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Abstract

Recent advances in Multi-agent Reinforcement Learning
(MARL) have made it possible to implement various tasks in
cooperative as well as competitive scenarios through trial and
error, and deep neural networks. These successes motivate us
to bring the mechanism of MARL into the Multi-agent Re-
silient Consensus (MARC) problem that studies the consen-
sus problem in a network of agents with faulty ones. Relying
on the natural characteristics of the system goal, the key com-
ponent in MARL, reward function, can thus be directly con-
structed via the relative distance among agents. Firstly, we
apply Deep Deterministic Policy Gradient (DDPG) on each
single agent to train and learn adjacent weights of neighbor-
ing agents in a distributed manner, that we call Distributed-
DDPG (D-DDPG), so as to minimize the weights from suspi-
cious agents and eliminate the corresponding influences. Sec-
ondly, to get rid of neural networks and their time-consuming
training process, a Q-learning based algorithm, called Q-
consensus, is further presented by building a proper reward
function and a credibility function for each pair of neigh-
boring agents so that the adjacent weights can update in an
adaptive way. The experimental results indicate that both al-
gorithms perform well with appearance of constant and/or
random faulty agents, yet the Q-consensus algorithm outper-
forms the faulty ones running D-DDPG. Compared to the tra-
ditional resilient consensus strategies, e.g., Weighted-Mean-
Subsequence-Reduced (W-MSR) or trustworthiness analysis,
the proposed Q-consensus algorithm has greatly relaxed the
topology requirements, as well as reduced the storage and
computation loads. Finally, a smart-car hardware platform
consisting of six vehicles is used to verify the effectiveness
of the Q-consensus algorithm by achieving resilient velocity
synchronization.

Introduction
In recent years, multi-agent Cyber-Physical Systems (CPSs)
are ubiquitous in modern infrastructure systems, and attract
increasing attention, for instance, in transportation systems,
electrical power grids, wireless communication networks,
health-care devices and so on (Humayed et al. 2017). The
unpredictable and possibly hostile running environments
and internal agent faults have brought many challenges,
among which fault-tolerance resilient consensus, i.e., reach-
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ing global agreement with only local but possibly false data
injection interactions, is one of the fundamental concerns.

In the closely related field of Multi-agent Reinforcement
Learning (MARL), each agent interacts with the environ-
ment and other agents by selecting proper actions to max-
imize the total rewards. Recent advances in MARL have
made it possible to implement various tasks. It therefore
seems quite natural to ask whether the MARL techniques
can also be beneficial for Multi-agent Resilient Consensus
(MARC) problem.

However, MARC presents several challenges from an
MARL perspective. Firstly, most successful MARL appli-
cations to date adopt the framework of centralized training
with decentralized execution, while in MARC, only the local
information from neighboring agents in a distributed manner
is available for a global target. Secondly, the identities of all
the agents as either teammate or opponent are known a prior
for each agent in MARL such that properly-designed strate-
gies can be implemented. Nevertheless, the main objective
in MARC is to distinguish the identities of all the agents. In
addition, the unpredictable behaviors of faulty agents may
imply non-stationary environment and violate the Marko-
vian assumptions, that is a frequent but tough problem in
MARL.

This paper adopts the idea of trial and error from MARL
as well as the natural characteristics of the MARC system
for consensus to overcome these challenges, aiming at ad-
justing the adjacent weights, and hence mitigating the in-
fluences of the faulty nodes. Firstly, the MARC problem is
transformed into a typical MARL problem in which each
agent executes DDPG strategy individually to avoid the cen-
tralized training, that we call Distributed-DDPG (D-DDPG).
By means of consensus for the final objective, a reward func-
tion can be well designed via relative state difference, so that
teammates and opponents are gradually identified. After the
training process for actor and critic networks is completed,
MARC can be achieved in just few steps. Secondly, to get rid
of neural networks and their time-consuming training pro-
cess, a Q-learning based algorithm, named Q-consensus, is
presented by building a proper reward function and a credi-
bility function for each pair of neighboring agents. And thus,
each node (agent) updates its adjacent weights in an adaptive
way. Lastly, we apply the proposed Q-consensus algorithm
to achieve resilient velocity synchronization in a smart-car
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hardware platform. The contributions are listed as follows:
(i) We build the bridge between MARL and MARC,

by applying DDPG on each single agent to learn adjacent
weights of neighboring agents aiming at reaching resilient
consensus (RC) for normal agents in a distributed manner.
After neural networks training is completed, MARC can be
realized in just few steps regardless of constant and/or ran-
dom faulty agents.

(ii) To get rid of neural networks and their time-
consuming training process, a Q-learning based algorithm,
called Q-consensus, is presented so that the adjacent weights
can update in an adaptive way through a properly-designed
reward function and a credibility function. The proposed Q-
consensus algorithm is resistant to faulty agents with con-
stant, random and/or capability of executing D-DDPG.

(iii) In the existing strategies, either tough conditions on
topology, e.g., F -total fault model (up to F faulty nodes),
F -local fault model (up to F faulty incoming neighbors
for each normal node), network connectivity (no less than
2F + 1), or a mass of historical information and computa-
tion loads, is demanded. The proposed Q-consensus algo-
rithm has greatly relaxed the network topology, as well as
storage and computation loads.

Related Work
In CPSs, a straightforward method of achieving MARC is
to remove the suspicious agents. Generally speaking, this
operation can be implemented either at each time tem-
porarily or permanently. By supposing the maximum num-
ber F of faulty agents in a network is known a pri-
ori, each agent just abandons its F largest values as well
as the F smallest values among the received information
from the neighboring agents temporarily. This scheme is
the so-called Mean-Subsequence-Reduced (MSR) algorithm
(LeBlanc and Koutsoukos 2011), and then the Weighted-
Mean-Subsequence-Reduced (W-MSR) algorithm (LeBlanc
and Koutsoukos 2012). It has been further adopted in var-
ious MARC applications, including clock synchronization
(Kikuya, Dibaji, and Ishii 2017), spacecraft control (Wang
et al. 2019), etc. However, it is constrained to network con-
nectivity (Sundaram and Hadjicostis 2011) or network ro-
bustness (Zhang and Sundaram 2012), with implementation
in practice hardly realizable.

Another common technique is to evaluate the trustwor-
thiness on each agent by the historical data, and then the
most suspicious agents are cast away permanently. The typi-
cal algorithm called RoboTrust (Mikulski et al. 2012) calcu-
lates the trustworthiness by observations and statistical in-
ferences from various historical perspectives, and only the
most trustworthy agents are kept for synchronization. This
algorithm is then extended to the second-hand evidence in
(Liu and Baras 2014). The work in (Baras and Liu 2019)
further proposes various local decision rules by local ev-
idence to enhance the robustness of trust evaluation. This
trustworthiness based RC strategy avoids the restriction of
network connectivity or network robustness, yet raises the
storage and computation burden. Meanwhile, the coopera-
tion among faulty agents is not involved.

As a most popular method recently, reinforcement learn-

ing (RL) is also applied to solve optimal consensus problem
with unknown dynamics, as for the aspect of data-driven.
Through establishing performance index via Bellman’s prin-
ciple of optimality and importing neural networks to approx-
imate, the solution of the coupled Hamilton-Jacobi-Bellman
(HJB) equation is no longer required, and instead, policy
gradient or Q-learning methods are developed to address the
optimal control problems in real-time (Zhang et al. 2017;
Mu et al. 2019; Peng et al. 2020). As far as we know, the
work in (Hou et al. 2020) is the first one that brings the
idea of trial and error in MARL into MARC. In (Hou et al.
2020), the adjacent weight between any two neighboring
agents is dynamically updated by the credibility measure-
ment, that is determined by the relative state difference at the
present step and the credibility value previously. Both fixed
and stochastic typologies, as well as the application in clock
synchronization are provided to illustrate the effectiveness.
Nevertheless, the inner relationship and connection between
MARC and MARL are still beyond comprehension.

MARL, as an area of machine learning, derives from RL
where an agent learns a proper policy by interacting with a
dynamic environment, by extending to multiple agents. The
research interest in MARL has been evidenced from single
agent games (Mnih et al. 2015), two-player games (Silver
et al. 2017; Brown and Sandholm 2018), to scenarios in-
cluding cooperative as well as competitive agents (Vinyals
et al. 2019). One straightforward method is to implement
directly the single agent RL algorithm on multi-agent envi-
ronment. The work in (Tampuu et al. 2017) employs two in-
dependent deep Q-networks (DQNs) to train the Atari Pong
game, that results in competitive, cooperative, or progres-
sion from competitive to collaborative emergent behaviors.
The sequential social dilemmas are discussed by each sin-
gle independent DQN on each agent in (Leibo et al. 2017).
However, most results that are obtained by applying an in-
dependent RL algorithm directly on multi-agent scenarios
are technically straightforward and even infeasible, due to
the non-stationary environment and curse of dimensionality
(Hernandezleal, Kartal, and Taylor 2019).

In response to the non-stationary environment problem in
MARL, Lowe et al. (Lowe et al. 2017) extended DDPG to
multi-agent setting (i.e., MADDPG) with the framework of
centralized training and decentralized execution. And thus, a
general purpose multi-agent learning algorithm is proposed
applicable in both cooperative and competitive scenarios.
Besides, a training regimen utilizing an ensemble of policies
is considered to produce more robust multi-agent policies.
This strategy is further extended as Memory-Driven MAD-
DPG (Pesce and Montana 2020) by introducing a shared
memory so that each agent’s policy depends on both its
own observation and its interpretation of the collective mem-
ory. Two related algorithms, MiniMax MADDPG (Li et al.
2019) and Message-Dropout MADDPG (Kim, Cho, and
Sung 2019) are proposed for robust policy learning so that
the agents can still generalize as the opponents’ policies
change, where the former leverages the minimax concept
and produces a minimax learning objective, and the latter
takes the dropout technique into account during the training
time.
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Nowadays, most MARL algorithms are still applied in
games, while recent advances begin to give a fruitful
sight in various of applications such as traffic lights con-
trol(Calvo and Dusparic 2018; Chu et al. 2019), resource
management(Noureddine, Gharbi, and Ahmed 2017; Nade-
rializadeh et al. 2020), internet of vehicle(Bacchiani, Moli-
nari, and Patander 2019; Kwon and Kim 2019), electrical
power control(Sharma et al. 2019) and recommendation sys-
tems(Gui et al. 2019).

Problem Formulation
The MARC problem is studied in this paper. The prob-
lem starts with a network consisting of n agents labeled by
1, 2, . . . , n. Normally, the network relation can be rep-
resented by a directed graph, G = (V,E), where V =
{1, 2, · · · , n} corresponds to the set of agents, and E ⊆
V × V is the set of edges which describes the neighbor
relations. Agent j is a neighbor of agent i, with an edge
from node j to node i, if agent i can receive information
from agent j. The neighbor set of node i is presented by
Ni = {j | (j, i) ∈ E}. A path from node j to node i is a
sequence of distinct nodes i0, i1, · · · , im, where i0 = j and
im = iwith (il, il+1) ∈ E, 0 ≤ l ≤ m−1. A directed graph
is called rooted if and only if there exists i ∈ V , so that there
is a path from node i to any other node. We use the terms
node and agent, network and topology, interchangeably.

A discrete-time model in the following form is considered

xi,k+1 = xi,k + ui,k, i ∈ V (1)

where xi,k ∈ R and ui,k ∈ R denote the state and con-
trol input of agent i at time k, respectively. Let xk =
[x1,k, · · · , xn,k]T for any integer k ≥ 0. The system initial
state x0 is arbitrarily specified.

In the multi-agent consensus problem, all the nodes are
trustworthy and cooperating with each other to achieve state
consensus (Hou and Zheng 2018), through a common de-
sign ui,k. In the MARC problem, the concealment of cer-
tain faulty nodes may be involved against the system conver-
gence. This paper studies the MARC problem by introduc-
ing four types of nodes, including the set of normal nodes
V n, the set of persistent faulty nodes V p, the set of constant
faulty nodes V c, and the set of learnable faulty nodes V l,
with

V = V n ∪ V p ∪ V c ∪ V l.

The appearance of faulty nodes sets V p, V c and V l may
be produced by system failure or deliberately hostile injec-
tion. In the following, we will give the detailed description
for each type of nodes.
(i) Normal Node: A normal node updates its control input
by

ui,k =
∑
j∈Ni

αij,k(xj,k − xi,k) + ωi,k, i ∈ V n, (2)

where αij,k(≥ 0) is called the adjacent weight from node
j to node i satisfying

∑
j∈Ni αij,k < 1, and ωi,k ∈ R is a

bounded noise (|ωi,k| < ω) induced by transmission channel
and environment.

(ii) Persistent Faulty Node (PFN): A PFN conducts its in-
put with a random value at every time as follows

ui,k = Random, i ∈ V p, (3)

where Random is a random variable that has a specified
probability density function fRandom.
(iii) Constant Faulty Node (CFN): A CFN holds its input
as the initial value as follows

ui,k = 0, i ∈ V c. (4)

(iv) Learnable Faulty Node (LFN): All the LFNs may
work together by applying machine learning algorithms such
as MADDPG to prevent normal nodes from achieving con-
sensus.

With the existence of faulty nodes, the whole network
may not achieve consensus. A straightforward method is to
isolate suspicious nodes by minimizing their weights to be
close to zero. In another word, we expect to design a dis-
tributed algorithm to guarantee that the sub-network of nor-
mal nodes achieve consensus in the following sense

lim sup
k→∞

max
i,j∈V n

|xi,k − xj,k| < ε (5)

for a sufficiently small ε.
The achievement of (5) for the system (1) in the presence

of faulty nodes is called MARC in this paper. So, the main
objective is to propose a distributed algorithm for updating
adjacent weights to achieve MARC.

Throughout the paper, we give the following necessary
assumption.
Assumption 0.1 The topology (network) among the normal
nodes is fixed and rooted.

Distributed DDPG Based MARC
The recent development of the MARL technique, especially
by feeding sufficient training data and introducing deep neu-
ral networks, contributes to the optimization problem of
maximizing total return. It therefore motivates us to com-
bine the MARL configuration into the MARC problem aim-
ing at reducing the adjacent weights from suspicious nodes
by using stochastic gradient updates.

For each node, we build and apply the DDPG strategy
to update all the related adjacent weights. For each node
i, si,k = {xi,k, xj,k, ∀j ∈ Ni} is considered as the sys-
tem state observed by agent i, and all the related adja-
cent weights set ai,k = {αij,k, ∀j ∈ Ni} is defined as
the corresponding action. We define the reward function as
ri,k = f(

∑
j∈Ni αij,k|xj,k − xi,k|). In general, the closer

states for two normal neighboring agents indicate a larger
reward value, and thus the reward function should be in-
versely proportional to the relative distance |xj,k − xi,k|.
The detailed setting is given in the experiment section. Sim-
ilarly, we also construct an experience replay buffer Ri
to store agent i’s experiences at each time, i.e., transition
(si,k, ai,k, ri,k, si,k+1). And a random minibatch of transi-
tions is sampled from the pool to update the corresponding
critic and actor networks. After performing experience re-
play, the agent executes the action according to the current
policy and exploration noise.
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The complete algorithm, which we call the D-DDPG Al-
gorithm, is presented in Algorithm 1. It is worth mentioning
that each node only requires information from its neighbors,
so that it is fundamentally a distributed algorithm, and cen-
tralized training is avoided. This algorithm is a model-free
off-policy algorithm for continuous actions learning.

Q-consensus Based MARC
Fundamentally, the RL based approach is relatively time-
consuming and computing-heavy, in particular when the
action space is large, that brings long term trial and er-
ror episodes. This section introduces the methodology of
Q-learning to identify and isolate the faulty nodes in the
MARC problem. The main distinction is embodied in the
relation characterization we present between a pair of neigh-
boring agents instead of DQN for a single agent.

When agent i receives xj from its neighbor j ∈ Ni, the
relation characterization from j to i is built. First, the imme-
diate reward rij is calculated with the input xj − xi. In the
next place, the credibility Qij is defined based on the imme-
diate reward. And finally, the adjacent weights αij could be
updated subsequently. In the MARC system, the basic rule
is that for neighbors with a higher credibility, the adjacent
weights are larger, and for any suspicious neighbors with a
lower credibility, the adjacent weights αij,k → 0 as k →∞.
The details on how to get the reward and the credibility will
be discussed in the following.

First, a crisp input of the relative distance xj−xi is intro-
duced describing the state differences at the current instant.
This input is then converted into an immediate reward by

rij,k = f(|xj,k − xi,k + ωij,k|), ∀j ∈ Ni
where ωij is the noise on the transmission channel from j to
i which is bounded by a positive number ω. Similar to the
definition in D-DDPG, each normal node in general recog-
nizes its own state xi as the true value and the reward value
should be inversely proportional to relative distance, e.g.,

f(|xj,k − xi,k + ωij,k|) = e−|xj,k−xi,k+ωij,k|βk ,

with an appropriately designed parameter βk > 0. It is no-
ticed that the reward value is bounded between 0 and 1.
When the states xi and xj are close, the induced reward
is close to 1; when they are sufficiently different, the value
tends to 0.

Another key element, named credibility Qij , is initialized
as 1 for each neighboring node j ∈ Ni, and then recursively
updated according to the associated reward rij by

Qij,k = Qij,k−1 + ηk(rij,k −Qij,k−1), ∀j ∈ Ni (6)

that essentially integrates all the historical information from
node j to node i. The parameter ηk is a step size that is
usually monotonously decreasing and trends to 0 gradually.
Compared to the classic Q-learning equation, the TD target
component r + γmaxa′ Q(s′, a′) is replaced by the reward
value rij,k, as no state of next step is involved here. Like-
wise, the credibility is expected to move towards the reward
value to achieve stability.

Since the state xi is determined by the adjacent weights
and the states of neighboring nodes as (2), the last step is to

update adjacent weights by credibility. By normalization of
the credibility of all neighboring nodes, we define the weight
αij as

αij,k =
Qij,k∑
j∈Ni Qij,k

(1− 1

|Ni|+ 1
), ∀j ∈ Ni

where |Ni| is the cardinality of Ni. The design obviously
satisfies

∑
j∈Ni αij,k < 1, and αii,k = 1

|Ni|+1 for all k.
The detailed algorithm is summarized in Algorithm 2 as

follows.

Remark 0.1 Regarding the proposed two algorithms, D-
DDPG solves the MARC problem directly in an MARL con-
figuration, and thus the DDPG strategy, especially deep neu-
ral networks are utilized to train and learn adjacent weights
for each single agent. As far as the time-consuming training
process with deep neural networks is concerned, an adaptive
law is introduced such that for each agent i and its neighbor-
ing agent j, the adjacent weight αij is determined mainly
by credibility Qij , which contains sufficient information to
identify the neighboring agents. The update of the credibil-
ity Qij is also adaptive by the modified Q-learning equation
(6).

Experimental Results
In this section, we apply the proposed algorithms to solve the
MARC problem in both numerical simulations and hardware
experiments.

Resilient Consensus
A fixed directed network is given in Fig. 1 in which 0, 1
and 2 are faulty nodes, and all the rest normal nodes are
rooted. In the simulation setting, each of the agents has an
arbitrarily initial state between 0 and 1. The noise upper

0

1

23

4

5

6

7 8

9

Figure 1: A fixed directed network where 0, 1 and 2 are
faulty nodes, and the rest normal nodes are rooted.

bound is ω = 0.01. It can be observed that neither the net-
work connectivity (Sundaram and Hadjicostis 2011) nor net-
work robustness (Zhang and Sundaram 2012) is satisfied so
that the traditional W-MSR algorithms are not available. In
the following, we apply both D-DDPG and Q-consensus al-
gorithms on this network, respectively, to check if normal
agents can achieve RC.
D-DDPG We first give the architecture of the correspond-
ing neural network in D-DDPG.

Architectures : Take the actor network as example,
and critic network is similar except the dimensions of input
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Algorithm 1: Distributed DDPG for a normal node i

Randomly initialize critic network Qi(si, ai|θQi) and actor network µi(si|θµi) with weights θQi and θµi .
Initialize target network Q′i and µ′i with weights θQ

′
i ← θQi , θµ

′
i ← θµi .

Initialize replay buffer Ri.
for episode = 1 to M do

Initialize a random process Ni for action exploration.
Receive initial observation state si,1.
for k= 1 to T do

Select action ai,k = µi(si,k|θµi) +Ni,k according to the current policy and exploration noise.
Execute action ai,k and observe reward ri,k and new state si,k+1.
Store transition (si,k, ai,k, ri,k, si,k+1 ) in Ri.
Sample a random minibatch of N transitions (si,l, ai,l, ri,l, si,l+1) from Ri.

Set yi,l = ri,l + γQ′i

(
si,l+1, µ

′
i

(
si,l+1 | θµ

′
i

)
| θQ′

i

)
.

Update critic by minimizing the loss: Li = 1
N

∑
l

(
yi,l −Qi

(
si,l, ai,l | θQi

))2
.

Update actor policy using the sampled policy gradient:

∇θµiJi ≈
1

N

∑
l

∇aiQi
(
si, ai | θQi

)
|si=si,l,ai=µi(si,l)∇θµiµi (si | θ

µi) |si,l

Update the target networks:
θQ

′
i ← τθQi + (1− τ)θQ′

i

θµ
′
i ← τθµi + (1− τ)θµ′

i

end for
end for

Algorithm 2: Q-consensus for a normal node i
Initialize αii,0 = αij,0 = 1

|Ni|+1
,Qij,0 = 1, j ∈ Ni

for k = 1 to T do
for j ∈ Ni do

rij,k = f(|xj,k − xi,k + ωij,k|);
Qij,k = Qij,k−1 + ηk(rij,k −Qij,k−1);

end for
for j ∈ Ni do

αij,k =
Qij,k∑

j∈Ni
Qij,k

(1− 1
|Ni|+1

);

end for
xi,k+1 = xi,k +

∑
j∈Ni

αij,k(xj,k − xi,k) + ωi,k.

end for

layer and output layer. The neural network consists of 4 lay-
ers, including an input layer, two hidden layers and an output
layer. In which, the non-output layers use the ReLU activa-
tion function, and the output layer utilizes the Tanh activa-
tion function so that the output is limited between (−1, 1),
and further mapped to (0, 1). It is noted that the output layer
of the critic network contains no activation function. In ad-
dition, we set replay buffer size as 10000, batch size as 64,
discount factor γ = 0.9, and τ = 0.9. Both the actor learn-
ing rate and the critic learning rate are 0.0001.

A training process with 2 random faulty nodes and 1
constant faulty node is shown in Fig. 2 where the ad-
jacent weights are either minimized to 0 or maximized.
The reward function in this experiment is defined as 100 ·

[e−20·
∑
j∈Ni

|xj,k−xi,k+ωij,k|αij,k −0.5] and all the states are
initialized for every 100 steps to accelerate convergence. It
is worth mentioning that convergence to the constant node
also satisfies the consensus requirement (5) so that the ad-
jacent weights from the constant faulty node may not tend
to 0. After the training process is completed, the state evo-
lution of normal nodes is presented in Fig. 3 showing that
RC in all four cases, i.e., three random faulty nodes, two
random nodes and one constant node, one random node and
two constant nodes, and three constant nodes, is achieved in
a few steps (the training process for the rest three cases are
omitted here).

Q-consensus Similarly, we apply the Q-consensus algo-
rithm on the network shown in Fig. 1. The parameter βk is
set to be 10 + 0.1k, and ηk is chosen to be 0.01 if k < 0.8T
else ηk+1 = ηk − 0.05/T . The simulation results are pre-
sented in Fig. 4 indicating that all the states of normal nodes
in the aforementioned four cases can achieve RC.

To show the reliability of the two algorithms, both simula-
tions are run for 1000 times with random initial states. The
success rates in terms of the times of consensus achieved
by normal nodes of the two algorithms are shown in Fig. 5.
It is observed that both algorithms perform well with high
success rates.

Furthermore, we consider a scenario of learnable faulty
nodes from V l executing D-DDPG to interfere system con-
vergence. When all the nodes apply D-DDPG, the reward
functions of normal nodes and faulty nodes are defined as
100 · [e−20·

∑
j∈Ni

|xj,k−xi,k+ωij,k|αij,k−0.5] and 100 · [0.5−

7741



0.0 5.0 10.0

Times / Million

0.00

0.25

A
ct

io
n

s

Node 3

0.0 5.0 10.0

Times / Million

0.00

0.25

A
ct

io
n

s

Node 4

0.0 5.0 10.0

Times / Million

0.0

0.5

A
ct

io
n

s

Node 5

0.0 5.0 10.0

Times / Million

0.0

0.5

A
ct

io
n

s

Node 6

0.0 5.0 10.0

Times / Million

0.0

0.5

A
ct

io
n

s

Node 7

0.0 5.0 10.0

Times / Million

0.00

0.25

A
ct

io
n

s

Node 8

0.0 5.0 10.0

Times / Million

0.0

0.5

A
ct

io
n

s

Node 9

5.0 10.0

Times / Million

0

50

R
ew

ar
d

s

Rewards

D-DDPG Training Processes

Node0

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

Node9

Figure 2: The actions and rewards training for normal nodes under D-DDPG.
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Figure 3: The states of normal nodes under D-DDPG with
constant and/or random faulty nodes.

D-DDPG Q-Consensus
Topology requirement sparse none

Faulty types invariant none
Convergence time long training short updating

Table 1: Comparisons of the Two Algorithms

e−20·
∑
i,j∈V n |xj,k−xi,k+ωij,k|], respectively. The actual in-

put of a learnable normal node is its own state and the states
of its neighbors, and the actual input of a learnable faulty
node is the states of all the normal nodes. The result in Fig. 6
indicates that RC may not be achieved. Nevertheless, RC
can be easily achieved if normal nodes apply Q-consensus
algorithm, as a result of much faster convergence time of
Q-consensus than training time in D-DDPG. The state evo-
lution is similar to Fig. 4 and we omit it here.

Comparison of the proposed two algorithms is also shown
below as Table 1. Owing to the introduction of deep neu-
ral networks, it takes a long time to finish the training pro-
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Figure 4: The states of normal states under Q-consensus with
constant and/or random faulty nodes.
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Figure 5: Comparison of success rates of the two proposed
algorithms with constant and/or random faulty nodes.

cess for the D-DDPG algorithm, while convergence in the
Q-consensus algorithm is much faster as no training process
is included. Moreover, D-DDPG is relatively computation-
ally heavy, especially when the topology is not sparse in a
large action space. However, as long as the topology for nor-
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Figure 6: The rewards of a normal node and a faulty node
with D-DDPG.

mal nodes is rooted, RC is easily achieved for Q-consensus
no matter how complex the topology is. This advantage out-
performs trustworthiness based methods, so that it can be
applied in large-scale networks with dense topology connec-
tions. We omit the corresponding comparison simulations
due to the space limit. On the other aspect, Q-consensus
also works when the faulty nodes are variable, e.g., either
constant or random at different instant, while D-DDPG only
works for the fixed types of faulty nodes due to the existence
of training process.
Resilient Velocity Synchronization
Lastly, we apply the Q-consensus algorithm in a smart-car
hardware platform to achieve resilient velocity synchroniza-
tion. The platform consists of six Corey Mecanum wheel ve-
hicles labeled by 0, 1, . . . , 5, and each vehicle is equipped
with Mecanum wheels, so that it can achieve omnidirec-
tional movement. We use OptiTrack to track and control the
movement of the vehicles.

0

12

3

4 5

Figure 7: The communication topology of 6 vehicles.

In the experiment, we use a central computer to collect
the locations of all vehicles in real time, while each vehicle
only utilizes the information of its own and its neighbors
to control the movement for the purpose of distributed and
local implementation of the algorithm. The moving direction
and speed are quantized from the continuous control signal
calculated by the proposed control law. The topology of the
six vehicles is shown in Fig. 7 where node 0 and node 1
are two faulty nodes with random control, and nodes 2-5 are
normal ones.

The actual speeds of all the vehicles are set to be 0.2m/s,
while the initial positions and velocity directions are ran-
domly produced as shown in Fig. 8. The experimental result
shows that the velocities of the normal nodes are synchro-
nized, that is, all the vehicles move towards the same di-
rection with the same speed. Fig. 9 is one snapshot of the

experiment when the velocities of the vehicles are synchro-
nized.

Figure 8: The initial states of the vehicles.

Figure 9: The normal vehicles gradually achieve synchro-
nized velocity.

Conclusions
In this paper, we have introduced the mechanism of MARL
to solve the MARC problem through establishing connec-
tions between the two concepts. In order to obtain contin-
uous adjacent weights, a policy based strategy, D-DDPG
is brought to train and learn via deep neural networks for
each single agent in a distributed manner. The reward func-
tion is defined by the relative state difference so that the
maximized total reward is equivalent to the system goal of
consensus. After neural networks training is completed, the
weights from suspicious agents are minimized and the cor-
responding influences eliminated. However, the training in
RL is relatively time-consuming, especially in a large ac-
tion space. On the experience of Q-learning, an adaptive law,
called Q-consensus, has been proposed through building a
proper reward function and a credibility function.

Three types of faulty nodes were considered in this paper,
including persistent ones, constant ones, and learnable ones,
where both D-DDPG and Q-consensus have performed well
in the presence of the former two, yet only the Q-consensus
algorithm has worked well with the learnable faulty nodes.
In addition, the proposed Q-consensus has a relative low re-
quirement on topology, as well as reduces the storage and
computation loads so that it can be applied in more general
applications. Both numerical simulations and hardware plat-
form have been provided to validate the effectiveness.

This paper has considered a fixed topology without time-
delay. In practical environment, the topology is commonly
time-varying due to newly increased/removed nodes, vari-
able distance among nodes, or package loss during trans-
mission. In addition, time-delay occurs frequently due to the
transmission channel jam. Therefore, in future work, we will
discuss practical scenarios for time-varying typologies with
time-delay. Moreover, we expect to bring the mechanism of
multi-agent cooperative systems, such as consensus, forma-
tion, and coverage, into the MARL problem working as one
aspect of intrinsic reward signal to accelerate the training
process.
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