasing sequence (Ψ(·) in ACMo) can keep an
Õ(1/

√
T ) convergence rate for ACMo, which expands the

range of hyper-parameters selection.

Experiments
In this section, we conduct extensive experiments on image
classification and neural machine translation tasks. We want
to demonstrate the generalization performance and the effi-
ciency of ACMo, as compared with other adaptive gradient
methods, e.g, Adam (Kingma and Ba 2015), Amsgrad (Reddi,
Kale, and Kumar 2018), Adamw (Loshchilov and Hutter
2017), PAdam (Chen et al. 2020), and Adabound (Luo et al.
2019) and SGD-momentum. Besides, we conduct Adagrad
and SGD on an additional CV task to validate our intuition
of second moments acceleration effect.

Hyperparameter Tuning Hyperparameters in optimizers
can exert great impact on ultimate solutions found by opti-
mization algorithms. In our experiments, we tune over hy-
perparameters in the following way. For all optimizers in our
experiments, we choose the best initial set of step size from
{1e− 1, 5e− 2, 1e− 2, 5e− 3, . . . , 5e− 5}.

SGD-momentum: We tune the coefficient of momentum
from {0.9, 0.8, . . . , 0.1}.

Adam, AMSGrad, AdamW, PAdam, and Adabound: For im-
age classification tasks, we turn over β1 values of {0.9, 0.99}
and β2 values of {0.99, 0.999} and the perturbation value
ε = 1e− 8. For nerual machine translation tasks, we set β1
and β2 as the suggested values of Transformer (Vaswani et al.
2017), where β1 = 0.9 and β2 = 0.98. Besides, for PAdam,
we choose the best hyperparameter p from {1/4, 1/8, 1/16}.

ACMo: We directly apply the default hyperparameters, i.e.,
βt = 0.9, Ψ(β̂t, β̂t−1) = β̂t, for all our experiments.

Experiments on Image Classification Tasks
In the image classification tasks, adaptive gradient methods
display fast convergence, but poorer generalization results
when compared to the well tuned SGD momentum, which
includes proper hyper parameters for the learning and weight
decay. Note that introducing weight decay is equivalent to
adding l2 regularization to the objectives, and has a significant
impact on the generalization ability of optimizers. Hence,
our experiments were conducted from two perspectives as
guidelines: (i) We record the convergence of training loss and
the test accuracy of all optimizers with fixed weight decays
(they optimize the same objective function). (ii) We adopt
the optimal weight decays for all optimizers, then investigate
their generalization ability based on the test accuracy.

The paper then proceeds to introduce the experimental set-
tings for the image classification tasks. We used two datasets
CIFAR-10, CIFAR-100 (Krizhevsky, Hinton et al. 2009),
and tested three different CNN architectures including VG-
GNet (Simonyan and Zisserman 2015), ResNet (He et al.
2016) and DenseNet (Huang et al. 2017). To achieve stable
convergence, we ran 200 epochs, and set the learning rate to
decay by 0.1 every 50 epochs. We performed cross-validation
to choose the best hyper-parameters for for all the optimizers.

Experiment with Fixed Weight Decay: We first evalu-
ated CIFAR-100 dataset. In this experiment, the values of
weight decay in all optimizers were fixed, and were chosen
to be the weight decay in SGD-momentum when it achieves
the maximum test accuracy.

Though ACMo was second only to SGD momentum in
terms of generalization performance, it was significantly
faster than not only the latter, but also Adam and AMSGrad
in terms of convergence speed. Its convergence speed is com-
parable with SOTA Adam variants. From the first row of Fig-
ure 2, i.e, the training curves of three tests, we observed that
ACMo significantly outperforms Adam, and has comparable
rate with PAdam and Adabound when we fixed the weight
decay. Also, in the second row of Figure 2, i,e, the test accu-
racy, our ACMo outperformed all benchmarks except only
SGD-momentum. However, the training loss converges much
slower when implemented with SGD-momentum which is
also recorded in other literature.

Experiment with Optimal Weight Decay We conduct ex-
periments on CIFAR-10 dataset, and find the optimal weight
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(a) Train Loss and Test Accuracy for VGGNet
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(b) Train Loss and Test Accuracy for ResNet
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(c) Train Loss and Test Accuracy for DenseNet
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Figure 2: Learning curves of optimizers for CNNs on CIFAR-100 image classification task.Top: training loss. Bottom:test accuracy.
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(c) Train Loss and Test Accuracy for DenseNet
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Figure 3: Learning curves of optimizers for CNNs on CIFAR-10 image classification task. Top: training loss. Bottom: test
accuracy.

decay for each optimizer which can achieve the best test
accuracy.

ACMo obtains the top three results of generalization perfor-
mance in different architectures with comparable efficiency
to SOTA Adam-type optimizers. As shown in Figure 3, Adam,
AdamW and Amsgrad did not perform as well as other op-
timizers in the plots of test accuracy. In this weight decay

setting, PAdam, Adabound and ACMo can even outperform
SGD-momentum on VGGNet at the expense of sacrificing
some efficiency. Nonetheless, they were able to outperform
Adam by more than 2 percentage points for the test accu-
racy. The experimental results show that optimizers which
converge faster than ACMo generalize worse.
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Figure 4: Learning curves of optimizers for Transformer-base on WMT’14 EN-DE machine translation task. (Dev loss & BLEU
score)

Experiments on Neural Machine Translation Tasks
Different from image classification tasks, in NLP tasks with
attention models, i.e., neural machine translation (NMT),
adaptive gradient methods are still mainstream optimiz-
ers (Zhang et al. 2019). Especially, Adam-type optimizers
have huge advantages over first moment methods in both con-
vergence and generalization performance in the fixed learning
rate setting. To validate the efficiency and generalization of
ACMo with complicated models, we perform experiments on
WMT’14 EN-DE dataset with Transformer (Vaswani et al.
2017).

Now we introduce the experimental settings for NMT tasks.
For preprocessing, sentences were encoded using byte-pair
encoding , which has a shared sourcetarget vocabulary of
about 37000 tokens. Besides, we utilize 4 Tesla-V100-PCIE-
(16GB) GPUs to train the Tansformer base, where we set
batch token size as 4096 per GPU in the training process. In
order to exclude the influence of learning tricks, we conduct
experiments with fixed step size and gradient clipping.

ACMo obtains a comparable convergence and generaliza-
tion performance to mainstream adaptive gradient methods,
and a better performance to SGD-momentum from both con-
vergence and generalization in the fix learning rate setting.
From Figure 4, we observe that ACMo descends a bit slowly
in the early stage of training due to the lack of adaptive learn-
ing rate. Even though, the rapid descent in the middle stage of
optimization help ACMo to surpass some adaptive gradient
methods, i.e., Adabound and PAdam. Finally, ACMo obtains
a comparable Dev Loss and BLEU results to that in Adam
and AdamW, and better results to SGD-momentum on the
fixed learning rate setting. These results match the records in
other literature (Zhang et al. 2019) (Variants of SGD usually
have a worse performance on attention models).

Experiments for Validating Second Moments
Intuition
In this section, we aim to validate our intuition about, Ada-
grad decreases the cumulative loss by guaranteeing a descent
on the current batch loss while does not increase previous
batch loss sharply.

We utilize commonly used Adagrad, rather than Adagrad
with full matrices, to optimize VGG-16 on CIFAR-10. During
the training process, we sampled some iterations, and check
the descent on current mini-batch loss and the ascent on

Figure 5: The intuition validation experiments. Top: the cur-
rent mini-batch descent. Bottom: other mini-batch ascents

other mini-batch losses. Then, we replace Adagrad to SGD
update in different learning rate at the sampled iterations,
and check mini-batch losses. In Figure 5, we noticed the
ascent on other mini-batch losses for Adagrad is smaller than
SGDs, when they have similar descents on current mini-batch
loss. Hence, we validate that the acceleration mechanism of
second moments.

Conclusion

In this paper, we revisited the existing adaptive optimization
methods from a novel point of view. We found that the widely
used second moments essentially penalize the projection of
the current descent direction on previous gradients. Following
such a new idea, we proposed a new method ACMo. It re-
moves the second moments and constructs a decent direction
by forming acute angles with both current and (approximated)
previous gradients. We analyzed its convergence property in
the nonconvex setting, and denote that ACMo shares the same
convergence about gradient norm with SOTA Adam-type op-
timizers. Last, extensive experiments on CV and NLP tasks
validated its efficiency and generalization ability.
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