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Abstract

Recently, deep neural networks have become to be used in
a variety of applications. While the accuracy of deep neural
networks is increasing, the confidence score, which indicates
the reliability of the prediction results, is becoming more im-
portant. Deep neural networks are seen as highly accurate but
known to be overconfident, making it important to calibrate
the confidence score. Many studies have been conducted on
confidence calibration. They calibrate the confidence score
of the model to match its accuracy, but it is not clear whether
these confidence scores can improve the performance of sys-
tems that use confidence scores. This paper focuses on cas-
cade inference systems, one kind of systems using confidence
scores, and discusses the desired confidence score to improve
system performance in terms of inference accuracy and com-
putational cost. Based on the discussion, we propose a new
confidence calibration method, Learning to Cascade. Learn-
ing to Cascade is a simple but novel method that optimizes
the loss term for confidence calibration simultaneously with
the original loss term. Experiments are conducted using two
datasets, CIFAR-100 and ImageNet, in two system settings,
and show that naive application of existing calibration meth-
ods to cascade inference systems sometimes performs worse.
However, Learning to Cascade always achieves a better trade-
off between inference accuracy and computational cost. The
simplicity of Learning to Cascade allows it to be easily ap-
plied to improve the performance of existing systems.

Introduction

In recent years, deep learning has dramatically developed
and achieved state-of-the-art performance in a variety of
applications. While the accuracy of deep learning has im-
proved over the years, the confidence score, which indicates
whether the prediction result is correct or not is becoming
more and more important. In critical decision-making sys-
tems such as automated driving (Levinson et al. 2011) and
medical diagnostics (Miotto et al. 2016), humans must make
the final decisions when deep neural networks are not con-
fident in their predictive results to prevent serious accidents.
Cascade inference systems (Kang et al. 2017; Wang et al.
2018; Zhou, Gao, and Wu 2017; Panda, Sengupta, and Roy
2016; Teerapittayanon, McDanel, and Kung 2016; Huang
et al. 2018), achieve highly accurate and low computational
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cost inference by combining multiple deep learning mod-
els; it decides whether to terminate or continue inference
based on the confidence score. Recent deep neural networks
are known to be overconfident and require calibration of the
confidence score when applied to these critical systems (Guo
et al. 2017).

Several studies have been conducted on confidence cali-
bration (Guo et al. 2017; Zhang, Dalca, and Sabuncu 2019;
Thulasidasan et al. 2019; Wan et al. 2018; Kull et al. 2019).
These studies have focused on decision-making systems, in
which humans decide whether or not to perform inference
based on the confidence score of the deep learning model.
It is assumed that humans are almost 100% accurate. If the
prediction of the model is correct, the prediction result is
employed. And if it is incorrect, humans perform manual in-
ference. In this way, the system can perform inferences with
100% accuracy with a small number of human inferences.
To achieve such a best trade-off between accuracy and hu-
man effort, it is important to obtain a confidence score that
can accurately indicate whether the prediction result of the
model is correct or not.

To the best of our knowledge, no study has focused on
confidence calibration for cascade inference systems. Cas-
cade inference is an important technique for performing
real-time and accurate inference given limited computing re-
sources such as MEC servers. It combines more than two
models to perform inference: a highly-accurate but expen-
sive model with a low-accuracy but fast model, and deter-
mines whether the expensive model should make a predic-
tion or not based on the confidence score of the fast model.
Unlike humans, expensive models are less accurate than
100%. If the prediction of the fast model is correct, its re-
sult is employed. If it is incorrect, the expensive model is
used instead to make a prediction, but the expensive model
prediction may also be incorrect. At this time, the accuracy
of cascade inference does not change, but the computational
cost is increased due to the extra calculations incurred by the
expensive model. Therefore, it is important to have a confi-
dence score that reflects not only the prediction result relia-
bility of the fast model but also the prediction result of the
expensive model.

In this paper, we discuss confidence scores suitable for
cascade inference. We propose Learning to Cascade (LtC),
a confidence calibration method for cascade inference. LtC



introduces a new loss term to output confidence scores suit-
able for cascade inference; it simultaneously optimizes this
loss term and the original loss term. LtC simply adds just a
single new loss term and it does not require any changes to
the network architecture or optimization method used. Thus
it can be easily added to any existing implementations.

We evaluate Learning to Cascade using CIFAR-100
(Krizhevsky, Hinton et al. 2009) and ImageNet (Rus-
sakovsky et al. 2015), a standard image classification task.
The effectiveness of LtC is shown by experiments in two set-
tings: model cascading and model splitting. The experiments
show that existing confidence calibration methods may not
improve the trade-off between accuracy and the computa-
tional cost of inference. LtC, however, always achieves a
better trade-off.

The main contributions of this paper are as follows.

e We discuss confidence scores suitable for cascade infer-
ence and introduce a new loss term for confidence cali-
bration.

e We propose a simple calibration method, LtC, which si-
multaneously optimizes the original loss term and the loss
term for cascade inference. LtC is easily applied to ex-
isting implementations because it adds just the new loss
term.

e In experiments with various settings, we show that LtC
achieves the better trade-off between inference accuracy
and computational cost than the existing methods.

The rest of the paper is organized as follows: Section 2
briefly reviews related works in the field of confidence cal-
ibration and cascade inference systems. The problem state-
ment of cascade inference systems is given in Section 3. The
proposed method, called Learning to Cascade, is described
in Section 4. The experiments are provided in Section 5.
Conclusions and future work are summarized in Section 6.

Related Works
Confidence Calibration

Guo et al. (Guo et al. 2017) point out that recent deep learn-
ing models are overconfident. Starting with this paper, sev-
eral confidence calibration methods are proposed (Zhang,
Dalca, and Sabuncu 2019; Thulasidasan et al. 2019; Wan
et al. 2018; Kull et al. 2019). These studies conduct evalu-
ations using some metrics such as Expected Calibration Er-
ror (ECE). As these metrics are calculated solely from the
prediction results and labels, it does not evaluate the perfor-
mance of systems that use confidence scores. It is not clear
whether these calibration methods can improve the perfor-
mance of systems such as a decision-making system and
cascade inference systems.

Individually optimized models may not be optimal for
systems that use confidence scores. Bansal et al. (Bansal
et al. 2020) propose a method for training models to opti-
mize the performance of the entire decision-making system.
They assume 100% human accuracy and evaluate only sim-
ple machine learning models and binary classification tasks.
In practice, human accuracy is less than 100% for the multi-
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classification tasks commonly used in deep learning (e.g.,
949% for CIFAR-10 (Krizhevsky, Hinton et al. 2009)).
Several confidence calibration methods for out-of-
distribution (OoD) detection have also been studied (Liang,
Li, and Srikant 2018; Hsu et al. 2020; Chen et al. 2020; Lee
et al. 2018; DeVries and Taylor 2018; LEE et al. 2018).
These studies calibrate confidence scores to detect OoD
data. Although the problem setting is different from this pa-
per, the perspective of confidence calibration to improve the
performance of the task (or system) is the same.

Cascade Inference Systems

In this paper, we refer to a system that combines multiple
models with different computational costs and accuracies to
perform inference as cascade inference systems. Cascade in-
ference determines whether the expensive model will make
accurate predictions or not based on the confidence score of
the fast model. Cascade inference systems work well with
edge-cloud environment and there is a lot of studies in this
field (Grulich and Nawab 2018; Li, Zhou, and Chen 2018;
Chinchali et al. 2018; Shao and Zhang 2020a,b). There are
two types of cascade inference systems, model cascading
and model splitting. In model cascading, models with dif-
ferent architectures (e.g., MobileNet (Howard et al. 2017;
Sandler et al. 2018; Howard et al. 2019) and ResNet (He
et al. 2016)) are combined. Model splitting allows for dy-
namic inference by creating a model with multiple early exit
points.

Model cascading is originally proposed in the context of
face detection in image processing (Viola and Jones 2001);
recent studies attempt to apply it to speed up heavy com-
putation of deep learning inference. NoScope is a system
that enables fast and accurate object detection as it com-
bines Difference detector, Specialized Model and Reference
NN (Kang et al. 2017). It decides whether the Reference NN
should make the prediction or not based on the maximum
prediction probability of the Specialized Model. There is an-
other approach that provides an additional model to deter-
mine whether to use the fast model or the expensive model
to make predictions (Wang et al. 2018; Zhou, Gao, and Wu
2017; Chinchali et al. 2019). The method of preparing ad-
ditional models can provide accurate confidence scores, but
deploying the models increases the computational cost and
requires more computational resources. It also needs extra
training effort, such as hyper-parameter tuning.

Instead of connecting different models, the other ap-
proaches split a single large model by creating early exit
points (Panda, Sengupta, and Roy 2016; Teerapittayanon,
McDanel, and Kung 2016; Huang et al. 2018). These ar-
chitectures reduce the computational cost by making most
of the easy samples predictions at the earliest possible exit
points. Although harder samples predictions are made at the
later exit points, the intermediate layers are shared with the
earlier exit points and their computation are completed, so
the increase in computational cost is less. Either the maxi-
mum class probability or entropy of the immediately prior
exit point is used as the confidence score. However, these
studies focus on just the network architecture and not on the
confidence score.
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Figure 1: Cascade inference systems diagram for two ele-
ments case. m? %5t is the fast model, me? is the expensive
model.

Problem Statement of Cascade Inference

Figure 1 shows the system diagram of cascade inference sys-
tems for two elements case. In the model cascading setting,
it uses models with different accuracy and computational
costs. In the model splitting setting, each early exit point is
treated as a fast or expensive model. There can be more than
two models. First, the fast model makes a prediction which
then confidence score con f is assigned to. It is easy to use
the maximum predicted probability or entropy as the con-
fidence score. Next, conf is compared with predetermined
threshold é. If con f is above &, the prediction result is likely
to be correct and the inference is terminated with that result.
If it is below &, the prediction result is likely to be incorrect,
so the expensive model is activated to make a prediction and
its output is used as the prediction result. The inputs of the
expensive model are raw samples and feature maps in the
model cascading setting and the model splitting setting, re-
spectively.

This configuration works well with edge-cloud environ-
ment. The fast model is deployed on the edge device as it has
limited computing resources, while the expensive model is
deployed on the resource-rich cloud. Cascade inference can
perform most of the inferences using only the fast model on
the edge device without losing accuracy. This reduces com-
munication costs for data transfer to the cloud and lowers
latency due to proximity of the edge device to the applica-
tion.

The goal of cascade inference is to achieve a good trade-
off between accuracy and computational cost of inference.
The accuracy is likely to increase if the expensive model is
used, but the computational cost is high and the inference
speed is slow. We begin with dataset D = {(z;, )},
where x are the samples, and y are the category labels for K
classes. The number of samples predicted by the expensive
model is given by the following equation.

N
NeTp — Z 1confi <é

i=1

ey

1 is an indicator function that returns 1 if the content is true
and 0 if it is false.

The problem of cascade inference can be formulated as
minimizing N °P while achieving the desired accuracy. In
this paper, the desired accuracy is assumed to be that of the
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expensive model (Acc®®P). It can be formulated as an opti-
mization problem as follows.

Nexp

Acc®®¢ > (1 — €) Acc®™P

€ is an acceptable accuracy degradation and is set to suit
the application requirements. In this paper, we set € = 0.

Acc®®€ is the accuracy by cascade inference and is formu-
lated as the following equation.

sc _ 1 N
Acct?3¢ = N Ei:1{1confi>61y

minimize

subject to

_ . fast(@)
i=arg max §;

J
@}
— ~exp
yi=arg max j;
J

+ lconfigtil (2)

j is the class index, j € {1,2, ..., K}. g%t and ge="”
are the predicted probabilities of the fast and expensive mod-
els, respectively. It is possible to obtain the desired trade-off
by adjusting 6. When ¢ is close to 0, the expensive model
makes fewer predictions, which decreases the computational
cost but accuracy is not expected to increase. Conversely,
when § is close to 1, the expensive model makes more pre-
dictions, which increases the computational cost but accu-
racy is expected to increase.

Learning to Cascade
Confidence Calibration for Cascade Inference

The existing methods calibrate the confidence score of the
model to match its accuracy. However, it is not clear whether
such calibration improves the performance of systems that
use confidence scores, such as decision-making systems and
cascade inference systems.

In this section, we call the first deep learning model that
makes predictions a “model” and human or highly-accurate
deep learning model that makes decisions based on the con-
fidence scores of its predictions a “final decision-maker”.
Let us assume that the final decision-maker of the systems
that use confidence scores is 100% accurate. If the sys-
tems can accurately determine whether the predictions of the
model are correct or not, the accuracy of the systems will be
improved. Because if the prediction result of the model is
correct, it is employed; if it is not, the final decision-maker
makes the prediction instead and get the correct answer,
thus achieving 100% accuracy with less effort. We consider
that existing confidence calibration methods can improve the
performance of these systems because they obtain a confi-
dence score that indicates whether the prediction result of
the model is correct or not. However, in general, neither
humans nor highly-accurate deep neural networks will ever
be 100% accurate. In other words, the final decision-maker
can get predictions wrong. If the predictions of the model
and the predictions of the final decision-maker are both in-
correct, there is no benefit from the predictions of the final
decision-maker. Therefore, confidence scores should reflect
information about whether the final decision-maker is cor-
rect or not. In this paper, we focus on the cascade inference
systems problems stated in Section 3 and discuss a confi-
dence score suitable for such systems.



In cascade inference, the predictions of expensive models
are costly compared to fast models predictions. This cost in-
cludes computation time, computational resources, and data
transfer rate (when in edge-cloud setting), and so on. If
the prediction of the fast model is incorrect but the predic-
tion of the expensive model is correct, then the expensive
model should be used because while it is more costly, it can
increase accuracy. However, in other cases, the expensive
model prediction will only increase the cost and not the ac-
curacy, even if the expensive model is correct. Of particular
note, in a case in which the prediction of the fast model is
correct but the prediction of the expensive model is incor-
rect, using the expensive model will increase the computa-
tional cost and decrease the accuracy. Therefore, if only the
prediction of the expensive model is correct, the confidence
score should be smaller. In other cases, the confidence score
should be larger. Especially, when only the prediction of the
fast model is correct, it is most important to obtain a larger
confidence score.

Based on the previous discussion, the new loss term for
cascade inference is given by the following equation.

N
Lcasc = % Zizl{confi]- fast(d)

yiFarg maxg;

J
y;Farg max @:wp(j) + C)}
J

+ (1 —conf;)(1 3)

conf is the confidence score, which is the maximum soft-
max prediction probability of the fast model. C' is the pa-
rameter accounting for the cost of the expensive model infer-
ence. It is determined based on system requirements such as
computation time, computational resources, and data trans-
fer rate. In our experiments, we use C' = 0.5.

Overall Loss Function

Using Equation 3, we propose a confidence calibration
method for cascade inference, called Learning to Cascade
(LtC). LtC simultaneously optimizes the original loss term
and the loss term for cascade inference; it improves clas-
sification accuracy and calibrates the confidence score. In
this paper, we use softmax cross entropy as the original loss
term, L,,4. The overall loss function is as follows.

L= Lorg + chasc (4)

w is a parameter that determines the weight of the loss term
for cascade inference. An overview of LtC is shown in Fig-
ure 2.

Beyond the Two Elements Cascade

LtC can be applied to cascade inference systems even when
there are M models (M > 3). The M models are sorted
in order of inference speed and model™ is the m-th model
(me{1,2,.... M}).

In the model cascading setting, model™ is initially
trained by the original loss function. Next, model™ ~1 is
trained by the LtC loss function with model™ as the ex-
pensive model. This procedure is repeated until all models
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Figure 2: Learning to Cascade overview. L., is calcu-
lated from gf ast and labels. Loqsc is calculated from cor-
rect/incorrect of the model prediction result, the value of the
confidence score, and cost C'.

are trained. The loss function of model™ is given by the fol-
lowing equation.

(M) —
L(m) — Lorg ) (m = M) (5)
LY + wLmm ™ (m< M —1)

In the model splitting setting, each early exit classifier
is treated as a single model. Unlike the model cascading
setting, all models are trained at the same time. The m-
th early exit point is treated as a fast model (model™)
and the (m + 1)-th early exit point as an expensive model
(model™*1). LtC computes L, for all pairs of model™
and model™ ! and adds their sum to the original loss term.
The loss function is given by the following equation.

L=Mpim + wLlmr Oy 4 108 (6)

Experiments

We conducted experiments on two datasets and in two set-
tings to show that LtC achieves a good trade-off between
accuracy and computational cost.

Experimental Setup

Datasets: We used CIFAR-100 (Krizhevsky, Hinton et al.
2009) and ImageNet (ILSVRC 2012) (Russakovsky et al.
2015). CIFAR-100 is composed of 50,000 training images
and 10,000 test images. We randomly split the training im-
ages into training and validation images at the ratio of 9:1.
ImageNet is composed of 1.3 million training images and
50,000 test images. We randomly split the training images
into training and validation images at the ratio of 99:1. The
best values of parameters of LtC, § and w were searched us-
ing the validation images. The CIFAR-100 experiment was
conducted 5 times with different random seeds, and the Ima-
geNet experiment was conducted 3 times with different ran-
dom seeds.

Networks and Training Details: The experiments were
conducted in two settings, model cascading and model split-
ting.

In the model cascading setting, we used AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), VGGI11 (Si-
monyan and Zisserman 2015) and MobileNetV2 (Sandler
et al. 2018) for the fast model, and ResNet18 and ResNet152



Dataset Model Accuracy|[%] MACs

CIFAR-100 AlexNet 65.57 £0.16  285.4[M]
VGGI11 67.26 £0.17  191.8[M]

MobileNetV2  67.18 £ 0.10 67.6[M]

ResNet18 74.63 +£0.08 556.8[M]

ResNet152 77.20+0.28  3737[M]
ImageNet  MobileNetV2  68.52 +£0.12 314.13[M]
ResNet152 77.24 £0.07 11.559[G]

Table 1: Accuracy and MACs of evaluated models results.

(He et al. 2016) for the expensive model. We used SGD
with momentum 0.9 as the optimizer. In CIFAR-100 ex-
periments, all models were trained with batch size of 128
for 200 epochs with weight decay of 0.0005. The learning
rate started with 0.1 and decreased by the factor of 0.2 at
60, 120, 160 training epochs. In ImageNet experiments, all
models were trained with batch size of 256 for 100 epochs
with weight decay of 0.0001. The learning rate started with
0.1 and decreased by the factor of 0.1 at 30, 60, 90 train-
ing epochs. Table 1 shows the accuracy and MACs of each
model.

In the model splitting setting, we used MSDNet (Huang
et al. 2018), the state-of-the-art early exit architecture for im-
age classification tasks. MSDNet has several parameters that
determine the architecture. nBlocks is the number of early
exit points, base is the number of layers in the first block,
and step is the number of layers after the second block. We
tested several combinations of parameters. We also used a
setting wherein the number of layers after the second block
increased linearly. MSDNet was trained in the same config-
uration as (Huang et al. 2018).

Evaluation Metrics: Two metrics were used to evaluate
the results. The first is Acc®®*¢, which is the accuracy in cas-
cade inference shown in Equation 2. The second is multiply-
accumulate (M AC's®**¢), which is the computational cost
of cascade inference given by the following equation.
Nexp

MACSs™¢ = MACs/*t + TMACSEM’ (7
MACsf*t and M AC's®®P are MACs for the fast and ex-
pensive models, respectively. Based on the formulation in

Section 3, Acc®®*¢ should be larger than or equal to Acc®*?;
the smaller the M AC's°**¢ is, the better the system is.

Methods for Comparison: In the model cascading set-
ting, we compared LtC with four existing methods.

e Baseline: Baseline is a method using the maximum pre-
dicted probability of the fast model as the confidence
score.

e IDK: IDK Cascades (Wang et al. 2018) employs an ad-
ditional model to obtain confidence scores for the model
cascading. We used a CNN with one fully connected layer
for an additional model (Same model as ConfNet (Wan
et al. 2018)).

o ConfNet: ConfNet (Wan et al. 2018) also employs an ad-
ditional model to obtain accurate confidence scores but
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does not consider cascade inference. We used a CNN with
one fully connected layer as the additional model.

e Temp. Scaling: Temperature Scaling (Guo et al. 2017)
is the general confidence calibration method attained by
dividing the logits with the temperature 7.

Results

The Model Cascading Setting: Model cascading per-
forms inferences by combining multiple models with dif-
ferent computational costs and accuracies. We used a set of
validation images to search for the J with the highest cas-
cade accuracy and used that value for testing.

In the CIFAR-100 experiment, we first examined two el-
ements cascade. Three different fast models and two differ-
ent expensive models were used. The accuracy and MACs
results for model cascading setting are shown in Table 2,
3. From Tables 1 and 2, the mean values of accuracy
for all methods and the expensive model differed slightly,
but were within the standard error. All methods meet the
condition (Acc®**¢ > Acc®*P) as defined by Section 3.
From Tables 1 and 3, all methods achieve lower MACs
than the expensive model, except for the combination of
AlexNet and ResNet18. Furthermore, LtC achieves the low-
est M AC's°**° in many cases. LtC reduces the MACs of
ResNet18 and ResNet152 by up to 31% and 36%, respec-
tively, with no accuracy degradation. LtC achieves a better
trade-off between accuracy and computational cost than ex-
isting methods. The reason why AlexNet does not improve
the trade-off is in its classic architecture; it does not have so
smaller MACs compared to that of ResNet18. As equation 7
shows, MAC:s of the fast model needs to be relatively smaller
than that of the expensive model in order to achieve a better
trade-off in cascade inference systems. The confidence cal-
ibration methods, ConfNet and Temperature Scaling, some-
times yield worse results than Baseline. As discussed in Sec-
tion 4, a desirable confidence score in cascade inference sys-
tems should reflect not only the prediction of the fast model
but also the prediction of the expensive model. Since these
methods calibrate the confidence score to a value that indi-
cates only whether the prediction of the fast model is correct
or not, these methods cannot obtain the desirable confidence
score. As a result, these methods may not improve the accu-
racy and computational cost of cascade inference systems.

Next, we examined three elements cascade. We used Mo-
bileNetV2 as the fast model, ResNetl8 as the middle fast
model and ResNet152 as the expensive model. The results
are shown in Table 4. By using LtC, cascade inference can
reduce the computational cost by 55% while improving the
accuracy of ResNet152.

In the ImageNet experiment, we used MobileNetV?2 as the
fast model and ResNet152 as the expensive model. The ac-
curacy and MACs results for model cascading setting are
shown in Table 5. LtC reduces the MACs of ResNet152 by
about 30% , with no accuracy degradation. LtC also achieves
a better trade-off between accuracy and computational cost
in difficult tasks such as ImageNet.

The Model Splitting Setting: We evaluated LtC using
MSDNet with several network architecture parameters. Ex-



mfast mE*P ACCCH.SC[%]
Baseline / IDK / ConfNet / Temp. Scaling / LtC
AlexNet 74.60 £ 0.08/74.55 £ 0.10/74.60 £ 0.09/ 74.62 + 0.07 / 74.60 £+ 0.07
VGG11 ResNetl8  74.69 +0.07/74.64 £0.10/74.60 £ 0.07/74.69 £ 0.09 / 74.66 £ 0.09
MobileNetV2 74.71 £0.09/74.69 £0.06/74.72 + 0.09/74.71 £ 0.09 / 74.69 £ 0.08
AlexNet 77.17+£0.30/77.18+£0.30/77.18 £0.28 /77.17 £ 0.28/77.02 £ 0.28
VGG11 ResNetl52 77.19+£0.28/77.13£0.28/77.18+£0.27/77.19+0.27/77.12+0.30
MobileNetV2 77.22+£0.28/77.22£0.28/77.21 £0.28/77.20£0.28/77.15£0.26

Table 2: Accuracy comparison results of model cascading setting on CIFAR-100.

mfa.st meTP MACSC{J.SC[M]
Baseline / IDK / ConfNet / Temp. Scaling / LtC
AlexNet 722.56 £ 50.70 / 650.78 £ 24.70 / 841.47 £ 0.46 / 678.22 + 14.21/617.88 £+ 8.92
VGG11 ResNet18 527.924+11.40/484.99 +9.00/747.87 £ 0.22/562.64 £ 13.05/485.83 £ 11.15
MobileNetV?2 435.91 4+ 23.80/424.07 4+ 29.56 / 421.17 + 10.18 / 450.95 + 18.09 / 383.08 + 13.85
AlexNet 3748.18 £+ 274.22/ 3451.98 4+ 275.01 / 4020.01 £+ 0.63 / 3141.66 + 74.29/2720.73 + 64.24
VGG11 ResNet152 3089.84 £ 344.71/2411.88 4+ 59.33/3925.21 £ 1.20/ 2819.06 £ 99.87/2381.08 + 66.62
MobileNetV2 3100.55 £ 238.31/2990.83 4+ 233.00 / 3122.52 + 282.78 / 3019.76 £ 225.20 / 2645.08 + 136.97
Table 3: MACs comparison results of model cascading setting on CIFAR-100.
Acc®*[%] MACs“**°[G] 70
Baseline / LtC

7748 £0.27/77.53£0.18 191+0.22/1.68+0.13

Table 4: Accuracy and MACs comparison results of three
elements cascade on CIFAR-100.

ACCCGSC[%]
Baseline / LtC
77.22+0.10/77.24+£0.08 8.36+0.65/8.08+0.21

MACs“*°[G]

Table 5: Accuracy and MACs comparison results of model
cascading setting on ImageNet.

periments were conducted using CIFAR-100 only. The re-
sults are shown in Figure 3. For all parameter settings, LtC
achieves a better trade-off between accuracy and computa-
tional cost than the original MSDNet. Since we only need to
add just a loss term, it can be easily applied to state-of-the-
art architectures such as MSDNet. LtC shows its simplicity
and effectiveness by this result.

Discussion

Effect of LtC on the accuracy of the fast model: Since
LtC simultaneously optimizes the loss term of the original
task and the loss term for cascade inference, we investigated
the effect of LtC on the original classification task. Table 6
shows the accuracy of each model trained by only the origi-
nal loss function and by the LtC loss function. Note that this
is not the accuracy of the cascade inference, but the accu-
racy of the fast model. The model accuracy trained by the
LtC loss function is a little lower in AlexNet and VGGI11,
but a little higher in MobileNetV2. We consider that adding
the loss term for cascade inference does not adversely affect
the classification accuracy of the fast model.
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Figure 3: MSDNet and MSDNet w/ LtC comparison re-
sults. MSDNet parameters are nBlocks=2, step=2, base=4
(top left), nBlocks=5, step=1, base=4 (top right), nBlocks=7,
step=1, base=1 (bottom left), nBlocks=10, step=2, base=4
(bottom right), respectively.

Effects of LtC Parameters: LtC has two parameters, C'
and w. We investigated the relationship between the two pa-
rameters and inference performance(Accuracy, MACs). We
examined the model cascading setting using MobileNetV2
as the fast model and ResNet18 and ResNet152 as the ex-
pensive model. The results are shown in Figure 4. To sum-
marize, C is not correlated with Acc®*¢, but it is correlated
with M ACs°**¢. C is the prediction cost of the expensive
model. When C' is large, the expensive model makes fewer
predictions; when C' is small, the expensive model makes
more predictions. C' and M ACs°**¢ are inversely propor-



Dataset Model Difference

CIFAR-100 AlexNet(w/ ResNet18 LtC) —0.30
AlexNet(w/ ResNet152 LtC) —0.48

VGG11(w/ ResNet18 LtC) —0.21

VGG11(w/ ResNet152 LtC) —0.21
MobileNetV2(w/ ResNet18 LtC) +0.10
MobileNetV2(w/ ResNet152 LtC) +0.08

ImageNet MobileNetV2(w/ ResNet152 LtC) +0.28

Table 6: The difference in accuracy between the model
trained by the LtC loss function and the model trained by
the original loss function. The ‘w/’ refers to which model
was used as the expensive model.
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Figure 4: The relationship between LtC parameters (C' and
w) and inference performance (Acc®**¢ and M ACs*¢).
The expensive model is set to ResNet18 (left), the expensive
model is set to ResNet152 (right), when C' is varied (top)
and when w is varied (bottom).

tional to each other. C' is a parameter that should be deter-
mined based on the system requirements, such as inference
speed or computational resources available. On the other
hand, there is no correlation between w and inference per-
formance. In order to obtain a good trade-off in cascade in-
ference system, we need to search for the optimal w.

Analysis of How LtC Works: Given combination of Mo-
bileNetV2 and ResNetl8, we compared confidence scores
of Baseline and LtC for each combination of the fast model
and the expensive model prediction result. The results are
shown in Figure 5. In all combinations, LtC has high confi-
dence scores. The number of confidence scores is especially
high around 1. According to the discussion in Section 4, a
low confidence score is desirable for case "m®“? Only Cor-
rect” and a high confidence score is desirable for the other
cases. So, LtC has a negative impact on case "m®*?P Only
Correct”, but a positive impact on the other cases. In par-
ticular, LtC obtains a high confidence score in case i fast
Only Correct”, which is the most important case because
of its impact on both accuracy and computational cost. We
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Figure 5: Confidence comparison of LtC and Baseline. Both
prediction results are correct (top left), only the m/** pre-
diction results are correct (top right), only the m**? predic-
tion results are correct (bottom left), and both prediction re-
sults are incorrect (bottom right).

consider that LtC can improve the performance of cascade
inference because its good effects outweighed its negative
impact.

Conclusion

In this paper, we propose Learning to Cascade (LtC), a con-
fidence calibration method for cascade inference. Existing
confidence calibration methods implicitly assume that hu-
man accuracy is 100%. However, neither humans nor deep
learning models can achieve 100% accuracy for difficult
tasks such as those targeted by deep learning. Therefore, we
optimize the confidence score not only for the model but also
for the entire system, including the decision-maker (human
or more accurate deep learning model). To improve system
performance, we introduce a new loss term for confidence
calibration. LtC simultaneously optimizes this loss term and
the original loss term. We evaluate LtC in two datasets and
two system settings. LtC achieves a low computational cost
in most cases with almost the same level of accuracy as ex-
isting methods and the expensive model. In addition, in the
three elements cascade configuration, LtC achieves higher
accuracy than ResNet152 at 55% lower computational cost.
It is also shown that existing confidence calibration meth-
ods fail to improve accuracy and computational cost in some
cases. Because of its simplicity, LtC can be easily applied to
state-of-the-art architectures such as MSDNet to improve a
trade-off, which is also verified in our experiments.

In future work, we would like to elucidate the cause of the
high confidence score in the case of ”m®"P Only Correct”
and improve the loss term. We will also show the effective-
ness of LtC for other architectures and tasks.
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