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Abstract

To infer the structure of a diffusion network from observed
diffusion results, existing approaches customarily assume
that observed data are complete and contain the final infection
status of each node, as well as precise timestamps of node
infections. Due to high cost and uncertainties in the monitor-
ing of node infections, exact timestamps are often unavailable
in practice, and even the final infection statuses of nodes are
sometimes missing. In this work, we study how to carry out
diffusion network inference without infection timestamps,
using only partial observations of the final infection statuses
of nodes. To this end, we iteratively infer the structure of
the target diffusion network with observed data and imputed
values for missing data, and learn the most likely infection
transmission probabilities between nodes w.r.t. current in-
ferred structure, which then help us update the imputation of
missing data in turn. Extensive experimental results on both
synthetic and real-world networks show that our approach
can properly handle missing data and accurately uncover
diffusion network structures.

Introduction
The structures of diffusion networks delineate the underly-
ing influence relationships between the nodes. An explicit
diffusion network structure is essential for understanding
the mechanisms of historical diffusion processes and for
developing strategies to control future diffusions on the
network. Unfortunately, in most cases, the diffusion network
structures are not naturally accessible and need to be inferred
from diffusion results observed from history.

To infer the structure of a diffusion network, most existing
approaches resort to precise timestamps of historical node
infections, and utilize sequences of timestamps (known
as cascades) to determine potential parent-child influence
relationships between nodes (Mehmood et al. 2013). By
transforming the problem of diffusion network inference
into a problem of convex optimization (Myers and Leskovec
2010; Gomez-Rodriguez, Balduzzi, and Schölkopf 2011; Du
et al. 2012; Gomez-Rodriguez, Leskovec, and Schölkopf
2013a,b; Daneshmand et al. 2014; Wang et al. 2014; Pouget-
Abadie and Horel 2015; Narasimhan, Parkes, and Singer
2015; Rong, Zhu, and Cheng 2016; Kalimeris et al. 2018)

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or submodular optimization (Gomez-Rodriguez, Leskovec,
and Krause 2010; Gomez-Rodriguez and Schölkopf 2012),
they try to find a diffusion network structure that maximizes
the likelihood of given cascades by solving the correspond-
ing optimization problems.

In reality, gathering node infection timestamps as cas-
cades is not always feasible or affordable. In most real-
world settings, such as disease propagation, nodes have
a wide spatial distribution, and infection monitoring is
often labor/resource demanding. Given the limitation of the
cascade-based approaches, some infection timestamp-free
methods try to learn diffusion network structures from only
the final infection statuses of the nodes in historical diffusion
processes (Gripon and Rabbat 2013; Amin, Heidari, and
Kearns 2014; Huang et al. 2019a,b; Han et al. 2020), since
observing the final infection statuses is relatively easier and
less expensive than monitoring exact infection timestamps.

Whether the existing approaches use observed cascades
or final infection statuses of nodes, they generally assume
that the observed data are complete, without missing values
on any infection timestamp or status. Unfortunately, this
assumption often fails to hold in real-world applications
(He et al. 2016; Lokhov 2016). For example, it is virtually
impossible to avoid missing readings from non-functioning
sensors, or avoid non-response in a survey. In situations
where missing data are unavoidable, one can make the data
complete via certain ad-hoc strategies, such as filling in the
missing parts with average values in the observed data (Sefer
and Kingsford 2015), although these strategies often have
no guarantee of accuracy and may result in severe biases.
So far, a few studies do deal with missing data, but aim
at predicting diffusion results (He et al. 2016) or learning
only the strengths of influence relationships (Lokhov 2016;
Wilinski and Lokhov 2020), under the assumption that the
diffusion network structures are known in advance.

In this work, we investigate how to infer the structure
of a diffusion network based on only partial observations
of the final node infection statuses in a limited number
of historical diffusion processes. We propose an effective
algorithm called POIND (a re-ordered acronym of Diffusion
Network Inference with Partial Observations) for this prob-
lem. POIND consists of two iterative steps, i.e., (1) inferring
the structure of the objective network with observed data and
imputed values for missing data, where the imputed values
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are sampled from estimated probability distributions for the
missing data; and (2) learning the most likely infection
transmission probabilities between nodes and their parents
w.r.t. current inferred structure, which will help POIND
update the probability distribution estimation and then the
value imputation of missing data in turn.

In summary, our key contributions include the following:
(1) To our knowledge, this work is the first to explicitly
solve the problem of diffusion network inference with partial
observations of final node infection statuses. (2) We propose
an effective approach to infer the structure of objective
diffusion network and learn the infection transmission prob-
abilities in an iterative way. (3) We present a probabilistic
sampling method for the imputation of missing data, which
is able to complete the data properly and improve the
accuracy of structure inference.

The remainder of the paper is organized as follows. We
first present our problem statement, and then introduce our
proposed POIND algorithm, followed by reporting experi-
mental results and our findings before concluding the paper.

Problem Statement
A diffusion network can be represented by a directed graph
G = (V,E), where V = {v1, ..., vn} is the set of nodes
in the network, and E represents the set of parent-child
influence relationships between the nodes. In a diffusion
process, infections propagate from an infected parent node
to each uninfected child node with a certain probability. Let
Fi denote the set of parent nodes of node vi ∈ V w.r.t. E, as
each node has two possible infection statuses (i.e., infected
and uninfected), there are 2|Fi| possible combinations of the
infection statuses of vi’s parent nodes, where |Fi| refers
to the number of nodes in set Fi. Let Xi and XFi

be
the infection status variable of node vi and the infection
status variables of nodes in Fi, respectively, πi,j be the j-th
possible combination of the infection statuses of vi’s parent
nodes (j ∈ {1, ..., 2|Fi|}), and θi,j,k be the probability of
vi’s infection status being k (i.e., Xi = k, where k ∈ {0, 1},
0 refers to uninfected status, and 1 refers to infected status)
under the condition that the infection statuses of vi’s parent
nodes are instantiated to the j-th possible combination (i.e.,
XFi

= πi,j), we refer to the probabilities {θi,j,1 | j ∈
{1, ..., 2|Fi|}} as the infection transmission probabilities
between Fi and vi (θi,j,1 = 1− θi,j,0, ∀i, j).

In the problem of diffusion network inference, the node
set V is given, while the structure (i.e., the directed edge set
E) of the objective diffusion network is unknown, so are the
infection transmission probabilities w.r.t. the structure. To
infer the structure of a diffusion network, a set S of diffu-
sion results observed from a number of historical diffusion
processes on the network is required. In this work, we deal
with the cases that the diffusion results contain only the
final infection statuses of nodes in each diffusion process,
i.e., S = {s`i | i ∈ {1, ..., n}, ` ∈ {1, ..., β}}, where
s`i ∈ {0, 1} is the infection status of node vi ∈ V observed
at the end of the `-th diffusion process , and β is the number
of historical diffusion processes. Furthermore, we aim to
carry out diffusion network inference in a complex yet more

realistic situation, i.e., partial final infection statuses in the
diffusion results are unobserved. Let Sobs and Smis denote
the observed part and missing part in S, respectively, then
our problem statement can be formulated as follows.

Given: partial observations Sobs of node infection sta-
tuses observed on a diffusion network G at the end of β
historical diffusion processes.

Infer: the structure of the diffusion network G.

The POIND Algorithm
To infer the structure of G with partial observations Sobs,
POIND performs the following two steps iteratively, namely
(1) inferring the structure with Sobs and imputed values for
Smis, and (2) learning the most likely infection transmission
probabilities w.r.t. the inferred structure.

In the first step, to make the data complete for structure
inference, POIND initializes the imputed values for Smis
randomly (or with some ad-hoc methods) at the first iter-
ation; in subsequent iterations, it estimates the probability
distribution of each unobserved infection status in Smis

based on Sobs, the latest inferred structure, and the current
values of infection transmission probabilities Θ = {θi,j,1 |
i ∈ {1, ..., n}, j ∈ {1, ..., 2|Fi|}}, and then carries out the
value imputation for missing data by sampling values from
an estimated probability distribution of each unobserved
infection status. With the completed data, POIND can adopt
existing infection timestamp-free methods for diffusion net-
work inference to update the result of structure inference.

In the second step, given the latest inferred structure,
POIND performs an EM-like approach to approximate the
optimal values of infection transmission probabilities Θ
w.r.t. this structure in an iterative way. The EM-like ap-
proach adopts a carefully designed expectation function,
from which the optimal updating result for current values
of Θ can be theoretically deduced. EM-like approach itera-
tively updates the values of Θ until convergence.

The details of the above two steps, as well as a complexity
analysis for POIND are provided in what follows.

Structure Inference
LetE(T ) and Θ(T ) denote the directed edge set and infection
transmission probabilities inferred by POIND after the T -
th iteration, then in the next iteration, the goal of structure
inference is to find a directed edge set E(T+1) that satisfies
the following requirement.

E(T+1) = arg max
E

P (E | Θ(T ), Sobs). (1)

Nonetheless, as Sobs is not a complete data set, it is
difficult to calculate P (E | Θ(T ), Sobs) directly. Aiming at
an easier estimation for P (E | Θ(T ), Sobs), we repeatedly
sample Smis under the condition of Sobs, E(T ) and Θ(T )

to obtain a set of samples of missing data {Ŝmis1 , ..., Ŝmism },
where m is the number of sampling rounds. Then, we can
obtain a set of samples of complete data {Ŝ1, ..., Ŝm}, in
which the r-th sample Ŝr consists of Sobs and Ŝmisr , i.e.,

Ŝr = (Sobs, Ŝmisr ). (2)
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If the sampling is sufficient (i.e., m is great enough), then

P (E | Θ(T ), Sobs) ' P (E | Ŝ1, ..., Ŝm). (3)

Given this, we can utilize P (E | Ŝ1, ..., Ŝm) to estimate
P (E | Θ(T ), Sobs), and reformulate Eq. (1) as follows.

E(T+1) = arg max
E

P (E | Ŝ1, ..., Ŝm). (4)

Note that the problem in Eq. (4) is equivalent to learning
diffusion network structures from only the complete data
of final node infection statuses. One can utilize existing
approaches to this problem, such as TWIND (Huang et al.
2019b), to infer E(T+1). Therefore, how to complete the
data through sampling is crucial for structure inference.
Next we elaborate the sampling method.

The Sampling Method To sample Smis in (T + 1)-
th iteration, we need to know the conditional probability
distribution P (s`i | Sobs, E(T ),Θ(T )) for each unobserved
infection status s`i ∈ Smis. Let Dobs

` = {s`i ∈ Sobs |
i ∈ {1, ..., n}} denote the set of observed data from `-
th historical diffusion process (` ∈ {1, ..., β}), as each
historical diffusion process is independent of each other, we
have relationship

P (s`i | Sobs, E(T ),Θ(T )) = P (s`i | Dobs
` , E(T ),Θ(T )).

(5)

Without loss of generality, let D = {s1, ..., sn} represent
the final infection statuses of nodes in a historical diffusion
process, Dobs and Dmis represent the observed part and
missing part in D, respectively. For the sake of simplicity,
we adopt E and Θ to represent the latest inferred directed
edge set and infection transmission probabilities. The in-
fection probability pi of node vi in this historical diffusion
process can be estimated as follows.

pi =

 0, si ∈ Dobs, si = 0
1, si ∈ Dobs, si = 1

P (Xi = 1 | Dobs, E,Θ), si ∈ Dmis
(6)

When the final infection status si of node vi is missing
(i.e., si ∈ Dmis), we consider the following two cases.

Case 1: If for each of vi’s parent nodes, its infection
probability is known already, the infection probability pi of
node vi can be estimated as follows.

pi =
2|Fi|∑
j=1

P (Xi = 1, XFi
= πi,j | Dobs, E,Θ)

=
2|Fi|∑
j=1

 |Fi|∏
α=1

ϕ
(
Fi(α), j

) θi,j,1,

(7)

where Fi(α) refers to the index of the α-th node in Fi and

ϕ
(
Fi(α), j

)
=

{
pFi(α), XFi

=πi,j , XFi(α) =1;
1−pFi(α), XFi =πi,j , XFi(α) =0.

(8)

Moreover, we would like to point out that the calculation
of pi can be carried out in a more efficient way. Towards this,

we divide the set Fi into two parts, namely (1) the observed
part F obsi in which the final infection status of each node is
observed, and (2) the missing part Fmisi in which the final
infection status of each node is unobserved. Then, Eq. (7)
can be rewritten as follows.

pi =
2|Fi|∑
j=1

|Fi|∏
α=1

ϕ
(
Fi(α), j

)
θi,j,1

=
2|Fobs

i |∑
j1=1

2|Fmis
i |∑

j2=1

|F obs
i |∏

α1=1

|Fmis
i |∏
α2=1

θi,j1j2,1

× ϕ
(
F obsi (α1), j1

)
× ϕ

(
Fmisi (α2), j2

)
,

(9)

where j1j2 ∈ {1, ..., 2|Fi|}, and the j1j2-th possible com-
bination of the infection statues of nodes in Fi corresponds
to the j1-th possible combination of the infection statues of
nodes in F obsi combined with the j2-th possible combination
of the infection statues of nodes in Fmisi .

For the α1-th node in F obsi , the value of pF obs
i (α1) and

the value of ϕ
(
F obsi (α1), j1

)
for each j1 ∈ {1, ..., 2|F

obs
i |}

should be 0 or 1. Without loss of generality, assuming that
the infection statuses of nodes in F obsi are instantiated to the
ji-th possible combination (ji ∈ {1, ..., 2|F

obs
i |}), then for

each j2 ∈ {1, ..., 2|F
mis
i |}, the following relationship holds.

2|Fobs
i |∑

j1=1

|F obs
i |∏

α1=1

|Fmis
i |∏
α2=1

θi,j1j2,1

× ϕ
(
F obsi (α1), j1

)
× ϕ

(
Fmisi (α2), j2

)
=

|Fmis
i |∏
α2=1

ϕ
(
Fmisi (α2), j2

)
θi,jij2,1.

(10)

Combining Eqs. (9) & (10), we have a much simpler
calculating formula for pi as follows.

pi =
2|Fmis

i |∑
j=1

|Fmis
i |∏
α=1

ϕ
(
Fmisi (α), j

)
θi,jij,1. (11)

When we start the infection probability estimation, for
each node with an observed infection status, we update
its infection probability by Eq. (6), and then repeat the
following two steps, i.e., (1) checking which nodes satisfy
the computation condition of Case 1, and (2) calculating the
infection probabilities of these nodes by Eq. (11), until there
is no node satisfying the computation condition of Case 1.
If there are still a few nodes whose infection probabilities
are unknown, it indicates that there are cyclic dependencies
among their infection probability estimation. We refer to this
kind of situation as Case 2.

Case 2: Without loss of generality, let v1, ..., vr ∈ V
be the remaining nodes that cannot satisfy the computation
condition of Case 1. Then, each remaining node vq ∈
{v1, ..., vr} will have at least one parent node with unknown
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infection probability. Hence, we cannot calculate each pq
with Eq. (11) separately. Nevertheless, we can compute
infection probabilities jointly for all the remaining nodes by
solving the following equations.

(p1, ..., pr) = f(p1, ..., pr). (12)

where

f(p1, ..., pr) =
(
f1(p1, ..., pr), ..., fr(p1, ..., pr)

)
, (13)

fq(p1, ..., pr) =
2
|Fmis

q |∑
j=1

|Fmis
q |∏
α=1

ϕ
(
Fmisq (α), j

)
θq,jqj,1.

(14)
The above Eq. (12) is a polynomial system of equations

w.r.t. p1, ..., pr, of which the numerical solution can be
efficiently obtained by existing tools, such as the fsolve
and root functions in the SciPy package for Python.

When we know all the infection probabilities, we can
carry out sampling for each si ∈ Dmis based on pi to com-
plete the data of final infection statuses in historical diffusion
processes, and then perform TWIND on the completed data
to infer the structure of the objective network G.

Learning Infection Transmission Probabilities
After inferring E(T+1) based on Θ(T ) and Sobs, we can
learn Θ(T+1) based on E(T+1) and Sobs by solving the
following problem.

Θ(T+1) = arg max
Θ

P (Θ | E(T+1), Sobs). (15)

With a given directed edge set E(T+1), the parent node
set Fi for each node vi ∈ V and the possible combinations
of vi’s parent nodes are fixed, so that the elements in Θ(T+1)

are also fixed. What we can do is to find an optimal value for
each element θi,j,1 ∈ Θ such that the likelihood of Sobs is
maximized. Let H(E(T+1)) denote the constrained search
space of Θ(T+1) w.r.t. the given E(T+1), the problem of
learning Θ(T+1) can be reformulated as

Θ(T+1) = arg max
Θ∈H(E(T+1))

P (Sobs | Θ). (16)

Inspired by the EM algorithm, we propose to update Θ
iteratively, and define an expectation function Q as follows.

Q(Θ,Θ[t])

=E[logP (Sobs, Smis | Θ) | Sobs,Θ[t]]

=
∑
Smis

P (Smis | Sobs,Θ[t]) logP (Sobs, Smis | Θ).

(17)

where Θ[t] refers to the updated Θ after t iterations, and E[·]
refers to the expectation value of a variable.

Function Q has a nice theoretical property as follows.

Theorem 1. If Q(Θ,Θ[t]) > Q(Θ[t],Θ[t]), then relation-
ship P (Sobs | Θ) > P (Sobs | Θ[t]) holds.

Proof: The relationship

logP (Sobs | Θ)− logP (Sobs | Θ[t])

= log

∑
Smis P (Sobs, Smis | Θ)

P (Sobs | Θ[t])

P (Smis | Sobs,Θ[t])

P (Smis | Sobs,Θ[t])

= log
∑
Smis

P (Smis | Sobs,Θ[t])
P (Sobs, Smis | Θ)

P (Sobs, Smis | Θ[t])

≥
∑
Smis

P (Smis | Sobs,Θ[t]) log
P (Sobs, Smis | Θ)

P (Sobs, Smis | Θ[t])

=Q(Θ,Θ[t])−Q(Θ[t],Θ[t])

holds, where the inequality is derived from Jensens inequal-
ity. Thus, the theorem is correct. �

According to the above Theorem 1, one can learn the
optimal Θ[t+1] by finding a Θ from H(E(T+1)) such that
the value of Q(Θ,Θ[t]) is maximized, i.e.,

Θ[t+1] = arg max
Θ∈H(E(T+1))

Q(Θ,Θ[t]). (18)

According to Eq. (3) in the work of Han et al. (2020), the
probability P (Sobs, Smis | Θ) can be reformulated as

P (Sobs, Smis | Θ)

=

n∏
i=1

2|Fi|∏
j=1

θ
Ni,j,0

i,j,0 · θ
Ni,j,1

i,j,1

=

n∏
i=1

2|Fi|∏
j=1

θ
Ni,j,0

i,j,0 · (1− θi,j,0)Ni,j,1 .

(19)

where Ni,j,0 and Ni,j,1 represent the number of times
situations Xi = 0 ∧XFi = πi,j and Xi = 1 ∧XFi = πi,j
appear in (Sobs, Smis), respectively.

Then, the expectation function Q can be reformulated as

Q(Θ,Θ[t])

=
∑
Smis

 P (Smis | Sobs,Θ[t])×
n∑
i=1

2|Fi|∑
j=1

(
Ni,j,0 log θi,j,0+
Ni,j,1 log(1− θi,j,0)

) 
=
∑
Smis

n∑
i=1

2|Fi|∑
j=1

(
aij log θi,j,0+
bij log(1− θi,j,0)

)

=
n∑
i=1

2|Fi|∑
j=1

hij(θi,j,0),

(20)

where

hij(θi,j,0) =

 ∑
Smis

aij log θi,j,0+∑
Smis

bij log(1− θi,j,0)

 ,

aij = Ni,j,0P (Smis | Sobs,Θ[t]),

bij = Ni,j,1P (Smis | Sobs,Θ[t]).

(21)

The following Theorem can help us find an optimal Θ that
maximizes Q(Θ,Θ[t]).
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Theorem 2. Let 0 < θ < 1, a > 0 and b > 0, then function
f(θ) = a log θ+ b log(1− θ) reaches its maximum value at
θ = a

a+b .

Proof: The derivative of f(θ) is f ′(θ) = a
θ −

b
1−θ , based

on which we have that for 0 < θ < a
a+b , relationship

f ′(θ) > 0 holds, and for a
a+b < θ < 1, relationship

f ′(θ) < 0 holds. Hence, f(θ) reaches its maximum value
at θ = a

a+b , and the theorem is correct. �

To maximize Q(Θ,Θ[t]), we need to maximize the value
of each hij(θi,j,0). According to Theorem 2, for each i ∈
{1, ..., n} and j ∈ {1, ..., 2|Fi|}, function hij(θi,j,0) reaches
its maximum value at

∑
Smis aij/(

∑
Smis aij+

∑
Smis bij).

In other words, the optimal updating result θ[t+1]
i,j,0 for θ[t]

i,j,0
should be

θ
[t+1]
i,j,0 =

∑
Smis aij∑

Smis aij +
∑
Smis bij

, (22)

and θ[t+1]
i,j,1 = 1− θ[t+1]

i,j,0 .

In order to obtain the value of θ[t+1]
i,j,1 , we need to calculate∑

Smis Ni,j,kP (Smis | Sobs,Θ[t]) for k = 0, 1.∑
Smis

Ni,j,kP (Smis | Sobs,Θ[t])

=E[Ni,j,k | Sobs,Θ[t]]

=

β∑
`=1

E[Ni,j,k | Dobs
` ,Θ[t]].

(23)

If the infection statuses of vi and its parent nodes can
be observed in the `-th historical diffusion process, then
E[Ni,j,k | Dobs

` ,Θ[t]] can be calculated as

E[Ni,j,k | Dobs
` ,Θ[t]]

=

{
1, si = k and πi,j ∈ Dobs

` ;

0, si 6= k or πi,j 6∈ Dobs
` .

(24)

Otherwise, E[Ni,j,k | Dobs
` ,Θ[t]] can be estimated as

E[Ni,j,k | Dobs
` ,Θ[t]]

=P (Xi = k,XFi = πi,j | Dobs
` ,Θ[t])

=θ
[t]
i,j,kP (XFi

= πi,j | Dobs
` ,Θ[t])

=

|Fi|∏
α=1

ϕ
(
Fi(α), j

)
θ

[t]
i,j,k,

(25)

where function ϕ is defined in Eq. (8) and its computation
method has been discussed in the Cases 1 & 2 of our
proposed sampling method for missing data.

Given the discussion above, the optimal values of Θ
w.r.t. a given directed edge set can be iteratively approxi-
mated by repeatedly using Eq. (18).

Complexity Analysis
POIND infers the diffusion network structure and updates
infection transmission probabilities iteratively.

Graphs Number of Nodes Average Degree
LFR1-5 100,150,200,250,300 4

LFR6-10 200 2,3,4,5,6

Table 1: Properties of LFR benchmark graphs.

In structure inference, the most computationally expen-
sive process consists of the following two parts, namely
(1) sampling missing data, and (2) performing TWIND
on completed data. In the sampling process, calculating
the nodes’ infection probabilities in β historical diffusion
processes by Eq. (6) requiresO(βn2 +2ηβn) time, where n
is the number of nodes in objective diffusion network, and η
is the upper bound of the number of parent nodes (η � n).
Performing TWIND requires about O(βn2) time.

The updating of infection transmission probabilities is
carried out in an iterative way. In each updating iteration,
the most computationally expensive process is calculating
Eq. (23) with Eq. (25), which takesO(2ηηβn) time. Let t be
the number of all updating iterations, the time complexity of
infection transmission probability updating is O(2ηtηβn).

In summary, the overall time complexity of POIND algo-
rithm is O(Tβn2 + 2ηTβn+ 2ηTtηβn), where T refers to
the number of iterations of POIND.

Experimental Evaluation
In this section, we first introduce the experimental setup, and
then verify the effectiveness and efficiency of our POIND
algorithm on synthetic as well as real-world networks. To
this end, we investigate the effects of diffusion network
size, diffusion network’s average degree, the ratio of missing
data, the amount of diffusion processes, and the iterations of
POIND on the accuracy and running time performance of
POIND. All algorithms in the experiments are implemented
in Python, running on a desktop PC with Intel Core i3-6100
CPU at 3.70GHz and 8GB RAM.

Experimental Setup
Network. We adopt LFR benchmark graphs (Lancichinetti,
Fortunato, and Radicchi 2008) as the synthetic networks. By
setting different generation parameters, such as the number
of nodes and the average degree of each node, we gener-
ate two series of LFR benchmark graphs with properties
summarized in Table 1. In addition, we adopt two real-
world networks: NetSci (Newman 2006), a co-authorship
network containing 379 scientists and 1602 co-authorships,
and DUNF (Wang et al. 2014), a microblogging network
containing 750 users and 2974 following relationships.

Infection Data. The infection status results S can be
obtained by simulating β times of diffusion processes on
each network with randomly selected initially infected nodes
in each simulation (the ratio of initially infected nodes
is 15%). Corresponding cascades are also recorded for
cascade-based tested algorithms in the experiments. In each
diffusion process, each infected node tries to infect its unin-
fected child nodes with an infection transmission probability
that follows a Gaussian distribution with mean of 0.3 and
standard deviation of 0.05, to make about 95% of infection
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transmission probabilities are within a range from 0.2 to 0.4.
We randomly remove a few infection status data from S as
the missing data Smis (let γ denote the ratio of missing
data), and use the remaining partial observations Sobs for
diffusion network inference.

Performance Criterion. To evaluate the accuracy per-
formance of POIND algorithm, we report the F-score (the
harmonic mean of precision and recall) of its inferred
directed edges, computed as follows.

F -score =
2 · Precision ·Recall
Precision+Recall

,

where Precision = NTP

NTP +NFP
, Recall = NTP

NTP +NFN
,

NTP refers to the number of true positives, i.e., the true
edges which are correctly inferred by the algorithm; NFP
refers to the number of false positives, i.e., the wrong
inferred edges which are not in the real network; and NFN
refers to the number of false negatives, i.e., the true edges
which are not correctly inferred by the algorithm.

Benchmark Algorithms. We compare POIND with
a classical convex optimization-based approach NetRate
(Gomez-Rodriguez, Balduzzi, and Schölkopf 2011), a
state-of-the-art submodular optimization-based approach
MulTree (Gomez-Rodriguez and Schölkopf 2012), and
a high performance infection timestamp-free approach
TWIND (Huang et al. 2019b) for performance comparison,
where TWIND is also used to infer the structure of
objective diffusion network with completed data in our
POIND algorithm. For POIND, the maximum number
T of iterations is set to 5, the number m of sampling
round is set to 6, and the stop condition for the iterative
updates of infection transmission probabilities Θ is
‖Θ[t+1] −Θ[t]‖ 6 0.05. As the three benchmark algorithms
require complete infection data, we complete the Sobs

with the following ad-hoc method for these benchmark
algorithms: we estimate the average infection probability
of each node in Sobs, and then sample for the missing data
6 times based on the average infection probabilities. Since
NetRate infers the transmission rate between each two node
in the network, we give NetRate a privilege in accuracy
performance comparison, i.e., by calculating the F-score of
edges whose transmission rates are greater than a threshold,
we use different thresholds to find a highest F-score and
report this F-score as the final accuracy performance of
NetRate. Moreover, as MulTree requires users to specify the
number of edges to be inferred, we use the actual number m
of edges in the network as an input of MulTree.

Effect of Diffusion Network Size
To study the effect of diffusion network size on algorithm
performance, we adopt five synthetic networks, LFR1–5,
whose sizes vary from 100 to 300. We simulate 200 times
of diffusion processes on each network (i.e., β = 200), and
randomly remove 15% of infection status observations as
missing data (i.e., γ = 0.15).

Fig. 1 illustrates the F-score and execution time of each
tested algorithm, from which we can observe that (1) a-
mong the three benchmark algorithms, TWIND achieves
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Figure 1: Effect of diffusion network size
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Figure 2: Effect of average degree of diffusion network

the highest accuracy and best running time performance;
(2) compared with TWIND, POIND achieves a relatively
higher accuracy at the price of a longer running time; (3)
the running time of each tested algorithm increases with the
growth of diffusion network size.

Effect of Average Degree of Diffusion Network
To study the effect of diffusion network’s average degree
on algorithm performance, we test the algorithms on five
synthetic networks, LFR6–10, whose average node degree
varies from 2 to 6. We simulate 200 times of diffusion
processes on each network (i.e., β = 200), and randomly
remove 15% of infection status observations as missing data
(i.e., γ = 0.15).

Fig. 2 illustrates the F-score and running time of each
algorithm, from which we can observe that (1) the POIND
leads its competitors in accuracy, and is reasonably insensi-
tive to the network’s average degree; (2) the running time of
each tested algorithm increases with the growth of average
degree, and TWIND is faster than POIND as there is no
iteration in TWIND.

Effect of Missing Data Ratio
To study the effect of missing data ratio on algorithm
performance, we test the algorithms on two real-world
networks, NetSci and DUNF (with β = 200), varying the
missing data ratio γ from 0 to 0.2.

Figs. 3 & 4 illustrate the F-score and running time of each
tested algorithm on NetSci and DUNF, respectively. From
the figures we can observe that (1) compared with TWIND,
which often has the best accuracy among the benchmark
algorithms, POIND has slightly higher accuracy on NetSci
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Figure 3: Effect of missing data ratio on NetSci
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Figure 4: Effect of missing data ratio on DUNF

and reasonably high accuracy on DUNF; (2) the increase of
missing data ratio has a rather mild effect on the running
time of NetRate, MulTree and TWIND, but results in longer
running time for POIND. This is because POIND needs
longer running time to infer more missing data, while the
three benchmark algorithms use completed data directly.

Effect of Amount of Diffusion Processes
To study the effect of the amount of diffusion processes on
algorithm performance, we test the algorithms on NetSci
and DUNF with different number β of diffusion processes,
varying from 100 to 300. In the diffusion result obtained
with each β, we randomly remove 15% of infection status
observations as missing data (i.e., γ = 0.15).

Figs. 5 & 6 illustrate the F-score and running time of
each algorithm on NetSci and DUNF, respectively. From
the figures we can observe that (1) a greater amount of
diffusion processes often helps the tested algorithms to
achieve more accurate results on diffusion network structure
inference. POIND often has a better accuracy performance
compared with the other tested algorithms; (2) to analyze
the infection status results observed from more diffusion
processes, NetRate and MulTree often require more running
time. A greater amount of diffusion processes does not
always increase the running time of TWIND and POIND.

Effect of Iterations of POIND
To study the effect of POIND’s iterations on the performance
of POIND, we test POIND on NetSci and DUNF (with
β = 200, γ = 0.15), varying the maximum number T of
iterations from 1 to 5.
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Figure 5: Effect of amount of diffusion processes on NetSci
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Figure 6: Effect of amount of diffusion processes on DUNF
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Figure 7: Effect of iterations

Fig. 7 illustrates the tested results, from which we can ob-
serve that (1) POIND converges quickly; (2) more iterations
result in more running time for POIND as a rule.

Conclusion
We have investigated the problem of how to infer the struc-
ture of a diffusion network from only the partial observations
of final infection statuses of nodes. Towards this, we have
proposed an effective approach called POIND to carry out
structure inference and learning infection transmission prob-
abilities in an iterative way. To infer the structure, POIND
executes a probabilistic sampling for missing data, and then
performs an existing infection timestamp-free method on
the completed data. To learn infection transmission proba-
bilities, POIND adopts an EM-like approach to iteratively
approximate the optimal solution. Extensive experimental
results on both synthetic and real-world networks have ver-
ified that our approach can effectively uncover the diffusion
network structures from the partial observations.
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