
Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances

Zhang-Hua Fu 1,2, Kai-Bin Qiu 2, Hongyuan Zha 1,3 *

1 Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
2 Institute of Robotics and Intelligent Manufacturing, The Chinese University of Hong Kong, Shenzhen, China

3 School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
fuzhanghua@cuhk.edu.cn, 220019002@link.cuhk.edu.cn, zhahy@cuhk.edu.cn

Abstract

For the traveling salesman problem (TSP), the existing su-
pervised learning based algorithms suffer seriously from the
lack of generalization ability. To overcome this drawback,
this paper tries to train (in supervised manner) a small-scale
model, which could be repetitively used to build heat maps
for TSP instances of arbitrarily large size, based on a series
of techniques such as graph sampling, graph converting and
heat maps merging. Furthermore, the heat maps are fed into
a reinforcement learning approach (Monte Carlo tree search),
to guide the search of high-quality solutions. Experimental re-
sults based on a large number of instances (with up to 10,000
vertices) show that, this new approach clearly outperforms
the existing machine learning based TSP algorithms, and sig-
nificantly improves the generalization ability of the trained
model.

Introduction
The travelling salesman problem (TSP) is a well-known com-
binatorial optimization problem with various real-life applica-
tions, such as transportation, robots routing, biology, circuit
design. Given n cities as well as the distance dij between
each pair of cities i and j, the TSP aims to find a cheapest tour
which starts from a beginning city (arbitrarily chosen), visits
each city exactly once, and finally returns to the beginning
city. This problem is NP-hard, thus being extremely difficult
from the viewpoint of theoretical computer science.

Due to its importance in both theory and practice, many
algorithms have been developed, mostly based on traditional
operations research (OR) methods. Among the existing TSP
algorithms, the best exact solver Concorde (Applegate et al.
2009) succeeded in demonstrating optimality of an Euclidean
TSP instance with 85,900 cities, while the leading heuristics
(Helsgaun 2017) and (Taillard and Helsgaun 2019) are ca-
pable of obtaining near-optimal solutions for instances with
millions of cities. However, these algorithms are very compli-
cated, which consist of many hand-crafted rules and heavily
rely on expert knowledge, thus being difficult to generalize
to other combinatorial optimization problems.

To overcome those limitations, recent years have seen a
number of machine learning (ML) based algorithms being

*Corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proposed for the TSP (briefly reviewed in the next section),
which attempt to automate the search process by learning
mechanisms. This type of methods do not rely heavily on
expert knowledge, can be easily generalized to various com-
binatorial optimization problems, thus become a promising
research direction.

For the TSP, existing ML based algorithms can be roughly
classified into two categories, i.e., (1) supervised learning
(SL) algorithms which attempt to discover common patterns
supervised by pre-computed TSP solutions. (2) reinforce-
ment learning (RL) algorithms which try to learn during
the interaction with the environment (without pre-computed
solutions).

Once well trained, SL models are able to provide use-
ful information that significantly speeds up the search of
high-quality TSP solutions. However, the performance of
a pre-trained model of fixed size may decrease drastically
while tackling TSP instances of different sizes, since the dis-
tributions of the training instances are very different from
the test instances. On the other hand, training SL models
generally requires a large number of pre-computed optimal
(at least high-quality) TSP solutions, being unaffordable for
large-scale TSP instances. These drawbacks seriously limit
the usage of SL on large-scale TSP instances.

However, we believe the idea of discovering common pat-
terns in a supervised manner is valuable. If we can train a
small-scale SL model within reasonable time and find a way
to smoothly generalize it to large-scale cases (without pre-
computing a large number of solutions again), it is hopeful
to inherit the advantages of SL while avoiding its drawbacks.
Motivated by this idea, we develop a series of techniques,
in order to improve the generalization ability of the model
trained by SL. Furthermore, we combine SL and RL to form
a hybrid algorithm, which performs favorably with respect
to the existing ML based TSP algorithms. Overall, the main
contributions are summarized as follows.

• Methodologies: At first, we train a small-scale (with size
m) model by supervised learning, based on a graph convo-
lutional residual network with attention mechanism (Att-
GCRN). Once well trained, given a TSP instance with m
vertices, the model is able to build a heat map over the
edges. Then, we try to smoothly generalize this model to
handle large instances. For this purpose, given a large-scale
TSP instance, we repeatedly use a graph sampling method

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7474

to extract a sub-graph with exactly m vertices, then con-
vert it to a standard TSP instance, and call the pre-trained
model to build a sub heat map. Finally, all the sub heat
maps are merged together, to get a complete heat map
over the original graph. Although the Att-GCRN is some-
what similar to the network in (Joshi, Laurent, and Bresson
2019), to our best knowledge, the graph sampling, graph
converting and heat maps merging techniques are firstly
developed for the TSP in this paper, which significantly
improve the generalization ability of the trained model.
Furthermore, based on the merged heat map, we use a RL
based approach, i.e., Monte Carlo tree search (MCTS), to
search high-quality solutions. To our best knowledge, there
are two existing works (Shimomura and Takashima 2016)
and (Xing and Tu 2020) which also use MCTS to solve
the TSP. However, they are both constructive approaches,
where each state is a partial TSP tour, and each action adds
a city to increase the partial tour. By contrast, our MCTS
method is a conversion based approach, where each state
is a complete tour, and each action converts the current
state to a new complete tour. Therefore, our method is very
different from the existing MCTS algorithms.

• Results: We carry out experiments on a large number of
TSP instances with up to 10,000 cities (one order of magni-
tude larger than the instances used to evaluate the existing
ML algorithms). On all the data sets, our new algorithm
is able to obtain optimal or near-optimal solutions within
reasonable time, clearly outperforming all the existing
learning based algorithms.

Related Works
In this section, we briefly review the existing ML based al-
gorithms on the TSP, and then extend to several other highly
related problems. Non-learned methods are omitted, inter-
ested readers please find in (Applegate et al. 2009), (Rego
et al. 2011), (Helsgaun 2017) and (Taillard and Helsgaun
2019) for an overlook of the leading TSP algorithms.

The idea of applying ML to solve the TSP dated back to
several decades ago (Hopfield and Tank 1985), but becomes
a hot and promising topic only in recent years. A number of
ML based TSP algorithms have been developed, which can
be classified into two categories.

Supervised learning (SL) methods: Vinyals, Fortunato,
and Jaitly (2015) introduced a pointer network which con-
sists of an encoder and a decoder, both using recurrent neural
network (RNN). The encoder parses each TSP city into an
embedding, and then the decoder uses an attention model to
predict the probability distribution over the candidate (un-
visited) cities. Nowak et al. (2017) proposed a supervised
approach, which trains a graph neural network (GNN) to
predict an adjacency matrix (heat map) over the cities, and
then attempts to convert the adjacency matrix to a feasible
TSP tour by beam search (OR based method). Joshi, Laurent,
and Bresson (2019) followed this framework, but chose deep
graph convolutional networks (GCN) to build heat map, and
then constructed tours via highly parallelized beam search.
Xing and Tu (2020) trained a graph neural network (GNN) to
capture the local and global graph structure, based on which

they used a MCTS procedure to construct TSP tours. These
SL based methods require a large number of pre-computed
TSP solutions, thus being difficult to directly generalize to
large-scale instances.

Reinforcement learning (RL) methods: To overcome
the drawback of SL, several groups chose RL instead of
SL. For example, Bello et al. (2017) implemented an actor-
critic RL architecture, which uses the tour length as a re-
ward, to guide the search towards promising area. Khalil et al.
(2017) proposed a framework which maintains a partial tour
and repeatedly calls a RL model to select the most relevant
city to add to the partial tour, until forming a complete TSP
tour. Emami and Ranka (2018) also implemented an actor-
critic neural network, and chose Sinkhorn policy gradient
to learn policies by approximating a double stochastic ma-
trix. Concurrently, (Deudon et al. 2018), (Kool, van Hoof,
and Welling 2019) both proposed a graph attention network
(GAN), which incorporates attention mechanism with RL to
auto-regressively improve the quality of the obtained solution.
Recently, Wu et al. (2020) presented an improvement based
learning framework, which exploited deep RL to automati-
cally discover better improvement policies.

In addition, there are several ML based methods recently
proposed for other related problems, such as the decision TSP
(Prates et al. 2019), the multiple TSP (Kaempfer and Wolf
2019), and the vehicle routing problem (Nazari et al. 2018),
(Chen and Tian 2019) and (Lu, Zhang, and Yang 2020), etc.
For an overall survey, please refer to (Bengio, Lodi, and
Prouvost 2018) and (Guo et al. 2019).

Methods
Preliminaries
In this paper, we focus on the two-dimensional Euclidean
TSP, which is formulated as an undirected graph G(V,E),
where V (with |V | = n) denotes the set of vertices (each
vertex corresponds to a city), and E denotes the set of edges.
Without loss of generality, assume all the vertices are dis-
tributed within a two dimensional unit square, i.e., for each
vertex i ∈ V , its coordinates xi and yi both belong to [0, 1],
and the distance dij is defined as the Euclidean distance be-
tween vertices i and j. Furthermore, corresponding to graph
G, its heat map is defined as a n×nmatrixP , whose element
Pij ∈ [0, 1] denotes the probability of edge (i, j) belonging
to the optimal TSP solution.

As a preliminary step, we at first train (off-line learning) a
graph convolutional residual neural network with attention
mechanisms (denoted by Att-GCRN for short, whose archi-
tecture is described in the full version of this paper 1), with
fixed input size m (a parameter). To train the model, 990,000
TSP instances with m vertices are randomly generated as
the train set, and the solutions produced by the exact solver
Concorde 2 are used as the ground-truth solutions. Once well
trained, given a new TSP instance with m vertices (randomly
distributed within an unit square), the model is able to build
a heat map, which estimates the probability Pij of each edge
(i, j) belonging to the optimal solution.

1https://github.com/Spider-scnu/TSP
2https://github.com/jvkersch/pyconcorde

7475

Figure 1: Pipeline of the proposed approach

Pipeline
Given a TSP instance of arbitrarily large size, the pipeline
for solving this instance is shown in Fig. 1, which consists of
three main steps. Respectively, the first step (off-line learning)
uses a graph sampling method to extract from the original
graph a number of sub-graphs (each exactly consists of m
vertices), and then uses the pre-trained Att-GCRN model to
build a sub heat map corresponding to each sub-graph. After
that, the second step tries to merge all the sub heat maps into
a complete heat map (corresponding to the original graph).
Finally, the third step uses a reinforcement learning method
(online learning), i.e., Monte Carlo tree search (MCTS), to
search high-quality TSP solutions, guided by the information
stored in the merged heat map.

Building and Merging Heat Maps
The pre-trained model is able to build a heat map of a TSP
instance withm vertices. However, it can not be directly used
to handle instances of different size. To deal with this issue, an
optional approach is to train a series of models with different
sizes, like the choice of (Joshi, Laurent, and Bresson 2019).
Unfortunately, this approach seems unreasonable for very
large TSP instances, since the supervised learning process
requires a large number of pre-computed optimal (at least
high-quality) solutions, being unaffordable for large-scale
TSP instances. To avoid repetitively training models, in this
paper we develop a series of techniques (illustrated in Fig. 2
and described as follows), to extend the predication ability of
the fix-sized model to arbitrarily large TSP instances.

Figure 2: Method for building and merging heat maps

Graph Sampling The graph sampling method is used to
extract a number of sub-graphs (each with m vertices) from
the original graphG. To do this, for each vertex i ∈ V or each
edge (i, j) ∈ E, let Oi or Oij (initialized to 0) respectively
denote the times that vertex i (or edge (i, j)) belongs to an
extracted sub-graph. Then, at each iteration, we choose the
vertex i with the minimal value of Oi (randomly choose one
if there are multiple such vertices) as the clustering center,
and use the k-nearest neighbors algorithm (Dudani 1976) to
extract a sub-graph G′ which consists of exactly m vertices
(including the clustering center). Then, for each vertex i or
each edge (i, j) belonging to G′, let Oi ← Oi + 1, Oij ←
Oij + 1.

Above process is repeated, until the minimal value of Oi
reaches a lower bound ω (a pre-defined parameter). Notice
that the extracted sub-graphs may overlap, i.e., any vertex or
edge may belong to different sub-graphs.

Graph Converting For each instance of the train set, all
the vertices are distributed randomly within an unit square. To
make sure the extracted sub-graph G′ also meets this distri-
bution, we should convert it to a new graph G′′. For this pur-
pose, let xmin = min

i∈G′
xi, xmax = max

i∈G′
xi, ymin = min

i∈G′
yi,

ymax = max
i∈G′

yi respectively denote the minimal, maximal

value of the horizonal and vertical coordinates among all the
m vertices ofG′, and let s = 1

max(xmax−xmin,ymax−ymin) be
an amplification factor. Then, for each vertex i ∈ G′, we con-
vert its coordinates (xi, yi) to new coordinates (xnewi , ynewi):

xnewi ← s× (xi − xmin),

ynewi ← s× (yi − ymin).
(1)

After that, sub-graph G′ is converted to a new graph G′′.

Building Sub Heat Maps For each converted sub-graph
G′′, the coordinates of the m vertices are fed into the pre-
trained Att-GCRN model, to build a sub heat map over G′′.

Merging Sub Heat Maps Above two steps are repeated,
thus we can obtain a number (denoted by I) of sub heat maps.
Finally, we try to merge them into a complete heat map. To do
this, for each edge (i, j) of the original graph G, we estimate
its probability Pij of belonging to the optimal TSP solution
as follows.

Pij =
1

Oij
×

I∑
l=1

P
′′

ij(l). (2)

where P
′′

ij(l) denotes the probability of edge (i, j) (after
conversion) belonging to the optimal solution of the lth con-
verted sub-graph G′′ .

After merging all the sub heat maps, we obtain a complete
heat map over the original graph G. Then, all the edges with
Pij < 10−4 are marked as unpromising edges, which are
eliminated directly to reduce the search space.

7476

Reinforcement Learning for Solutions
Optimization
Based on the heat map obtained above, we develop a rein-
forcement learning based approach to search high-quality
solutions. The search process is considered as a Markov De-
cision Process (MDP), which starts from an initial state π,
and iteratively applies an action a to reach a new state π∗.
The details are described as follows.

States and actions In our implementation, each state cor-
responds to a complete TSP solution, i.e., a permutation
π = (π1, π2, . . . , πn) of all the vertices. Each action a is
a transformation which converts a given state π to a new
state π∗. Since each TSP solution consists of a subset of n
edges, any action could be viewed as a k-opt (2 ≤ k ≤ n)
transformation, which deletes k edges at first, and then adds
k different edges to form a new tour.

Obviously, each action can be represented as a series of
2k sub-decisions (k edges to delete and k edges to add).
This representation method is straightforward, but seems a
bit redundant, since the deleted edges and added edges are
highly relevant, while arbitrarily deleting k edges and adding
k edges may result in an unfeasible solution. Inspired by the
LK operator developed in (Lin and Kernighan 1973), we use
a compact method to represent an action, which consists of
only k sub-decisions. Formally, an action can be represented
as a = (a1, b1, a2, b2, . . . , ak, bk, ak+1), where k is a vari-
able and the final vertex must coincide with the first vertex,
i.e. ak+1 = a1. Each action corresponds to a k-opt trans-
formation, which deletes k edges, i.e., (ai, bi), 1 ≤ i ≤ k,
and adds k edges, i.e., (bi, ai+1), 1 ≤ i ≤ k, to reach a new
state. Notice that not all these elements are optional. Once
ai is known, bi can be uniquely determined without any op-
tional choice (explained and exemplified in the full version
of this paper). Therefore, to determine an action we should
only decide a series of k sub-decisions, i.e., the k vertices
ai, 1 ≤ i ≤ k. Additionally, an action involving an unpromis-
ing edge (bi, ai+1), i.e., Pbiai+1

< 10−4, is marked as an
unpromising action and eliminated directly.

Intuitively, this compact representation method brings
advantages in two-folds: (1) fewer (only k, not 2k) sub-
decisions need to be made; (2) the resulting states are always
feasible solutions (thus do not need to check feasibility).

Let L(π) denote the tour length corresponding to
state π, then corresponding to each action a =
(a1, b1, a2, b2, . . . , ak, bk, ak+1) which converts π to a new
state π∗, the difference ∆(π,π∗) = L(π∗) − L(π) could
be calculated as follows:

∆(π,π∗) =
k∑
i=1

dbiai+1
−

k∑
i=1

daibi . (3)

If ∆(π,π∗) < 0, π∗ is better (with shorter tour length)
than π.

State Initialization For state initialization, we choose a
constructive procedure, which starts from an arbitrarily cho-
sen begin vertex π1, iteratively selects a vertex πi, 2 ≤ i ≤ n
among the candidate (unvisited) vertices and adds it to

Figure 3: Procedure of the Monte Carlo tree search

the end of the partial tour, until forming a complete tour
π = (π1, π2, . . . , πn). More precisely, at the ith iteration,
if there are more than one candidate vertices, each candi-
date vertex j is chosen with a probability proportional to
exp(Pπij), while all the candidate vertices share a total prob-
ability of 1.

Enumerating within Small Neighborhood To maintain
the generalization ability of our approach, we avoid to use
complex hand-crafted rules, such as the α-nearness criterion
in (Helsgaun 2000) and the POPMUSIC strategy in (Tail-
lard and Helsgaun 2019), which have proven to be highly
effective on the TSP, but heavily depend on expert knowl-
edge. Instead, starting from a new state, we at first use a
straightforward method to search within a small neighbor-
hood. More precisely, the method examines one by one the
promising actions with k = 2, and iteratively applies the
first-met improving action which leads to a better state, until
no improving action with k = 2 is found. This simple method
is able to efficiently and robustly converge to a local optimal
state.

Targeted Sampling within Enlarged Neighborhood
Once no improving action is found within the small neighbor-
hood, we switch to an enlarged neighborhood which consists
of the actions with k > 2. Unfortunately, there are generally
a huge number of actions within the enlarged neighborhood
(even after eliminating the unpromising ones), being impos-
sible to enumerate them one by one. Therefore, we choose
to sample a subset of promising actions (guided by RL) and
iteratively select an action to apply, to reach a new state.

Following this idea, we choose the Monte Carlo tree search
(MCTS) as our learning framework. Inspired by the works
in (Coulom 2006), (Browne et al. 2012), (Silver et al. 2016)
and (Silver et al. 2017), our MCTS procedure (outlined in
Fig. 3) consists of four steps, i.e., (1) Initialization, (2) Sim-
ulation, (3) Selection, and (4) Back-propagation, which are
respectively designed as follows.

Initialization: We define two n× n symmetric matrices,
i.e., a weight matrix W whose element Wij (initialized to
100× Pij) controls the probability of choosing vertex j after
vertex i, and an access matrixQ whose element Qij (initial-
ized to 0) records the times that edge (i, j) is chosen during
simulations. Additionally, a variable M (initialized to 0) is
used to record the total number of actions already simulated.
Note that this initialization step should be executed only once
at the beginning of the whole process of MDP.

Simulation: Given a state π, we use the simulation
process to probabilistically generate a number of actions.
As explained before, each action is represented as a =
(a1, b1, a2, b2, . . . , ak, bk, ak+1), containing a series of sub-

7477

decisions ai, 1 ≤ i ≤ k (k is also a variable, and ak+1 = a1),
while bi could be determined uniquely once ai is known.
Once bi is determined, for each edge (bi, j), j 6= bi, we
use the following formula to estimate its potential Zbij (the
higher the value of Zbij , the larger the opportunity of edge
(bi, j) to be chosen):

Zbij =
Wbij

Ωbi
+ α

√
ln (M + 1)

Qbij + 1
. (4)

Where Ωbi =
∑

j 6=bi
Wbij∑

j 6=bi
1 denotes the averagedWbij value

of all the edges relative to vertex bi. In this formula, the left
part Wbij

Ωbi
emphasizes the importance of the edges with high

Wbij values (to enhance the intensification feature), while the

right part

√
ln (M + 1)

Qbij + 1
prefers the rarely examined edges

(to enhance the diversification feature). α is a parameter used
to achieve a balance between intensification and diversifica-
tion, and the term ”+1” is used to avoid a negative numerator
or a zero denominator.

To make the sub-decisions sequently, we at first choose a1

randomly, and determine b1 subsequently. Recursively, once
ai and bi are known, ai+1 is decided as follows: (1) if closing
the loop (connecting bi to a1) would lead to an improving
action, or i ≥ 10, let ai+1 = a1. (2) otherwise, consider the
vertices with Wbij ≥ 1 as candidate vertices, forming a set X
(excluding a1 and the vertex already connected to bi). Then,
among X each vertex j is selected as ai+1 with probability
Pj , which is determined as follows:

Pj =
Zbij∑
l∈X Zbil

. (5)

Once ai+1 = a1, we close the loop to obtain an action.
Similarly, more actions are generated (forming a sampling

pool), until meeting an improving action which leads to a
better state, or the number of actions reaches its upper bound
(controlled by a parameter H).

Selection: During above simulation process, if an improv-
ing action is met, it is selected and applied to the current state
π, to get a new stateπnew. Otherwise, if no such action exists
in the sampling pool, it seems difficult to gain improvement
within the current search area. Then, the MDP jumps to a
random state (using the state initialization method described
above), which serves as a new starting state.

Back-propagation: The value of M as well as the ele-
ments of matricesW andQ are updated by back propagation
as follows. At first, whenever an action is examined, M is
increased by 1. Then, for each edge (bi, ai+1) which appears
in an examined action, let Qbiai+1

increase by 1. Finally,
whenever a state π is converted to a better state πnew by ap-
plying action a = (a1, b1, a2, b2, . . . , ak, bk, ak+1), for each
edge (bi, ai+1), 1 ≤ i ≤ k, let:

Wbiai+1 ←Wbiai+1 + β

[
exp

(
L(π)− L(πnew)

L(π)

)
− 1

]
.

(6)

Where β is a parameter used to control the increasing
rate of Wbiai+1 . Notice that we update Wbiai+1 only when
meeting a better state, since we want to avoid wrong esti-
mations (even in a bad action which leads to a worse state,
there may exist some good edges (bi, ai+1)). With this back-
propagation process, the weight of the good edges would be
increased to enhance its opportunity of being selected, thus
the sampling process would be more and more targeted.
W and Q are symmetric matrices, thus let Wai+1bi =

Wbiai+1 and Qai+1bi = Qbiai+1 always.

Termination Condition The MCTS iterates through the
simulation, selection and back-propagation steps, until no
improving action exists among the sampling pool. Then, the
MDP jumps to a new state, and launches a new round of
search within small and enlarged neighborhood again. This
process is repeated, until the allowed time (controlled by a
parameter T) has been elapsed. Then, the best found state is
returned as the final solution.

Experiments
To evaluate the performance of our method, we program the
algorithm for building heat maps in Python, and program
the MCTS algorithm in C++ language 3. Then, we carry out
experiments on a large number of TSP instances, and make
comparisons with eight newest learning based baselines, as
well as three strong non-learning algorithms (the program-
ming and training details about the baselines are given in the
full version of this paper). Notice that, for the baselines, we
just directly download and rerun the source codes, based on
the pre-trained models (only for learning based baselines)
which are publicly available. To ensure fair comparisons, all
the learning based baselines as well as our new algorithm are
uniformly executed on one GTX 1080 Ti GPU (to fully uti-
lize the computing resources, as many instances as possible
are executed in parallel). For the three non-learning algo-
rithms, their source codes currently do not support running
on GPU, thus we re-run them on one Intel(R) Xeon(R) Gold
5118 CPU @ 2.30GHz (with 8 cores), and list the results just
for indicative purposes. Notice that our method is a learning
based algorithm, thus we do not aim to strictly outperform
the non-learning algorithms.

Data Sets
We use two data sets: (1) Set 1 4, which is divided into three
subsets, each containing 10,000 automatically generated 2D-
Euclidean TSP instances, respectively with n = 20, 50, 100.
This data set is widely used by the existing learning based
algorithms. (2) Set 2, following the same rules, we newly
generate 400 larger instances, i.e., 128 instances respectively
with n = 200, 500, 1000, and 16 instances with n = 10000.

Parameters
As described before, our method relies on six hyper parame-
ters (m, ω, α, β, H and T). For parameter m which controls

3Publicly available at https://github.com/Spider-scnu/TSP.
4Downloaded from https://drive.google.com/file/d/1-5W-

S5e7CKsJ9uY9uVXIyxgbcZZNYBrp/view.

7478

the size of the pre-trained model, we set m = 20 for the
small instances of data set 1, and set m = 50 for the large
instances of data set 2. For the following four parameters, we
uniformly choose ω = 5, α = 1, β = 10, H = 10n as the
default settings. Finally, for parameter T which controls the
termination time, we respectively set T = 10n and T = 40n
milliseconds for each instance of data set 1 and data set 2, to
ensure that our algorithm elapses no more time than the best
(in terms of solution quality) learning algorithm proposed in
each reference paper.

Results on Data Set 1
Table 1 presents the results obtained by our algorithm (Att-
GCRN+MCTS) on data set 1, with respect to the existing
baselines. Respectively, the first three lines list two exact
solvers, i.e., Concorde 5 and Gurobi 6, as well as one strong
heuristic LKH3 (Helsgaun 2017). The following eight lines
are all learning based algorithms which combine traditional
operations for post-optimization. There are also several End-
to-End ML models in the literature, but they all produce very
poor results, thus being omitted here. For the columns, col-
umn 1 indicates the methods, while column 2 indicates the
type of each algorithm. Columns 3-5 respectively give the av-
erage tour length, average gap in percentage w.r.t. Concorde,
and the total clock time used by each algorithm on all the
10,000 instances with n = 20. To ensure fair comparisons,
for some learning baselines, the original parameters (such as
the width of beam search) are adapted to prolong the total run-
ning time. These adapted results are indicated in underlines
in the table. For our method (last line), the time is divided
into two parts, i.e., the time for building heat maps plus the
time for running MCTS. Columns 6-8, 9-11 respectively give
the same information on the instances with n = 50 and 100.

As shown in Table 1, the three non-learning algorithms
obtain good results on all the test instances, while the existing
learning based algorithms all struggle to match optimality
on the instances with n = 100. Compared to these base-
lines, our algorithm performs quite well, which succeeds in
matching the ground-truth solutions (reported by Concorde)
on most of these instances, corresponding to an average gap
of 0.0000%, 0.0145%, 0.0370% respectively on instances
with n = 20, 50, 100. The total runtime of our method re-
mains competitive w.r.t. all the learning baselines only except
two (with greedy heuristics), which are deterministic thus the
results cannot be improved by prolonging the runtime.

Results on Data Set 2
At first, we summarize in Table 2 the results obtained on the
384 instances with n = 200, 500, 1000. Concorde and LKH3
still perform well on these instances, while Gurobi performs
well on the instances with n=200 and 500, but fails to termi-
nate within reasonable time on the instances with 1000 cities.
For the learning baselines, they all produce results far away
from optimality, especially on the instances with 1000 ver-
tices. By contrast, our method is able to obtain, within short
time, results very close to optimality (corresponding to a gap

5Downloaded from https://github.com/jvkersch/pyconcorde
6See https://www.gurobi.com

of 0.8844%, 2.5365% and 3.2238% respectively on the in-
stances with n = 200, 500 and 1000), clearly outperforming
the existing learning baselines.

Furthermore, we evaluate the performance of Att-
GCN+MCTS on the 16 largest instances with 10,000 vertices
(see Table 3). On these large instances, several baseline algo-
rithms face a big challenge. For example, the three learning
based algorithms proposed in (Joshi, Laurent, and Bresson
2019) all fail due to memory exception (tested on the same
platform as previously described), while the two exact solvers
(Concorde and Gurobi) as well as the two GAT models in
(Deudon et al. 2018) all fail due to time exception (up to five
hours is allowed for each instance). Therefore, we exclude
these seven baseline algorithms, and just compare our Att-
GCRN+MCTS algorithm with the remaining three learning
based algorithms (Kool, van Hoof, and Welling 2019), all
evaluated on one GTX 1080 Ti GPU. The results produced by
LKH3 (evaluated on one Intel(R) Xeon(R) Gold 5118 CPU
@ 2.30GHz) are listed for indicative purpose. As shown in Ta-
ble 3, Att-GCRN+MCTS is able to produce solutions close to
LKH3, corresponding to a small average gap of 4.3902%. By
contrast, the three learning based algorithms correspond to
a huge average gap of 501.2737%, 97.3932%, 80.2802% re-
spectively. The runtime of our algorithm remains reasonable
(shorter than the best one of the three baselines).

Additionally, we would like to mention three recent learn-
ing based TSP algorithms, i.e., Shimomura and Takashima
(2016), Xing and Tu (2020) and Wu et al. (2020). The source
codes of these three papers are all not publicly available, thus
we cannot evaluate them uniformly on the same platform.
In Shimomura and Takashima (2016), the authors did not
report instance-per-instance results, thus it seems impossible
for us to make direct comparisons with this method. In Xing
and Tu (2020), on the test instances with 20, 50, 100, 200,
500, 1000 cities, the authors respectively claimed an average
gap of 0.01%, 0.20%, 1.04%, 1.91%, 4.37%, 4.48% w.r.t.
optimality (all worse than ours). In Wu et al. (2020), on the
instances with 20, 50, 100 cities, the authors respectively
claimed an average gap of 0.00%, 0.20%, 1.42% w.r.t. op-
timality. Roughly speaking, compared to these two recent
algorithms, our algorithm is able to produce overall better re-
sults within reasonable time (although evaluated on different
platforms).

Ablation Study about Heat Map
To emphasize the importance of the heat map, for each in-
stance with n ≥ 100, we assign an equal probability to
each edge, and rerun the MCTS algorithm alone to search
solutions. The results are summarized in Table 4, where
the left part lists the results obtained by the original Att-
GCRN+MCTS algorithm, and the right part lists the results
obtained by MCTS alone (without heat map). Clearly, after
disabling the heat map, the performance of the algorithm de-
creases drastically, corresponding to a huge gap with respect
to optimality on each data set. For comparison, the original
Att-GCRN+MCTS algorithm produces results very close to
optimality on each data set. These comparisons clearly cer-
tificate the value of the method for identifying promising
candidate edges.

7479

Method Type TSP20 TSP50 TSP100
Length Gap Time Length Gap Time Length Gap Time

Concorde Exact Solver 3.8303 0.0000% 2.31m 5.6906 0.0000% 13.68m 7.7609 0.0000% 1.04h
Gurobi Exact Solver 3.8302 -0.0001% 2.33m 5.6905 0.0000% 26.20m 7.7609 0.0000% 3.57h
LKH3 Heuristic 3.8303 0.0000% 20.96m 5.6906 0.0013% 26.65m 7.7611 0.0026% 49.96m
GAT (Deudon et al. 2018) RL, S 3.8741 1.1443% 10.30m 6.1085 7.3438% 19.52m 8.8372 13.8679% 47.78m

GAT (Deudon et al. 2018) RL, S,
2OPT 3.8501 0.5178% 15.62m 5.8941 3.5759% 27.81m 8.2449 6.2365% 4.95h

GAT (Kool et al. 2018) RL, S 3.8322 0.0501% 16.47m 5.7185 0.4912% 22.85m 7.9735 2.7391% 1.23h
GAT (Kool et al. 2018) RL, G 3.8413 0.2867% 6.03s 5.7849 1.6568% 34.92s 8.1008 4.3791% 1.83m
GAT (Kool et al. 2018) RL, BS 3.8304 0.0022% 15.01m 5.7070 0.2892% 25.58m 7.9536 2.4829% 1.68h
GCN (Joshi et al. 2019) SL, G 3.8552 0.6509% 19.41s 5.8932 3.5608% 2.00m 8.4128 8.3995% 11.08m
GCN (Joshi et al. 2019) SL, BS 3.8347 0.1158% 21.35m 5.7071 0.2905% 35.13m 7.8763 1.4828% 31.80m
GCN (Joshi et al. 2019) SL, BS* 3.8305 0.0075% 22.18m 5.6920 0.02509% 37.56m 7.8719 1.4299% 1.20h

Att-GCRN+MCTS(Ours) SL+RL 3.8303 0.0000% 23.33s + 5.6914 0.0145% 2.59m + 7.7638 0.0370% 3.94m +
1.25m 5.33m 10.62m

Table 1: Our results w.r.t. the baselines, tested on 10,000 instances respectively with n=20, 50 and 100 (some results of Concorde
are not strictly optimal, possibly due to the reason of integer approximation, so as the results in Table 2).

Method Type TSP200 TSP500 TSP1000
Length Gap Time Length Gap Time Length Gap Time

Concorde Solver 10.7191 0.0000% 3.44m 16.5458 0.0000% 37.66m 23.1182 0.0000% 6.65h
Gurobi Solver 10.7036 -0.1446% 40.49m 16.5171 -0.1733% 45.63h - - -
LKH3 Heuristic 10.7195 0.0040% 2.01m 16.5463 0.0029% 11.41m 23.1190 0.0036% 38.09m
GAT (Deudon et al. 2018) RL, S 13.1746 22.9079% 4.84m 28.6291 73.0293% 20.18m 50.3018 117.5860% 37.07m

GAT (Deudon et al. 2018) RL, S,
2OPT 11.6104 8.3159% 9.59m 23.7546 43.5687% 57.76m 47.7291 106.4575% 5.39h

GAT (Kool et al. 2018) RL, S 11.4497 6.8160% 4.49m 22.6409 36.8382% 15.64m 42.8036 85.1519% 63.97m
GAT (Kool et al. 2018) RL, G 11.6096 8.3081% 5.03s 20.0188 20.9902% 1.51m 31.1526 34.7539% 3.18m
GAT (Kool et al. 2018) RL, BS 11.3769 6.1364% 5.77m 19.5283 18.0257% 21.99m 29.9048 29.2359% 1.64h
GCN (Joshi et al. 2019) SL, G 17.0141 58.7272% 59.11s 29.7173 79.6063% 6.67m 48.6151 110.2900% 28.52m
GCN (Joshi et al. 2019) SL, BS 16.1878 51.0185% 4.63m 30.3702 83.5523% 38.02m 51.2593 121.7278% 51.67m
GCN (Joshi et al. 2019) SL, BS* 16.2081 51.2079% 3.97m 30.4258 83.8883% 30.62m 51.0992 121.0357% 3.23h

Att-GCN+MCTS (Ours) SL+RL 10.8139 0.8844% 20.62s + 16.9655 2.5365% 31.17s + 23.8634 3.2238% 43.94s +
2.15m 5.39m 11.74m

Table 2: Our results w.r.t. existing baselines, tested on 128 instances respectively with n=200, 500 and 1000.

Method TSP10000
Length Gap (vs. LKH3) Time

LKH3 71.7778 - 8.8h
GAT (Kool et al. 2018) 431.5812 501.2737% 12.63m
GAT (Kool et al. 2018) 141.6846 97.3932% 5.99m
GAT (Kool et al. 2018) 129.4012 80.2802% 1.81h

Att-GCN+MCTS (Ours) 74.9290 4.3902% 4.16m +
1.69h

Table 3: Performance of Att-GCRN+MCTS w.r.t. four base-
lines, tested on 16 TSP instances with 10,000 vertices.

Conclusions
Supervised learning based methods require a large amount of
training data, being difficult to generalize to large-scale TSP
instances. This research shows that, it is possible to train a
small-scale model in supervised manner, and smoothly gen-
eralize it to tackle large TSP instances, by applying a series
of techniques such as graph sampling, graph converting and
heat maps merging. This method can inherit the advantages

Instance Att-GCRN+MCTS MCTS (without heat map)
LengthOpt. Gap.Time Length Opt. Gap. Time

TSP100 7.76 0.04% 3.94m+ 46.43 498.31% 10.37m10.62m

TSP200 10.81 0.88% 20.63s+ 96.50 800.25% 2.10m2.15m

TSP500 16.97 2.54% 31.73s+ 247.88 1398.15%4.81m5.39m

TSP1000 23.86 3.22% 43.94s+ 502.51 2073.67%10.43m11.74m

TSP10000 74.93 4.39% 4.16m+ 1000.021293.22%1.56h1.69h

Table 4: Ablation study about the heat map.

of supervised learning, and avoid repetitively training models
of different sizes. Experimental results confirmed that, this
method is able to develop highly competitive learning based
TSP algorithm, and significantly improve the generalization
ability of the pre-trained model. In the future, we will try to
solve extremely large or non-Euclidean TSP instances.

7480

Acknowledgements
We would like to thank the anonymous reviewers for their
insightful comments that helped to considerably improve the
paper. This paper was supported in part by the Shenzhen
Science and Technology Innovation Commission under grant
JCYJ20180508162601910, the National Key R&D Program
of China under grant 2020YFB1313300, and the Funding
from the Shenzhen Institute of Artificial Intelligence and
Robotics for Society under grant 2019-INT003. Jia-Ming
Xin also contributed to this paper.

References
Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W.; Es-
pinoza, D. G.; Goycoolea, M.; and Helsgaun, K. 2009. Certi-
fication of an optimal TSP tour through 85,900 cities. Opera-
tions Research Letters 37(1): 11–15.

Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio, S.
2017. Neural combinatorial optimization with reinforcement
learning. In Proceeding of the International Conference on
Learning Representations (ICLR).

Bengio, Y.; Lodi, A.; and Prouvost, A. 2018. Machine Learn-
ing for Combinatorial Optimization: a Methodological Tour
d’Horizon. arXiv preprint arXiv:1811.06128 .

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1): 1–43.

Chen, X.; and Tian, Y. 2019. Learning to perform local
rewriting for combinatorial optimization. In Advances in
Neural Information Processing Systems, 6278–6289.

Coulom, R. 2006. Efficient selectivity and backup operators
in Monte-Carlo tree search. In International conference on
computers and games, 72–83. Springer.

Deudon, M.; Cournut, P.; Lacoste, A.; Adulyasak, Y.; and
Rousseau, L.-M. 2018. Learning heuristics for the tsp by
policy gradient. In International Conference on the Integra-
tion of Constraint Programming, Artificial Intelligence, and
Operations Research, 170–181. Springer.

Dudani, S. A. 1976. The distance-weighted k-nearest-
neighbor rule. IEEE Transactions on Systems, Man, and
Cybernetics (4): 325–327.

Emami, P.; and Ranka, S. 2018. Learning permutations with
sinkhorn policy gradient. arXiv preprint arXiv:1805.07010 .

Guo, T.; Han, C.; Tang, S.; and Ding, M. 2019. Solving
Combinatorial Problems with Machine Learning Methods. In
Nonlinear Combinatorial Optimization, 207–229. Springer.

Helsgaun, K. 2000. An effective implementation of the Lin–
Kernighan traveling salesman heuristic. European Journal of
Operational Research 126(1): 106–130.

Helsgaun, K. 2017. An extension of the Lin-Kernighan-
Helsgaun TSP solver for constrained traveling salesman and
vehicle routing problems. Roskilde: Roskilde University .

Hopfield, J. J.; and Tank, D. W. 1985. Neural computation of
decisions in optimization problems. Biological cybernetics
52(3): 141–152.

Joshi, C. K.; Laurent, T.; and Bresson, X. 2019. An Efficient
Graph Convolutional Network Technique for the Travelling
Salesman Problem. arXiv preprint arXiv:1906.01227 .

Kaempfer, Y.; and Wolf, L. 2019. Learning the multiple trav-
eling salesmen problem with permutation invariant pooling
networks. In Proceeding of the International Conference on
Learning Representations (ICLR).

Khalil, E.; Dai, H.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 6348–6358.

Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! In International Confer-
ence on Learning Representations (ICLR).

Lin, S.; and Kernighan, B. W. 1973. An effective heuristic
algorithm for the traveling-salesman problem. Operations
Research 21(2): 498–516.

Lu, H.; Zhang, X.; and Yang, S. 2020. A Learning-based
Iterative Method for Solving Vehicle Routing Problems. In In-
ternational Conference on Learning Representations (ICLR).

Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takác, M. 2018.
Reinforcement learning for solving the vehicle routing prob-
lem. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 9839–9849.

Nowak, A.; Villar, S.; Bandeira, A. S.; and Bruna, J. 2017.
A note on learning algorithms for quadratic assignment with
graph neural networks. In Proceeding of the 34th Interna-
tional Conference on Machine Learning (ICML), volume
1050, 22.

Prates, M.; Avelar, P. H.; Lemos, H.; Lamb, L. C.; and Vardi,
M. Y. 2019. Learning to Solve NP-Complete Problems: A
Graph Neural Network for Decision TSP. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
volume 33, 4731–4738.

Rego, C.; Gamboa, D.; Glover, F.; and Osterman, C. 2011.
Traveling salesman problem heuristics: Leading methods,
implementations and latest advances. European Journal of
Operational Research 211(3): 427–441.

Shimomura, M.; and Takashima, Y. 2016. Application of
Monte-Carlo Tree Search to Traveling-Salesman Problem. In
The 20th Workshop on Synthesis And System Integration of
Mixed Information technologies (SASIMI), 352–356.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587): 484.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354.

7481

Taillard, É. D.; and Helsgaun, K. 2019. POPMUSIC for the
travelling salesman problem. European Journal of Opera-
tional Research 272(2): 420–429.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2692–2700.
Wu, Y.; Song, W.; Cao, Z.; Zhang, J.; and Lim, A. 2020.
Learning Improvement Heuristics for Solving Routing Prob-
lems. arXiv preprint arXiv:1912.05784 .
Xing, Z.; and Tu, S. 2020. A Graph Neural Network As-
sisted Monte Carlo Tree Search Approach to Traveling Sales-
man Problem. In IEEE Access. doi:10.1109/ACCESS.2020.
3000236.

7482

