
UAG: Uncertainty-aware Attention Graph Neural Network
for Defending Adversarial Attacks

Boyuan Feng, Yuke Wang, Yufei Ding
University of California, Santa Barbara

{boyuan, yuke_wang, yufeiding}@ucsb.edu

Abstract
With the increasing popularity of graph-based learning, graph
neural networks (GNNs) emerge as the essential tool for gain-
ing insights from graphs. However, unlike the conventional
CNNs that have been extensively explored and exhaustively
tested, people are still worrying about the GNNs’ robustness
under the critical settings, such as financial services. The main
reason is that existing GNNs usually serve as a black-box in
predicting and do not provide the uncertainty on the predic-
tions. On the other side, the recent advancement of Bayesian
deep learning on CNNs has demonstrated its success of quanti-
fying and explaining such uncertainties to fortify CNN models.
Motivated by these observations, we propose UAG, the first
systematic solution to defend adversarial attacks on GNNs
through identifying and exploiting hierarchical uncertainties
in GNNs. UAG develops a Bayesian uncertainty technique to
explicitly capture uncertainties in GNNs and further employs
an uncertainty-aware attention technique to defend adversar-
ial attacks on GNNs. Intensive experiments show that our
proposed defense approach outperforms the state-of-the-art
solutions by a significant margin.

Introduction
As the emerging trend of extending deep learning from
Euclidean data (e.g., images) to non-Euclidean data (e.g.,
graphs), graph neural network (GNN) (Xu et al. 2019b; Kipf
and Welling 2017; Veličković et al. 2018) wins lots of atten-
tions from both research and industrial domains. Compared
with the conventional graph-learning approaches (e.g., ran-
dom walk (Grover and Leskovec 2016; Perozzi, Al-Rfou, and
Skiena 2014), and graph Laplacians (Luo et al. 2011, 2009;
Cheng et al. 2018)), GNNs excel at both computation effi-
ciency and runtime performance for various tasks, such as the
node classification (Kaspar and Horst 2010; Gibert, Valveny,
and Bunke 2012; Duran and Niepert 2017) and link predic-
tion (Chen, Li, and Huang 2005; Kunegis and Lommatzsch
2009; Tylenda, Angelova, and Bedathur 2009). Despite the
stunning success, people still concern about the robustness
of GNNs, especially in some safety-critical domains (e.g.,
financial services and medicinal chemistry). Existing work
(Zügner and Günnemann 2019; Xu et al. 2019a; Waniek et al.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2018) has shown that GNNs are sensitive to small perturba-
tions on the topology and the node features, which motivates
our work for defending adversarial attacks.

The most recent work, RGCN (Zhu et al. 2019), improves
GNN robustness with a simple strategy that replaces deter-
ministic GNN features with a Gaussian distribution and mea-
sures the variance in the intermediate feature vectors. How-
ever, it assumes fixed GNN weights without quantifying the
uncertainty from GNN models and does not consider the un-
certainty from the graph topology, leading to unsatisfactory
accuracy under severe attacks. We believe the key to improve
the GNN robustness is to develop a powerful technique to
quantify and exploit uncertainties from various sources to
absorb the effect of adversarial attacks.

In this paper, we focus on exploring the benefits of explic-
itly quantifying GNN uncertainty to defend GNNs against
adversarial attacks. In particular, there are two major types of
uncertainties in GNNs – the model uncertainty and the data
uncertainty. The former refers to the uncertainty in model pa-
rameters to tell whether the selected parameters can best suit
the distribution of the collected data. The latter refers to the
uncertainty in the noisy data collection, coming from either
the noises in the data collection process or the adversarial
attacks. However, exploring these uncertainties is non-trivial
since there are several challenges to overcome:

1. Uncertainty Measurement: How to explicitly measure
the uncertainty of GNNs?

2. Robustness: How to effectively incorporate the measured
uncertainty into existing GNNs for defending adversarial
attacks?

To tackle these challenges, we propose the first Bayesian-
based uncertainty guided approach to defend the GNN effec-
tively. First, we develop a Bayesian uncertainty technique
based on the powerful Bayesian framework to capture these
uncertainties from different sources. Intuitively, we measure
the uncertainty value for individual nodes where a higher
uncertainty usually indicates a lower prediction accuracy.
Then, we design an uncertainty-aware attention technique
to dynamically adjust the impact of one node towards its
neighboring nodes according to its uncertainty. In particular,
for nodes with high uncertainty that may have been attacked,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7404



we restrict its feature propagation towards neighboring nodes
in order to absorb the attack impact.

In short, we summerize our contributions as follows:

• We identify two types of uncertainties in GNNs (i.e., model
uncertainty and data uncertainty) and propose a Bayesian
uncertainty technique to explicitly capture both types of
uncertainties.

• We introduce an uncertainty-aware attention technique
to defend the adversarial attack by assigning less impact
(weights) on nodes with high uncertainty, thus, mitigating
their impact on the final prediction.

• Rigorous experiments and studies across various datasets
on mainstream GNNs show that our proposed defense
approach outperforms the state-of-the-art RGCN by a sig-
nificant margin.

Related Work
Graph Neural Network Graph Neural Networks (GNNs)
are now becoming a major way of gaining insights from
the graph structures. It generally includes several graph con-
volutional layers, each of which consists of a neighbor ag-
gregation and a node update step. The most common graph
convolutional layer (Kipf and Welling 2017) computes the
embedding for node v at layer k+1 based on node embedding
at layer k, where k ≥ 0.

h(k+1)
v = σ(

∑
u∈N̄(v)

1

cucv
h(k)
u ·W (k)) (1)

As shown in Equation 1, h(k)v is the embedding vector for
node v at layer k, W (k) is the GNN weight at layer k, and
N̄(v) = N(v) ∪ v is the set of node v and its neighboring
nodes. cu and cv are fixed values determined by the degree
of node u and v and will be omitted in following sections for
notation simplicity. Intuitively, the graph convolution layer
aggregates information across nodes by averaging features in
nearby nodes. More advanced GNNs utilize different aggre-
gation methods. For example, GAT (Veličković et al. 2018)
aggregates node features with weighted average based on the
cosine similarity between node features.
Graph Adversarial Attacks and Defense Existing works
have explored the robustness of the GNNs in two opposite but
closely related directions, GNN attacks, and GNN defense.
On the attack side, existing GNN attacks can be broadly clas-
sified into two major categories, poisoning (Zügner, Akbarne-
jad, and Günnemann 2018; Zügner and Günnemann 2019)
and evasion (Dai et al. 2018), depending on the time they
happen. The former (poisoning attack) happens during the
training time of the GNNs through modifying training data
and the latter (evasion attack) takes place during the GNN
inference time by changing test data samples. Our work is
orthogonal and complementary to these existing GNN attack
research, since 1) our goal is to minimize the impact of these
GNN attacks by incorporating model and data uncertainties
during the GNN computation; 2) our defense-oriented re-
search may potentially motivate more diverse adversarial
attacks tailored for GNNs.

Figure 1: Overview of UAG.

On the defense side, RGCN (Zhu et al. 2019) proposes a
novel model to make GCN immune from adversarial attacks
by leveraging Gaussian distributions to reduce the impact
of GNN attacks. Different from RGCN, our UAG is the
first work to identify and quantify how adversarial attacks
affect GNN’s performance – model and data uncertainties that
take both model (weight) and data (topology and embedding
features) into consideration. And we further exploit such
uncertainty information by incorporating novel techniques to
facilitate the defense.
Bayesian Neural Network and Uncertainty Many research
efforts have been made towards developing Bayesian Neural
Network to measure uncertainty (Gal 2016) in computer vi-
sion (Kendall and Gal 2017; Gal and Ghahramani 2016a,b;
Alex Kendall and Cipolla 2017), natural language processing
(Xiao and Wang 2019), and time series analysis (Zhu and
Laptev 2017). These works usually focus on convolutional
neural networks and use Bayesian Neural Network as a regu-
larization technique. Some recent contributions (Zhang et al.
2019; Hasanzadeh et al. 2020) extend the Bayesian Neural
Network to the graph domain as a stochastic regularization
technique. These works aim to solve the over-smoothing prob-
lem in GNNs and do not explicitly quantify the uncertainty.
To the best of our knowledge, we are the first to exploit
the uncertainty in the graph domain to defend adversarial
attacks.

Methodology
The overview of UAG is presented in Figure 1. UAG takes
two inputs – the adjacency matrix A ∈ RN×N and the node
features X ∈ RN×D, where N is the number of nodes and
D is the dimension of node features. There are two main
branches in UAG – the probabilistic branch (including the
Model Uncertainty Branch (MUB) and the Data Uncertainty
Branch (DUB)) and the deterministic branch, where the ar-
chitecture and weights are different across branches. Given
the graph data (A,X), the probabilistic branch measures the
node-wise uncertainty U = [UM , UD] ∈ RN×2 from the
GNN model weights and the graph data. Here, the proba-
bilistic branch adopts a novel Bayesian uncertainty technique
to measure the uncertainty for each node due to the adver-
sarial attacks. The deterministic branch takes the measured
node-wise uncertainty U and the graph data (A,X) to gen-
erate the node classification results Y ∈ RN . It contains
an uncertainty-aware attention technique to adaptively ad-

7405



Figure 2: Bayesian Uncertainty Technique Overview. (a) Model Uncertainty Branch (MUB); (b) Data Uncertainty Branch (DUB)

just the edge attention during the inference to defend against
adversarial attacks.

Bayesian Uncertainty Technique
Bayesian uncertainty technique measures two sources of un-
certainties – the model uncertainty UM ∈ RN and the data
uncertainty UD ∈ RN . Formally, following the law of total
variance, the uncertainty in the prediction Y is

V ar(Y ) = V ar(E[Y |A,X]) + E[V ar(Y |A,X)]

= UM (Y |A,X) + UD(Y |A,X)
(2)

Here, we use a model uncertainty branch (MUB) and a
data uncertainty branch (DUB) to access UM (Y |A,X) and
UD(Y |A,X), respectively.
Model Uncertainty. The model uncertainty UM measures
the uncertainty in the mapping process E[Y |A,X] due to
model weight selection. We use a 2-layer GCN to quantify the
model uncertainty. Instead of using fixed weights, we utilize
a probability distribution to describe the uncertainty from
the model weights, as illustrated in Figure 2(a). Formally,
given the graph data (A,X) and the partial label Y ∈ RNL

with NL as the number of labeled nodes, we first train the
weight posterior distribution p(W |A,X). Then, we conduct
the prediction mapping procedure as

p(Y |X,A) =
∫
W

p(Y |W,A,X) p(W |A,X)dW (3)

Since the exact inference is intractable, we adopt the MC
dropout variational inference (Gal and Ghahramani 2016a)
method by multiplying a deterministic model weight WMUB

with a random variableB following the Bernoulli distribution.
This provides q(W ) as an approximation to the true posterior
p(W |A,X). In particular, the model weights W follows

q(W ) ∼ B �WMUB

P (B) ∼ Bernoulli(p)
(4)

where � is the Hadamard product, and p is a hyperparameter
(=0.8 by default in our evaluation). During training, we can
train the weight by minimizing the cross-entropy loss

Lmodel = −
1

T

T∑
t=1

log p(Ŷt|Ŵt, A,X)+
1− p
2T
||WMUB ||2 (5)

where Ŵt is sampled from q(W ), Ŷt is the prediction under
sampled weight Ŵt, and T is the number of samples during
the MC dropout variational inference. During inference, we
perform the Monte Carlo integration:

E(Y |A,X) =
1

T

T∑
t=1

Ŷt (6)

where Ŷt ∈ RL is the prediction after the softmax layer, and
L is the number of classes in the graph data.

Here, we observe that applying Bernoulli distribution at
different granularities leads to different probabilistic inter-
pretation. To provide a comprehensive measurement on the
model uncertainty, we apply dropout independently for indi-
vidual GNN layers, channels, nodes, and edges

W (k)
uv = B(k)

uv �B(k)
u �W (k) (7)

where W (k) ∈ Rfk×fk+1 is the GNN weights at the kth

layer, B(k)
uv ∈ R determines the dropout on the edge-level,

B
(k)
u ∈ {0, 1}fk drops the weight at the channel level, and

fk is the number of feature channels at layer k. From the
perspective of individual nodes, we have

h(k+1)
v = σ(

∑
u∈N̄(v)

h(k)
u ·W (k)

uv )

= σ(
∑

u∈N̄(v)

h(k)
u · (B(k)

uv �B(k)
u �W (k)))

(8)

where N̄(v) = N(v) ∪ v. Noting that this dropout also pro-
vides a Bayesian view of dropping edges or nodes when
either B(k)

uv = 0 or B(k)
u = 0.

Given the Bayesian framework on GNNs, we can measure
the model uncertainty as the variance in predictions

UM (Y |A,X) = V ar(Y |A,X)

= E(Y 2|A,X)− [E(Y |A,X)]2

=
1

T

T∑
t=1

Ŷ 2
t − [E(Y |A,X)]2

(9)

Here, we additionally apply a reduce operation to trans-
form the L-dimension vector UM to a scalar value as the
model uncertainty.

7406



Figure 3: Relationship between accuracy and node diver-
sity. DICE_0.2 and Mettack_0.2 indicates perturbing 20%
edges with DICE and Mettack, respectively.

Data Uncertainty The data uncertainty UD measures the
prediction noise intrinsic to the data inputs. There are two
standard approaches to identify the data uncertainty on each
node. One approach utilizes the maximum predicted proba-
bility to measure confidence in the prediction. However, this
confidence comes as a side effect of the model training and
lacks sophisticated probabilistic interpretation. The other ap-
proach from the CNN domain predicts the uncertainty value
based on the image inputs. However, naively borrowing this
approach into the GNN domain focuses only on the node fea-
tures and fails to exploit the important topology information
in the graph data.

Instead, we aim to capture the data uncertainty that is
intrinsic to the graph topology in terms of node diversity
Div

(k)
node, defined as the number of different labels in the

node’s k-hop neighbors. Our key observation is that adversar-
ial attacks on graph data usually increase the node diversity
and add edge connections between nodes with different labels.
For example, DICE attack (delete edges internally, connect
externally) (Waniek et al. 2018) exploits the node label infor-
mation to increase node diversity by deleting edges between
nodes with the same label and adding edges between nodes
with different labels. Figure 3 shows the accuracy among
nodes that have node diversity larger than various thresholds.
We observe that the accuracy usually decreases significantly
as the node diversity increases, which holds for both the clean
graph data and the attacked graph data from various attacking
algorithms.

To this end, we explicitly measure the data uncertainty by
treating the prediction as a Gaussian distribution and setting
the variance to be the node diversity, as illustrated in Figure
2(b). Formally, we have

Y ∼ N(µ̂(A,X), σ̂2(A,X)) (10)

where µ̂ and σ̂2 are the predicted label and node diversity,
respectively. Here, we parameterize the µ̂ and σ̂2 with the
adjacency matrix A and the node feature X and use a 2-layer
GCN to predict their values. During inference, we will use
the σ̂2(A,X) as the data uncertainty

UD(Y |A,X) = σ̂2(A,X) (11)

Figure 4: Illustration of UAT. (a) Aggregation on the clean
graph; (b) aggregation when the red node is attack.

To train the data uncertainty, we have two losses on the
labeled nodes and unlabeled nodes, respectively. On the la-
beled nodes, we focus on the ground truth labels and have
a KL-divergence that requires the predicted distribution to
match with the ground truth distribution

L1 = KL(N(µ̂(A,X), σ̂2(A,X))|N(Y, σ2)) (12)

where the Y comes from the ground truth label and σ2 mea-
sures the node diversity Div(k)node in the graph data. When
computing the node diversity, we utilize only labeled node in
the clean graph data. In particular, for a given node, we first
collect all labeled 2-hop neighboring nodes and then count
the number of distinct labels. On the unlabeled nodes, similar
to the unsupervised learning (Bojchevski and Günnemann
2018) on graph data, we focus on the graph topology and
adopt an energy-based unsupervised loss

L2 =
∑
i

∑
k<l

∑
jk∈Nik

∑
jl∈Nil

(E2
ijk + exp−Eijl )

Eij = DKL(N(Ŷj , σ̂
2
j )||N(Ŷi, σ̂

2
i ))

(13)

Assuming that a node tends to have a similar label with
neighboring nodes, this loss implicitly captures the node
diversity by forcing higher feature similarities in neighboring
nodes.

Uncertainty-aware Attention Technique
The Uncertainty-aware Attention Technique (UAT) adap-
tively adjusts the edge attention during the inference to de-
fend against adversarial attacks, as illustrated in Figure 4. We
equip a 2-layer GCN with our UAT. On a clean graph (Figure
4a), we adopt edge aggregation similar to existing GNNs
that each node aggregates and propagates information across
neighboring nodes. On an attacked graph (e.g., the red node
in Figure 4b), UAT adaptively limits the information prop-
agation between the attacked node and other nodes. While
existing works (Zügner, Akbarnejad, and Günnemann 2018)
have shown that attacking one node in the graph can also lead
to the wrong prediction on other nodes, UAT mitigates it by
reducing the impact from attacked nodes to remaining nodes.

Formally, given the feature h(k+1)
u for each node u at the

k + 1 layer, we compute an attention Attτ (u) for each node
u and compute each GNN layer as

h(k+1)
v = σ(

∑
u∈N̄(v)

Attuvτ · h(k)
u ·W (k))

Attuvτ = min(Attτ (u), Attτ (v))

(14)

7407



where τ ∈ {M,D} indicates whether we are using model
uncertainty or the data uncertainty, each node embedding hku
is weighted by an attention. Here, we use attention from both
nodes u and v to decide the attention value on the edge. Note
that the deterministic branch focuses on improving accuracy
and utilizes independent weight from the probabilistic branch,
which focuses on capturing uncertainties. We design two
attentions to measure the model uncertainty and the data
uncertainty, respectively

Attτ (u) = exp(−ζ · Uτ,u)
ζ = ατ · exp(−βτ ·Range(Uτ ))

(15)

where Uτ,u measures the uncertainty on node u, and ατ > 0
and βτ > 0 are two hyperparameters to adjust the impact
from uncertainty. Intuitively, a larger uncertainty Uτ,u on a
node u leads to lower weight in the information propagation
along with the graph topology. Here, we additionally utilize
a Range(Uτ ) operation to measure the global uncertainty
diversity in order to absorb the uniform uncertainty scale
change on all nodes under diverse attacks. In particular, we
collect Uτ for all nodes and measure the Range(Uτ ) as the
absolute difference between the first and the third quartiles.
We have investigated several functions to combine the data
uncertainty and the model uncertainty, and find out a simple
minimal combination can already lead to good performance

AttBoth(u) = min(AttM , AttD) (16)

Intuitively, we restrict the information propagation from one
node when it shows either a high model uncertainty or a high
data uncertainty.

Evaluation
In this section, we evaluate UAG on three popular datasets
and compare with three baselines to show its effectiveness.

Experiment Environments
Datasets We select the most typical datasets (Cora, Citeseer,
and Pubmed) used by many GNN papers (Kipf and Welling
2017; Xu et al. 2019b; Hamilton, Ying, and Leskovec 2017)
to evaluate our UAG. In these datasets, the node represents
documents, edge refers to citations, and each node has its
own associated bag-of-word features. Table 1 summarizes
the details of these datasets. We follow the common data split
by selecting 10% nodes as the training dataset, 10% nodes as
the validation dataset, and 80% nodes as the testing dataset.
Baselines Graph Convolutional Network (GCN) (Kipf and
Welling 2017) is one of the most popular GNN architec-
tures. It has been widely adopted in node classification,
graph classification, and link prediction tasks. Besides, it
is also the key backbone network for many other GNNs,
such as GraphSage (Hamilton, Ying, and Leskovec 2017),
and differentiable pooling (Diffpool) (Ying et al. 2018).
Graph Attention Network (GAT) (Xu et al. 2019b), another
typical type of GNN, aims to distinguish the graph-structure
that cannot be identified by GCN. GAT differs from GCN
in its aggregation function, which assigns different weights
to different nodes during the aggregation. Robust GCN

Dataset #Vertex #Edge #Dim #Class
Citeseer 3,327 9,464 3,703 6
Cora 2,708 10,858 1,433 7
Pubmed 19,717 88,676 500 3

Table 1: Datasets for Evaluation.

(RGCN) (Zhu et al. 2019), leverages the Gaussian distri-
butions for node representations to amortize the effects of
adversarial attacks.
Attack Methods Random Attack is a popular attack method
that randomly adds fake edges into the graph dataset without
considering the label of nodes. DICE Attack (delete edges
internally, connect externally) (Waniek et al. 2018) exploits
the node label information to increase node diversity by delet-
ing edges between nodes with the same label and adding
edges between nodes with different labels. Mettack (Zügner
and Günnemann 2019) is another representative attack that
adopts a meta-learning approach to reason the loss change by
iteratively perturbing individual edges and features.
Platforms. We implement UAG based on PyTorch Geomet-
ric (Fey and Lenssen 2019). We evaluate UAG on a Dell
Workstation T7910 (Ubuntu 18.04) with an Intel Xeon CPU
E5-2603, 64 GB memory, and an NVIDIA 1080Ti GPU with
12GB memory.

Overall Performance
In this section, we demonstrate the effectiveness of our pro-
posed UAG approach (UAG-both) by comparing accuracy
(under different attack methods and different attack ratio)
with the original unoptimized GCN and GAT model as well
as the one equipped with the state-of-the-art RGCN (Zhu et al.
2019) defense method. Besides, to gain more design insights,
we add two more baselines for comparison, including UAG-
Data (only considering data uncertainty) and UAG-Model
(only considering data uncertainty). We show the accuracy
under diverse attack ratio, defined as the number of attacked
edges over the number of total edges. For Mettack on Pubmed
dataset, since running the adversarial attack for all nodes is
very time-consuming, we randomly sample 10% of them. For
other datasets and attack method, we attack on all nodes.

Figure 5 shows accuracy performance comparisons for
Random Attack among different implementations on the
Cora, Citeseer, and Pubmed datasets. As we can easily tell
from those three sub-plots, UAG method and its variants
(UAG-Data, UAG-Model, and UAG-Both) consistently out-
perform the state-of-the-art RGCN defense approach. The
major source of such performance improvements is that
UAG effectively captures the data uncertainty and the model
uncertainty, based on which UAG adaptively adjusts the edge
weights and the amount of information propagation between
nodes. For individual dataset settings, with the increase of
the attack ratio, we see the overall trend of accuracy decreas-
ing among these implementations. We also notice that on
Cora and Citeseer dataset, RGCN offers notable accuracy
improvement over the original GAT and GCN. However, it
is still inferior compared with our UAG approach, since we
explicitly capture the uncertainties, instead of relying on a
Gaussian distribution to implicitly defend adversarial attacks.

7408



Figure 5: Results of different methods when adopting Random Attack as the attack method.

Figure 6: Results of different methods when adopting DICE Attack as the attack method

Figure 7: Results of different methods when adopting Mettack as the attack method.

Figure 8: Relationship between Accuracy and Uncertainty. Left: Model Uncertainty v.s. Accuracy. Mid: Data Uncertainty v.s.
Accuracy. Right: Data Uncertainty v.s. True Diversity.

7409



(a) Benefit of Loss Designs. (b) Impact of Data Hyperparameters (c) Impact of Model Hyperparameters

Figure 9: Loss Design Benefits and Parameter Analysis.

Figure 10: Left: Accuracy of Static Edge Weights. Right:
Edge weight distribution under Random Attack.

Another observation is that UAG-Both usually outperforms
UAG-Data and UAG-Model under diverse datasets and attack
ratios. The reason is that the data uncertainty and the model
uncertainty capture uncertainties from different sources and
combining these two values usually offers a more compre-
hensive measurement on the prediction uncertainties.

On DICE Attack (Figure 6), besides the similar observa-
tions as the above attack setting, we have more observations.
GAT and RGCN are sensitive towards DICE attack as demon-
strated with significant accuracy drop with the increase of
attack ratio, because DICE intentionally increases the node
diversity by adding cross-community connections (i.e., edges
between nodes with different labels). In contrast, our UAG ap-
proach can handle this attack effectively, because it explicitly
captures the node diversity as the data uncertainty.

We also observe a similar performance trend on Mettack
(Figure 7) as the previous two types of attacks and further
demonstrate the advantage of our UAG approach in terms of
higher accuracy under diverse attack ratios.

Ablation Studies
In this section, we conduct a set of ablation studies for in-
depth analysis.
Accuracy and Uncertainty. As shown in Figure 8(a) and
(b), the increase of the model uncertainty and data uncer-
tainty would lead to the decrease of the accuracy. This also
strengthens our initial assumption that the relationship be-
tween uncertainties and accuracy can be explored to defend
adversarial attacks. Figure 8(c) exhibits the relation between
data uncertainty and node diversity, showing the effectiveness
of our Loss design (Eq 12) in learning the node diversity.
Loss Design Benefits. Figure 9(a) validates the effectiveness
of the two loss designs in the data uncertainty. Here, L1

(Eq 12) forces UAG to learn the node diversity in labeled
nodes, while L2 (Eq 13) is an unsupervised loss that im-
plicitly encodes the node diversity in unlabeled nodes. We
observe that the UAG with L1+L2 outperforms only L1 or L2,
since it fully exploits both the labeled and unlabeled node.

Parameter Analysis. Figure 9(b) and (c) shows the impact
from different values of the data-uncertainty-related hyperpa-
rameters and the model-uncertainty-related hyperparameters
on the UAG performance. Intuitively, larger values of ατ and
lower value of βτ lead to a stronger impact from the uncer-
tainties and higher accuracy under large attack ratios, where
τ ∈ {M,D}. However, setting ατ too large or βτ too small
may also impose too many constraints on the information
propagation. In our experiments, we can achieve satisfying
results by using ατ = 15 and βτ = 2.5.

Uncertainty on Attention Values. Figure 10 visualizes the
weight changes under different ratios of Random Attack. We
can notice that a higher random attack ratio would lead to
denser weight distribution towards zero. This is because our
UAG approach would try to amortize the impact of such
attacks by changing weight values towards zero that can
minimize the value propagation between neighboring nodes.
Furthermore, we consider pre-assigning different weights
to show the key importance of weight value for adversarial
attacks. We can see that the higher the static weight value the
poor the performance in maintaining model accuracy under
the attack. The major reason is more “attack impacts” will
be propagated to different nodes through node aggregation,
thus, lowering the model overall performance. Our UAG can
adaptively determine the weight value for different nodes
based on the model and data uncertainty factor, thus, largely
absorbing the influence of the adversarial attack.

Conclusion
In this paper, we propose UAG, the first systematic defense
solution for adversarial attacks on GNNs by considering hier-
archical uncertainty in GNNs. UAG incorporates a Bayesian
uncertainty technique to explicitly capture uncertainty in
GNNs and further employs an uncertainty-aware attention
technique to fortify GNNs. Extensive experiments further
demonstrate UAG’s advantages over the state-of-the-art so-
lutions. Overall, our work paves a new way of exploring
uncertainty benefits in GNN research.

7410



Acknowledgements
We thank all anonymous reviewers for their valuable com-
ments. This work was supported in part by NSF 1925717.

References
Alex Kendall, V. B.; and Cipolla, R. 2017. Bayesian SegNet:
Model Uncertainty in Deep Convolutional Encoder-Decoder
Architectures for Scene Understanding. In Tae-Kyun Kim,
Stefanos Zafeiriou, G. B.; and Mikolajczyk, K., eds., Pro-
ceedings of the British Machine Vision Conference (BMVC),
57.1–57.12. BMVA Press. ISBN 1-901725-60-X. doi:
10.5244/C.31.57. URL https://dx.doi.org/10.5244/C.31.57.

Bojchevski, A.; and Günnemann, S. 2018. Deep Gaussian
Embedding of Graphs: Unsupervised Inductive Learning via
Ranking. In International Conference on Learning Represen-
tations. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Chen, H.; Li, X.; and Huang, Z. 2005. Link prediction ap-
proach to collaborative filtering. In Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL),
141–142. IEEE.

Cheng, D.; Gong, Y.; Chang, X.; Shi, W.; Hauptmann, A.; and
Zheng, N. 2018. Deep feature learning via structured graph
Laplacian embedding for person re-identification. Pattern
Recognition 82: 94–104.

Dai, H.; Li, H.; Tian, T.; Huang, X.; Wang, L.; Zhu, J.; and
Song, L. 2018. Adversarial attack on graph structured data.
arXiv preprint arXiv:1806.02371 .

Duran, A. G.; and Niepert, M. 2017. Learning graph rep-
resentations with embedding propagation. In Advances in
neural information processing systems (NIPS), 5119–5130.

Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds (ICLR).

Gal, Y. 2016. Uncertainty in Deep Learning. Ph.D. thesis,
University of Cambridge.

Gal, Y.; and Ghahramani, Z. 2016a. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep
Learning. In Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning -
Volume 48, ICML’16, 1050–1059. JMLR.org.

Gal, Y.; and Ghahramani, Z. 2016b. A Theoretically
Grounded Application of Dropout in Recurrent Neural Net-
works. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NIPS’16,
1027–1035. Red Hook, NY, USA: Curran Associates Inc.
ISBN 9781510838819.

Gibert, J.; Valveny, E.; and Bunke, H. 2012. Graph embed-
ding in vector spaces by node attribute statistics. Pattern
Recognition 45(9): 3072–3083.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
international conference on Knowledge discovery and data
mining (SIGKDD), 855–864.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive rep-
resentation learning on large graphs. In Advances in neural
information processing systems (NIPS), 1024–1034.

Hasanzadeh, A.; Hajiramezanali, E.; Boluki, S.; Zhou, M.;
Duffield, N.; Narayanan, K.; and Qian, X. 2020. Bayesian
Graph Neural Networks with Adaptive Connection Sampling.
In ICML 2020: International Conference on Machine Learn-
ing. URL https://arxiv.org/abs/2006.04064.

Kaspar, R.; and Horst, B. 2010. Graph classification and
clustering based on vector space embedding, volume 77.
World Scientific.

Kendall, A.; and Gal, Y. 2017. What uncertainties do we need
in bayesian deep learning for computer vision? In Advances
in neural information processing systems (NeurIPS), 5574–
5584.

Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. International
Conference on Learning Representations (ICLR) .

Kunegis, J.; and Lommatzsch, A. 2009. Learning spectral
graph transformations for link prediction. In Proceedings
of the 26th Annual International Conference on Machine
Learning (ICML), 561–568.

Luo, D.; Ding, C.; Huang, H.; and Li, T. 2009. Non-negative
laplacian embedding. In 2009 Ninth IEEE International
Conference on Data Mining (ICDM), 337–346. IEEE.

Luo, D.; Nie, F.; Huang, H.; and Ding, C. H. 2011. Cauchy
graph embedding. In Proceedings of the 28th International
Conference on Machine Learning (ICML), 553–560.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
Online Learning of Social Representations. In Proceedings
of the 20th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), 701–710. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450329569. doi:10.1145/2623330.2623732. URL https:
//doi.org/10.1145/2623330.2623732.

Tylenda, T.; Angelova, R.; and Bedathur, S. 2009. Towards
time-aware link prediction in evolving social networks. In
Proceedings of the 3rd workshop on social network mining
and analysis, 1–10.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In In-
ternational Conference on Learning Representations (ICLR).
URL https://openreview.net/forum?id=rJXMpikCZ.

Waniek, M.; Michalak, T. P.; Wooldridge, M. J.; and Rahwan,
T. 2018. Hiding individuals and communities in a social
network. Nature Human Behaviour 2: 139.

Xiao, Y.; and Wang, W. Y. 2019. Quantifying uncertainties
in natural language processing tasks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, 7322–
7329.

Xu, K.; Chen, H.; Liu, S.; Chen, P.-Y.; Weng, T.-W.; Hong,
M.; and Lin, X. 2019a. Topology attack and defense for
graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214 .

7411



Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019b. How
Powerful are Graph Neural Networks? In International
Conference on Learning Representations (ICLR). URL
https://openreview.net/forum?id=ryGs6iA5Km.
Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.; and
Leskovec, J. 2018. Hierarchical Graph Representation Learn-
ing with Differentiable Pooling. In Proceedings of the 32nd
International Conference on Neural Information Processing
Systems (NIPS), 4805–4815. Red Hook, NY, USA.
Zhang, Y.; Pal, S.; Coates, M.; and Ustebay, D. 2019.
Bayesian Graph Convolutional Neural Networks for Semi-
Supervised Classification. Proceedings of the AAAI Con-
ference on Artificial Intelligence 33: 5829–5836. doi:
10.1609/aaai.v33i01.33015829.
Zhu, D.; Zhang, Z.; Cui, P.; and Zhu, W. 2019. Robust graph
convolutional networks against adversarial attacks. In Pro-
ceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 1399–1407.
Zhu, L.; and Laptev, N. 2017. Deep and Confident Predic-
tion for Time Series at Uber. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), 103–110.
Zügner, D.; Akbarnejad, A.; and Günnemann, S. 2018. Ad-
versarial attacks on neural networks for graph data. In Pro-
ceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2847–2856.
Zügner, D.; and Günnemann, S. 2019. Adversarial attacks
on graph neural networks via meta learning. arXiv preprint
arXiv:1902.08412 .

7412


