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Abstract
We present simple algorithms for batched stochastic multi-
armed bandit and batched stochastic linear bandit problems.
We prove bounds for their expected regrets that improve and
extend the best known regret bounds of Gao, Han, Ren, and
Zhou (NeurIPS 2019), for any number of batches. In partic-
ular, our algorithms in both settings achieve the optimal ex-
pected regrets by using only a logarithmic number of batches.
We also study the batched adversarial multi-armed bandit
problem for the first time and provide the optimal regret, up
to logarithmic factors, of any algorithm with predetermined
batch sizes.

1 Introduction
A central challenge in optimizing many complex systems,
such as experimental design (Robbins 1952), clinical tri-
als (Perchet et al. 2016), hyperparameter tuning (Snoek et al.
2015), and product marketing (Bertsimas and Mersereau
2007), is to simultaneously explore the unknown parameter
space while at the same time exploit the acquired knowledge
for maximizing the utility. In theory, the most convenient
way is to explore one parameter at a time. However, in prac-
tice, it is often possible/desirable, and sometimes the only
way, to explore several parameters in parallel. A notable ex-
ample is designing clinical trials, where it is impractical to
wait to observe the effect of a drug on a single patient be-
fore deciding about the next trial. Instead, groups of patients
with multiple treatments are studied in parallel. Similarly, in
marketing and advertising, the efficacy of a strategy is not
tested on individual subjects one at a time; instead, multiple
strategies are run simultaneously in order to gather informa-
tion in a timely fashion. Similar issues arise in crowdsourc-
ing platforms, where multiple tasks are distributed among
users (Kittur, Chi, and Suh 2008), and time-consuming nu-
merical simulations, which are prevalent in reinforcement
learning (Le, Voloshin, and Yue 2019; Lange, Gabel, and
Riedmiller 2012).

Parallelizing the exploration of the parameter space has
a clear advantage: more information can be gathered at a
shorter period of time. It also has a clear disadvantage: infor-
mation cannot be immediately shared across different par-
allel paths, thus future decisions cannot benefit from the
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intermediate results. Note that a fully sequential policy, in
which exploration is done in a fully sequential manner, and
a fully parallel policy, in which exploration is completely
specified a priori without any information exchange, are
two extremes of the policy spectrum. In fact, carefully cali-
brating between the information parallelization phase (how
many experiments should be run in parallel) and the infor-
mation exchange phase (how often information should be
shared) is crucial for applications in which running experi-
ments is costly or time-consuming. Batch policies, which are
the focus of this paper, aim to find the sweet spot between
these two phases. The main challenge is to carefully design
batches of experiments, out of a combinatorially large set of
possibilities, which can be run in parallel and explore the
parameter space efficiently while being able to exploit the
parameter region with the highest utility.

In this paper, we study the problem of batch policies in
the context of multi-armed and linear bandits with the goal
of minimizing regret, the standard benchmark for compar-
ing performance of bandit policies. We advance the theo-
retical understanding of these problems by designing algo-
rithms along with hardness results. In particular, we prove
bounds for batched stochastic multi-armed bandits that im-
prove and extend the best known regret bounds of Gao et al.
(2019), for any number of batches.

2 Bandits, Regret, and Batch Policies
A bandit problem is a game between a player/learner and
an environment. The game is played over T rounds, called
the time horizon. In each round, first the player chooses
an action from a set of actions and then the environment
presents a reward. For instance, in clinical trials, the actions
correspond to the available treatments and the rewards cor-
respond to whether the treatment cured the patient or not.
As the player does not know the future, she follows a policy,
a mapping from histories to actions. Similarly, the environ-
ment can also be formulated as a mapping from actions to
rewards. Note that both the player and the environment may
randomize their decisions. The standard performance mea-
sure for a bandit policy is its regret, defined as the difference
between the total expected reward collected by the policy
and the total expected reward collected by an optimal pol-
icy. Many bandit models exist depending on the type of the
environment; next we define those which we will use here.
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Multi-Armed Bandits
Traditionally, actions are referred to as ‘arms’ and ‘taking
an action’ is referred to as ‘pulling an arm.’ A multi-armed
bandit is a one-player game in which the number of arms is
a finite number K. Let [K] := {1, 2, . . . ,K} denote the set
of arms. In each round t = 1, 2, . . . , T , the player pulls an
arm at ∈ [K] and receives a corresponding reward rt.

We consider two possible generation models for the re-
wards: the stochastic setting and the adversarial setting. In
the former, the rewards of each arm are sampled in each
round independently from some fixed distribution supported
on [0, 1]. In other words, each arm has a potentially differ-
ent reward distribution, while the distribution of each arm
does not change over time. Suppose the player pulls the
arms a1, a2, . . . , aT , and suppose µi denotes the mean of
arm i ∈ [K]. Then, in the stochastic setting, the expected
regret is defined as

E[Regret] := T max
i∈[K]

µi −E

[
T∑
t=1

µat

]
.

In contrast to the stochastic setting, a multi-armed adver-
sarial bandit is specified by an arbitrary sequence of rewards
(ri,t)i∈[K],t∈[T ] ∈ [0, 1]. In each round t, the player chooses
a distribution Pt; an arm at ∈ [K] is sampled from Pt and
the player receives reward rat,t. In this sense, a policy can
be viewed as a function mapping history sequences to distri-
butions over arms. The expected regret is defined as the dif-
ference between the expected reward collected by the policy
and the best fixed action in hindsight, i.e.,

E[Regret] := max
i∈[K]

T∑
t=1

ri,t −E

[
T∑
t=1

rat,t

]
.

Note that the only source of randomness in the regret stems
from the randomized policy used by the player. Randomiza-
tion is indeed crucial for the player and is the only way for
her to avoid a regret of Ω(T ).
Remark. The assumption that the rewards are bounded in
[0, 1] is a standard normalization assumption in online learn-
ing, but it is immediate to generalize our algorithms and
analyses to reward distributions bounded in any known in-
terval, or (in the stochastic case) to Gaussian or subgaussian
distributions whose mean lie in a known interval. The only
change in the analysis is that instead of using Hoeffding’s
inequality which requires a bounded distribution, one has to
use a concentration inequality for sums of subgaussian dis-
tributions, see, e.g., Wainwright (2019, Proposition 2.5).

Stochastic Linear Bandits
In a stochastic linear bandit, each arm is a vector a ∈ Rd

belonging to some action set A ⊆ Rd, and there is a pa-
rameter θ? ∈ Rd unknown to the player. In round t, the
player chooses some action at ∈ A and receives reward rt =
〈at, θ?〉+ µt, where µt is a zero-mean 1-subgaussian noise;
that is, µt is independent of other random variables, has
Eµt = 0 and satisfies, for all real λ, E

[
eλµt

]
≤ exp(λ2/2).

Note that any zero-mean Gaussian distribution with variance

at most 1 and any zero-mean distribution supported on an
interval of length at most 2 satisfies the above inequality.
For normalization purposes, we assume that ‖θ?‖2 ≤ 1 and
‖a‖2 ≤ 1 for all arms a ∈ A.

Denoting the pulled arms by a1, . . . , aT , the expected re-
gret of a stochastic linear bandit algorithm is

E[Regret] := T sup
a∈A
〈a, θ?〉 −E

[
T∑
t=1

〈at, θ?〉

]
.

Batch Policies
As opposed to the bandit problems described above, in the
batch mode, the player commits to a sequence of actions (a
batch of actions) and observes the rewards after all actions
in that sequence are played. More formally, at the beginning
of each batch i = 1, 2, . . . , the player announces a list of
arms/actions to be pulled/played. Afterwards, she receives
a list of pairs consisting of arm indices and rewards, corre-
sponding to the rewards generated from these pulls. Then
the player decides about the next batch.

The batch sizes could be chosen non-adaptively or adap-
tively. In a non-adaptive policy, the player fixes the batch
sizes before starting the game, while in an adaptive policy,
the batch sizes may depend on the observations of the player.
Obviously, an adaptive policy is more powerful and may
achieve a smaller regret. In both cases, the player is subject
to using at most a given number of batches,B. Moreover, the
total number of actions played by the player must sum to the
horizon T . We assume that the player knows the values ofB
and T . Notice that the case B = T corresponds to original
bandit problems where actions are committed fully sequen-
tially and has been studied extensively, see, e.g., Lattimore
and Szepesvári (2020). Thus, we refer to the case B = T as
the original or the sequential setting.

Our algorithms for stochastic bandits are adaptive, while
in the adversarial setting we focus mostly on non-adaptive
algorithms.

3 Contributions and Paper Outline
We provide analytic regret bounds for the batched version
of three bandit problems: stochastic multi-armed bandits,
stochastic linear bandits, and adversarial multi-armed ban-
dits.

Recall that K denotes the number of arms, T the time
horizon and B the number of batches. The case B = T
corresponds to the sequential setting which has been studied
extensively, while if B = 1 then no learning can happen,
thus we are mostly interested in the regime 1 < B < T .

Stochastic Multi-Armed Bandits
Let ∆i := maxa∈[K] µa − µi ≥ 0 denote the gap
of arm i. For stochastic multi-armed bandits, the opti-
mum regret achievable in the easier sequential setting
is O

(
log(T )

∑
i:∆i>0 ∆i

−1
)

; this is achieved, e.g., by
the well-known upper confidence bound (UCB) algorithm
of Auer, Cesa-Bianchi, and Fischer (2002).

Our first contribution is a simple and efficient
algorithm (Algorithm 1) whose regret scales as
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O
(
T 1/B log(T )

∑
i:∆i>0 ∆i

−1
)

(Theorem 1). In par-
ticular, as soon as B ≥ C log T for some absolute constant
C, it matches the optimum regret achievable in the fully
sequential setting. In other words, increasing the number of
batches from C log T to T does not reduce the expected re-
gret by more than a constant multiplicative factor. Gao et al.
(2019, Corollary 2) show that B = Ω(log T/ log log T )
batches are necessary to achieve the optimal regret
O
(

log(T )
∑

i:∆i>0

∆−1
i

)
. This lower bound implies that our

algorithm uses almost the minimum number of batches
needed (i.e., O(log T ) versus Ω(log T/log log T )) to
achieve the optimal regret.

Our result improves the state-of-the-art result of Gao et al.
(2019, Theorem 4), who provide a non-adaptive algorithm
with

E[Regret] ≤ O

K log(K) log(T )T 1/B

min
i:∆i>0

∆i

 .

Our Theorem 1 shaves off a factor of log(K) and also im-
proves the factor K

min ∆i
to
∑
i

1
∆i

. This latter improvement
may be as large as a multiplicative factor of K in some in-
stances, e.g., if µ1 = 1, µ2 = 1−1/K, µ3 = · · · = µK = 0.
The algorithm of Gao et al. (2019) does not achieve this im-
proved regret because their batch sizes are predetermined.
We achieve these improvements by adapting the batch sizes
based on the previous outcomes as opposed to predeter-
mined batch sizes.

Stochastic Linear Bandits
In the sequential setting of stochastic linear bandits, the best-
known upper bound for regret is O(d

√
T log(T )) (Latti-

more and Szepesvári 2020, Note 2 in Section 21.2), while
the best known lower bound is Ω(d

√
T ) (Lattimore and

Szepesvári 2020, Theorem 24.2). For a finite number of
arms K, the best known upper bound is O(

√
dT logK)

(Bubeck, Cesa-Bianchi, and Kakade 2012).
Our second contribution is the first algorithm for batched

stochastic linear bandits (Algorithm 2): an efficient al-
gorithm for the case of finitely many arms with re-
gret O

(
T 1/B

√
dT log(KT )

)
(Theorem 4), matching the

O(
√
dT log(K)) upper bound for the sequential setting as

soon as the number of batches is Ω(log T ). If there are in-
finitely many arms, we achieve a regret upper bound of
O
(
T 1/B · d

√
T log(T )

)
, which matches the best-known

upper bound of O(d
√
T log T ) for the sequential setting as

soon as the number of batches is Ω(log T ).
Our algorithm for batched stochastic linear bandits is

based on arm eliminations. However, it would blow up the
regret if we were to pull each arm in each batch the same
number of times; instead we use the geometry of the action
set to carefully choose a sequence of arms in each batch,
based on an approximately optimal G-design, that would
give us the information needed to gradually eliminate the

suboptimal arms. The extension to the case of infinitely
many arms is achieved via a discretization argument.

For the case of finitely many arms, the algorithm’s run-
ning time is polynomial in the number of arms and the time
horizon. When there are infinitely many arms, the running
time is exponential in the dimension.

Adversarial Multi-Armed Bandits
The optimal regret for adversarial multi-armed bandits in the
sequential setting is Θ(

√
KT ), see Audibert and Bubeck

(2009). Our third contribution is to prove that the best
achievable regret of any non-adaptive algorithm for batched

adversarial multi-armed bandits is Θ̃
(√

T
(
K + T

B

))
,

where the Θ̃ allows for logarithmic factors (Theorem 7).
That is, we prove an optimal (minimax) regret bound, up to
logarithmic factors, for non-adaptive algorithms for batched
adversarial multi-armed bandits.

Finally, we prove a lower bound of Ω(T/B) for the re-
gret of any algorithm, adaptive or non-adaptive, for batched
adversarial multi-armed bandits (Theorem 8). This shows a
large contrast with the stochastic version, since there is a
polynomial relation between the number of batches and the
regret. In particular, one needs at least Ω(

√
T/K) batches

to achieve the optimum regret of O(
√
TK).

The upper bound for batched adversarial multi-armed
bandits is proved via a reduction to the setting of multi-
armed bandits with delays, while the lower bounds are
proved by carefully designing hard reward sequences.

Paper Outline In the next section we review prior work on
the batched bandits model. Stochastic multi-armed bandits,
stochastic linear bandits, and adversarial multi-armed ban-
dits are studied in Sections 5, 6, and 7 respectively. We con-
clude with a discussion and directions for further research in
Section 8.

4 Related Work
Sequential bandit problems, in particular multi-armed ban-
dits, have been studied for almost a century. While we can-
not do justice to all the work that has been done, let us high-
light a few excellent monographs (Bubeck and Cesa-Bianchi
2012; Slivkins 2019; Lattimore and Szepesvári 2020). We
now review the results in the batched setting.

Auer and Ortner (2010) present an algorithm for
stochastic multi-armed bandits based on arm elimina-
tion. Even though their algorithm is presented for the se-
quential setting, it can be turned into an algorithm for
the batched setting for Ω(log T ) batches. More precisely,
they prove that the optimal problem-dependent regret of
O
(

log(T )
∑
i:∆i>0 ∆i

−1
)

is achievable as soon as the
number of batches is B = Ω(log T ). Our results, how-
ever, are more general and hold for any number of batches
B ∈ {1, . . . , T}. We emphasize that it is crucial to have al-
gorithms for small number of batches; for designing clinical
trials in time-sensitive situations, for instance for COVID-
19, it is likely that one needs to design a trial with much

7342



fewer than log(T ) batches, as it takes a couple of weeks to
receive the feedback for each batch.

Similarly, Cesa-Bianchi, Dekel, and Shamir (2013, The-
orem 6) provide an algorithm using B = O(log log T )
batches that achieves problem-independent regret of
O(
√
KT logK) for stochastic multi-armed bandits. (Their

algorithm is also for the sequential version but it can be
batched easily.) This rate is minimax optimal for the sequen-
tial version up to a

√
logK factor. However, for stochas-

tic multi-armed bandits, our focus is on problem-dependent
bounds with logarithmic dependence on T .

A special case of batched multi-armed bandits was stud-
ied by Perchet et al. (2016); they consider only two arms
and provide upper and lower bounds on the regret. In partic-
ular, denoting the gap between the arms by ∆, Perchet et al.
(2016, Theorem 2) provide a regret bound of

E[Regret] ≤ O

((
T

log T

)1/B
log T

∆

)
when K = 2. In contrast, we consider the more general
setting of K ≥ 2 and we give an algorithm for any number
of arms K satisfying

E[Regret] ≤ O

(
T 1/B

∑
i:∆i>0

log(T )

∆i

)
.

The other bandit problems we study, namely, stochastic
linear bandits and adversarial multi-armed bandits, have not
been studied in the batched setting prior to our work.

Optimization in batch mode has also been studied in other
machine learning settings where information-parallelization
is very effective. Examples include best arm identification
(Jun et al. 2016; Agarwal et al. 2017), bandit Gaussian
processes (Desautels, Krause, and Burdick 2014; Kathuria,
Deshpande, and Kohli 2016; Contal et al. 2013), submodular
maximization (Balkanski and Singer 2018; Fahrbach, Mir-
rokni, and Zadimoghaddam 2019; Chen, Feldman, and Kar-
basi 2019), stochastic sequential optimization (Esfandiari,
Karbasi, and Mirrokni 2019; Agarwal, Assadi, and Khanna
2019), active learning (Hoi et al. 2006; Chen and Krause
2013), and reinforcement learning (Ernst, Geurts, and We-
henkel 2005), to name a few.

5 Batched Stochastic Multi-Armed Bandits
Our algorithm works by gradually eliminating suboptimal
arms. Let δ := 1/(2KTB) and q := T 1/B , and define ci :=
bq1c + · · · + bqic. Note that cB ≥ T . Initially, all arms are
‘active.’ In each batch i = 1, 2, . . . , except for the last batch,
each active arm is pulled bqic times. Then, after the rewards
of this batch are observed, the mean of each active arm is
estimated as the average reward received from its pulls. An
arm is then eliminated if its estimated mean is smaller, by
at least

√
2 ln(1/δ)/ci, than the estimated mean of another

active arm. The last batch is special: if we have used i −
1 batches so far and the number of active arms times bqic
exceeds the number of remaining rounds, the size of the next
batch equals the number of remaining rounds, and in this last
batch we pull the active arm with the largest empirical mean.

Algorithm 1 Batched arm elimination for stochastic multi-
armed bandits

1: Input: number of arms K, time horizon T , number of
batches B

2: q ←− T 1/B

3: A ←− [K] {active arms}
4: µ̂a ←− 0 for all a ∈ A {estimated means}
5: for i = 1 to B − 1 do
6: if bqic × |A| > remaining rounds then
7: break
8: end if
9: In the ith batch, play each arm a ∈ A for bqic times

10: Update µ̂a for all a ∈ A
11: ci ←−

∑i
j=1bqjc

12: for a ∈ A do
13: if µ̂a < maxα∈A µ̂α −

√
2 ln(2KTB)/ci then

14: Remove a from A
15: end if
16: end for
17: end for
18: In the last batch, play argmaxa∈A µ̂a

See Algorithm 1 for the pseudocode. We bound its regret as
follows.
Theorem 1. The expected regret of Algorithm 1 for batched
stochastic multi-armed bandits is bounded by E[Regret] ≤
9T 1/B ln(2KTB)

∑
j:∆j>0

1
∆j
.

For proving this theorem, we will use Hoeffding’s in-
equality.
Theorem 2 (Hoeffding’s inequality, see Theorem 2 in
Hoeffding (1963)). Suppose X1, . . . , Xn are independent,
identically distributed random variables supported on [0, 1].
Then, for any t ≥ 0,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Xi −EX1 > t

∣∣∣∣∣
]
< 2 exp(−2nt2).

Proof of Theorem 1. For an active arm at the end of some
batch i, we say its estimation is ‘correct’ if the estimation of
its mean is within

√
ln(1/δ)/2ci of its actual mean. Since

each active arm is pulled ci times by the end of batch i, by
Hoeffding’s inequality, the estimation of any active arm at
the end of any batch (except possibly the last batch) is cor-
rect with probability at least 1 − 2δ. Note that there are K
arms and at most B batches (since cB ≥ T ). Hence, by
the union bound, the probability that the estimation is incor-
rect for some arm at the end of some batch is bounded by
KB × 2δ = 1/T . If some estimation is incorrect, we upper
bound the regret by T . Let E denote the event that all estima-
tions are correct. Hence, the expected regret can be bounded
as E[Regret] ≤ 1

T × T + E[Regret|E ].
So, from now on, we assume that E happens, which

implies that each gap is correctly estimated within an
additive factor of

√
2 ln(1/δ)/ci. Thus, the best arm is

never eliminated. We can then write the expected regret as
E[Regret|E ] =

∑
j:∆j>0 ∆jE[Tj |E ], where Tj denotes the
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total number of pulls of arm j. Let us now fix some (subopti-
mal) arm j with ∆j > 0, and upper bound Tj . Suppose batch
i+ 1 is the last batch that arm j was active. Since this arm is
not eliminated at the end of batch i, and the estimations are
correct, we have ∆j ≤ 2

√
2 ln(1/δ)/ci deterministically,

which means ci ≤ 8 ln(1/δ)∆−2
j . The total pulls of this arm

is thus Tj ≤ ci+1 = q + qci ≤ q + 8q ln(1/δ)
∆2

j
, whence,

E[Regret|E ] ≤
∑

j:∆j>0

{
q∆j +

8q ln(1/δ)

∆j

}
≤ q(K − 1) + 8q ln(1/δ)

∑
j:∆j>0

1

∆j
.

Substituting the values of q and δ completes the proof.

6 Batched Stochastic Linear Bandits
Our algorithm is based on arm elimination, as in the multi-
armed case. Here is the key lemma, which follows from the
results in Lattimore and Szepesvári (2020, Chapter 21). Note
that we may assume without loss of generality that the action
set spans Rd, otherwise we may work in the space spanned
by the action set.

Lemma 3. For any finite action set A that spans Rd and
any δ, ε > 0, we can find, in time polynomial in |A|, a
multi-set of Θ(d log(1/δ)/ε2) actions (possibly with repe-
titions) such that they span Rd and if we perform them in
a batched stochastic linear bandits setting and let θ̂ be the
least-squares estimate for θ?, then, for any a ∈ A, with
probability at least 1− δ we have

∣∣∣〈a, θ̂ − θ?〉∣∣∣ ≤ ε.
Remark. If the performed actions are a1, . . . , an and the re-
ceived rewards are r1, . . . , rn, then the least squares estimate
for θ? is θ̂ :=

(∑n
i=1 aia

T
i

)−1
(
∑n
i=1 riai) .

Remark. It is known that a multi-set of actions with the
guarantee of Lemma 3 exists and has size at most d

2+d
2 +

d ln(2/δ)
ε2 ; it can be defined based on a so-called G-optimal

design for A, see Lattimore and Szepesvári (2020, equa-
tion (21.3)), or geometrically, the minimum volume ellip-
soid containingA. An algorithm, with running time polyno-
mial in |A|, for finding an approximate G-optimal design of
size Θ(d log(1/δ)/ε2) is given in Lattimore and Szepesvári
(2020, Note 3 in Section 21.2).

LetB denote the number of batches, and let c andC be the
constants hidden in the Θ notation in Lemma 3; namely, the
size of the multi-set is in [cd log(1/δ)/ε2, Cd log(1/δ)/ε2].
Define q := (T/c)1/B and εi :=

√
d log(KT 2)/qi.

We now describe the algorithm. Initially, all arms are ac-
tive. In each batch i = 1, 2, . . . , except for the last batch, we
compute the multi-set given by Lemma 3, with A being the
set of active arms, δ := 1/KT 2 and ε = εi; we then perform
the actions given by the lemma, compute θ̂i, and eliminate
any arm a with〈

a, θ̂i

〉
< max

active a

〈
a, θ̂i

〉
− 2εi. (1)

Algorithm 2 Batched arm elimination for stochastic linear
bandits

1: Input: action set A ⊆ Rd, time horizon T , number of
batches B

2: q ←− (T/c)1/B

3: for i = 1 to B − 1 do
4: εi ←−

√
d log(KT 2)/qi

5: a1, . . . , an ←− multi-set given by Lemma 3 with pa-
rameters δ = 1/KT 2 and ε = εi

6: if n > remaining rounds then
7: break
8: end if
9: In the ith batch, play the arms a1, . . . , an and receive

rewards r1, . . . , rn
10: θ̂ ←−

(∑n
i=1 aia

T
i

)−1
(
∑n
i=1 riai)

11: for a ∈ A do
12: if

〈
a, θ̂
〉
< maxα∈A

〈
α, θ̂

〉
− 2εi then

13: Remove a from A
14: end if
15: end for
16: end for
17: In the last batch, play argmaxa∈A

〈
a, θ̂
〉

In the last batch, we pull the active arm with the largest dot
product with the last estimated θ̂. The pseudocode can be
found in Algorithm 2, and the regret is bounded by the fol-
lowing theorem.

Theorem 4. The regret of Algorithm 2 is at most
O
(
T 1/B

√
dT log(KT )

)
for the batched stochastic linear

bandit problem with K arms, and its running time is poly-
nomial.

Proof. Let ni denote the size of batch i. Then, by Lemma 3,
we have ni ∈ [cqi, Cqi]. Since q = (T/c)1/B , the number
of batches is not more than B.

We define the following good event: “for any arm a that
is active at the beginning of batch i, at the end of this batch
we have

∣∣∣〈a, θ̂i − θ?〉∣∣∣ ≤ εi.” Since there are K arms and

at most T batches and δ = 1/KT 2, by Lemma 3 and the
union bound the good event happens with probability at least
1−1/T . We assume it happens in the following, for if it does
not happen, we can upper bound the regret by T , adding just
1 to the final regret bound, as in the proof of Theorem 1.

Since the good event happens, and because of our elimi-
nation rule (1), the triangle inequality shows the optimal arm
will not be eliminated: let a? denote the optimal arm; for any
suboptimal arm a,〈
a, θ̂i

〉
−
〈
a?, θ̂i

〉
≤ (〈a, θ?〉+εi)− (〈a?, θ?〉−εi) < 2εi.

Next, fix a suboptimal arm a, and let ∆ := 〈a? − a, θ?〉
denote its gap. Let i be the smallest positive integer such that
εi < ∆/4. Then, since the good event happens, and because
of our elimination rule (1), the triangle inequality shows this
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arm will be eliminated by the end of batch i:〈
a?, θ̂i

〉
−
〈
a, θ̂i

〉
≥ (〈a?, θ?〉 − εi)− (〈a, θ?〉+ εi)

= ∆− 2εi > 2εi.

Thus, during batch i, any active arm has gap at most 4εi−1,
so the instantaneous regret in any round is not more than
4εi−1, whence the expected regret of the algorithm condi-
tional on the good event can be bounded by:

B∑
i=1

4niεi−1 ≤ 4C
B∑
i=1

qi
√
d log(KT 2)/qi−1

≤ 6Cq
√
d log(KT )

B−1∑
i=0

qi/2

= O
(
q
√
d log(KT )qB/2

)
= O

(
q
√
dT log(KT )

)
,

completing the proof.

Infinite Action Sets

Next, we prove a regret bound of O
(
T 1/B · d

√
T log T

)
for

batched stochastic linear bandits even if the action setA has
infinite cardinality. An ε-net for A is a set A′ ⊆ A such that
for any a ∈ A there exists some a′ ∈ A′ with ‖a−a′‖2 ≤ ε.
Since A is a subset of the unit Euclidean ball in Rd, it has
a 1
T -net A′ of cardinality not more than (3T )d, see, e.g.,

Vershynin (2018, Corollary 4.2.13). (IfA′ does not span Rd,
we may just add d additional vectors to it so it spans Rd, and
this will not affect the asymptotic regret of the algorithm.)

We execute Algorithm 2 using the finite action setA′. Let
a1, . . . , aT denote the algorithms’ actions. Then, by Theo-
rem 4, we have

T sup
a∈A′

〈a, θ?〉 −E

[
T∑
t=1

〈at, θ?〉

]
= O

(
T 1/B

√
dT log(|A′|T )

)
= O

(
T 1/B · d

√
T log T

)
.

On the other hand, since A′ is a 1
T -net for A, for any a ∈

A there exists some a′ ∈ A′ with ‖a − a′‖2 ≤ 1
T , which

implies

〈a, θ?〉 − 〈a′, θ?〉 ≤ ‖a− a′‖2 · ‖θ?‖2 ≤
1

T
,

and in particular,

sup
a∈A
〈a, θ?〉 − sup

a∈A′
〈a, θ?〉 ≤ 1

T
,

and thus,

E[Regret] = T sup
a∈A
〈a, θ?〉 −E

[
T∑
t=1

〈at, θ?〉

]

=

(
T sup
a∈A
〈a, θ?〉 − T sup

a∈A′
〈a, θ?〉

)
+

(
T sup
a∈A′

〈a, θ?〉 −E

[
T∑
t=1

〈at, θ?〉

])
≤ 1 +O

(
T 1/B · d

√
T log T

)
,

completing the proof. The running time of this algorithm is
polynomial in T d.

7 Batched Adversarial Multi-Armed Bandits
We start by proving a regret upper bound.
Lemma 5. There is a non-adaptive algorithm for batched
adversarial multi-armed bandits with regret bounded by
E[Regret] ≤ O

(√
TK + T 2 log(K)/B

)
.

Proof. The proof is via a reduction to the setting of se-
quential adversarial multi-armed bandits with delays, in
which the reward received in each round is revealed to
the player D rounds later. For this problem, Zimmert and
Seldin (2020, Theorem 1) gave an algorithm with regret
O
(√

KT +
√
DT log(K)

)
(see also Cesa-Bianchi, Gen-

tile, and Mansour (2019, Corollary 15) for a slightly weaker
result). Now, for the batched adversarial bandit problem, we
partition the time horizon intoB batches of size T/B. Thus,
the reward of each pull is revealed at mostD = T/B rounds
later, hence the above result gives an algorithm with regret
bounded by O

(√
TK + T 2 log(K)/B

)
.

We complement the above result with a nearly tight lower
bound.
Lemma 6. Any non-adaptive algorithm for batched adver-
sarial multi-armed bandits has regret at least Ω

(
T√
B

)
.

Proof. Suppose the batch sizes are t1, . . . , tB , which are
fixed before starting the game. Consider the following exam-
ple withK = 2 arms. For each batch, we choose a uniformly
random arm and set its reward to 1 throughout the batch, and
set the other arm’s reward to 0. Since the expected instanta-
neous reward of any round given information from past is 1

2 ,
the expected reward of any non-adaptive algorithm is T

2 .
Next we show that the expected reward of the optimal arm

is T2 +Ω
(

T√
B

)
. LetX := t1R1+· · ·+tBRB , where eachRi

is −1 or +1 independently and uniformly at random. Then
the total rewards of the two arms in our instance are dis-
tributed as T

2 −
X
2 and T

2 + X
2 . To complete the proof, we

need only show thatE[|X|] = Ω(T/
√
B). Hölder’s inequal-

ity yields (
E|X|4

)1/3
(E|X|)2/3 ≥ E|X|2. (2)
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Thus, to lower bound E|X| we need to bound E|X|2 and
E|X|4. For E|X|2 = EX2, observe that

E[X2] = E

( B∑
i=1

tiRi

)2


= E

[
B∑
i=1

t2iR
2
i

]
+ E

∑
i6=j

titjRiRj


= E

B∑
i=1

t2iR
2
i =

B∑
i=1

t2i ,

since ERi = 0,ER2
i = 1, and Ri and Rj are independent

for i 6= j. Similarly, after expanding X4 = (
∑
tiRi)

4, all
terms with odd powers of Ri will have zero expectations, so

we get E[X4] =
∑B
i=1 t

4
i + 6

∑
i<j t

2
i t

2
j ≤ 3

(∑B
i=1 t

2
i

)2

.

From (2) we get

E[|X|] ≥
(
E[X2]

) 3
2(

E[X4]
) 1

2

≥

√√√√1

3

B∑
i=1

t2i ≥
T√
3B

,

where the last inequality follows from the Cauchy-Schwarz
inequality, recalling that

∑B
i=1 ti = T . Hence, the expected

regret is at least E|X|/2 = Ω(T/
√
B), completing the

proof.

We are now ready to prove the main result of this section,
which is a minimax regret characterization of non-adaptive
algorithms for batched adversarial multi-armed bandits.
Theorem 7. The best achievable regret of a non-adaptive
algorithm for batched adversarial multi-armed bandits is
Θ̃
(√

TK + T 2/B
)
.

Proof. An upper bound of O
(√

TK + T 2 log(K)/B
)

is

proved in Lemma 5. A lower bound of Ω(T/
√
B) is proved

in Lemma 6, while a lower bound of Ω(
√
KT ) holds even

in the sequential setting when B = T (Auer et al. 2003,
Theorem 5.1).

A Lower Bound for Adaptive Algorithms
Finally, for adaptive algorithms for batched adversarial
multi-armed bandits, we show a regret lower bound of
Ω(T/B).
Theorem 8. Any adaptive algorithm for batched adversar-
ial multi-armed bandits has regret at least Ω(T/B) .

Proof. We first prove the lower bound for non-adaptive al-
gorithms and then extend it to adaptive algorithms.

Let K = 2 and consider the following reward sequences.
In the beginning, both arms have 0 rewards. Then, at a round
chosen uniformly at random from {1, . . . , T}, the reward of
one of the arms becomes 1 and stays 1 until the end. Hence,
the expected reward of the best arm is T

2 .
The switching happens inside one of the batches. The ex-

pected number of 1s that fall in that batch is half of the size

of the batch, and for any strategy chosen by the player in that
batch, her expected regret is at least a quarter of the size of
the batch.

Denote the batch sizes by t1, . . . , tB . The probability that
the (random) switching time falls in the ith batch is ti

T .
Hence, the expected regret is at least

B∑
i=1

ti
T
· ti

4
=

1

4T
·
B∑
i=1

t2i ≥
1

4T
·B ·

(T
B

)2

=
T

4B
,

completing the proof.
To extend the lower bound to adaptive algorithms, note

that the defined distribution over reward sequences does not
depend on the batch sizes or the algorithms’ actions. Hence,
the lower bound holds for any sequence of batch sizes, de-
terministic or randomized.

8 Conclusion
We presented a systematic theoretical study of the batched
bandits problem in stochastic and adversarial settings. We
have shown a large contrast between the stochastic and ad-
versarial multi-armed bandits: while in the stochastic case
a logarithmic number of batches are enough to achieve the
optimal regret, the adversarial case needs a polynomial num-
ber of batches. This motivates studying batched versions
of models in-between stochastic and adversarial; one such
model is the non-stationary model, defined next.

Starting from the stochastic model, a non-stationary
multi-armed bandit problem is one in which the arms reward
distributions may change over time, but there is a restriction
on the amount of change. A natural assumption is to bound
the number of changes in the arms’ reward distributions. Let
S denote the allowed number of changes (or switches) of
the vector of reward distributions during the T rounds of the
game. The case S = 0 corresponds to stochastic bandits,
while S = T corresponds to adversarial bandits. This prob-
lem has been studied in the sequential setting and various
algorithms have been devised based on, e.g., UCB (Garivier
and Moulines 2011) and EXP3 (Auer et al. 2003). It is natu-
ral to study the regret of non-stationary bandits in the batch
mode; in particular, the construction of Theorem 8 gives a
regret lower bound of Ω(T/B) for any S > 0; proving regret
bounds for all S is an interesting avenue for further research.

For batched stochastic multi-armed bandits with two
arms, Perchet et al. (2016, Theorem 2) provide a re-

gret bound of O

((
T

log T

)1/B
log T

∆

)
. It is natural to

ask whether this bound can be extended to the case
K > 2: is there an algorithm with regret bounded by

O

((
T

log T

)1/B∑
i:∆i>0

log(T )
∆i

)
?
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