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Abstract

Understanding model performance on unlabeled data is a fun-
damental challenge of developing, deploying, and maintain-
ing Al systems. Model performance is typically evaluated
using test sets or periodic manual quality assessments, both
of which require laborious manual data labeling. Automated
performance prediction techniques aim to mitigate this bur-
den, but potential inaccuracy and a lack of trust in their pre-
dictions has prevented their widespread adoption. We address
this core problem of performance prediction uncertainty with
a method to compute prediction intervals for model perfor-
mance. Our methodology uses transfer learning to train an un-
certainty model to estimate the uncertainty of model perfor-
mance predictions. We evaluate our approach across a wide
range of drift conditions and show substantial improvement
over competitive baselines. We believe this result makes pre-
diction intervals, and performance prediction in general, sig-
nificantly more practical for real-world use.

Introduction

Knowing when a model’s predictions can be trusted is one of
the key challenges in Al today. From an operational perspec-
tive, understanding the quality of model predictions impacts
nearly all stages in the model lifecycle, including pre-deploy
testing, deployment, and production monitoring. From a so-
cial perspective, prediction trust impacts society’s willing-
ness to accept Al as it continues replacing human decision
making in increasingly important roles.

Techniques such as performance prediction (Guerra,
Prudéncio, and Ludermir 2008; Schat et al. 2020; Talagala,
Li, and Kang 2019) strive to automatically predict the per-
formance of a model with no human intervention. Unfor-
tunately these techniques have not yet gained mainstream
adoption, ironically enough, due to their potential unrelia-
bility and the resulting lack of trust in their predictions. Per-
formance predictors are often surprisingly accurate when a
base model is predicting on data similar to what it has al-
ready seen in training and test. However, it is well known
that model behavior can be extremely difficult to predict on
previously unseen data (Nguyen, Yosinski, and Clune 2015;
Su, Vargas, and Sakurai 2019). It is not reasonable to ex-
pect a performance prediction algorithm to perfectly predict
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a base model’s behavior in these scenarios. It is, however,
reasonable to ask a performance predictor to quantify the
uncertainty of its predictions so the application (or end user)
can take appropriate precautions.

This paper describes a technique for computing predic-
tion intervals on meta-model based performance predic-
tions, to convey the degree to which the performance pre-
diction should be trusted. Our technique uses meta-meta-
modeling in a multi-task setting to train an uncertainty model
to compute prediction intervals. Our approach makes no as-
sumptions about the base model or performance predictor,
and can easily be applied in other settings. The use of a sep-
arate meta-meta-model to perform the uncertainty quantifi-
cation allows the simultaneous prediction of both aleatoric
(data-driven) and epistemic (model-driven) uncertainty.

A key challenge for an uncertainty model is predicting
the unseen - ie, data that is substantially different than any-
thing the model has seen in train or test. A simple cross val-
idation or leave-one-out training is unlikely to produce suf-
ficient feature-space drift to be informative in this regard.
Our technique trains for these extreme cases by (1) simulat-
ing various levels of drift ranging from mild to extreme, and
(2) training on these drift scenarios using external data sets
that are different from the base model training set but of the
same modality. This approach enables the uncertainty model
to learn how the performance predictor behaves in a variety
of challenging scenarios, and uses this information to help
predict risk when challenging scenarios arise in production.
Due to its prevalence and commercial importance, we focus
on tabular data, and therefore chose logistic regression and
random forest base models.

We evaluate our uncertainty model on four different per-
formance predictors and compare the uncertainty model
against four different model-free baseline algorithms. In ev-
ery scenario, our uncertainty model outperforms all base-
lines, often by a large margin. Even without the use of an
uncertainty model, our approach of using drift simulation
for calibration yielded significant improvements over tradi-
tional baselines.

Related Work

Prior work exists on performance prediction (Guerra,
Prudéncio, and Ludermir 2008; Chen et al. 2019; Finn et al.
2019; Redyuk et al. 2019; Schat et al. 2020; Talagala, Li, and



Kang 2019), however, to the best of our knowledge, none
that assigns uncertainty bounds to their predictions. The field
of domain generalization also includes some related work,
for which a good recent review can be found in (Hospedales
et al. 2020). For example, (Li et al. 2018) use a cross-domain
meta-learning approach to model training similar our proce-
dure, but applied to the base classification problem.

Of relevance are numerous methods for estimating the un-
certainty of predictions from machine learning models in
general. Many of these, ranging from classical statistical
methods to state-of-the-art deep learning (DL) models ((Gal
and Ghahramani 2016; Kendall and Gal 2017; Koenker and
Bassett 1978; Nix and Weigend 1994), also see (Khosravi
et al. 2011) for a review), could be applied to meta-model
based performance prediction.

There are well-established parametric methods for pre-
diction intervals, see for example (Geisser 2017). Methods
implicitly learning the error distribution are also available,
for example by incorporating a feature-dependent variance
into the loss function for iterative training procedures (Nix
and Weigend 1994). Furthermore, there has been significant
progress in constructing neural architectures which simul-
taneously output a classification and an uncertainty predic-
tion (Brosse et al. 2020; Kabir et al. 2019; Khosravi, Naha-
vandi, and Creighton 2010; Malinin and Gales 2018).

Non-parametric methods such as the jackknife and boot-
strap (Efron 1979; Efron and Gong 1983), and more recent
variations (Lei et al. 2018; Vovk et al. 2018; Papadopoulos
2008; Vovk 2012; Vovk, Gammerman, and Shafer 2005) can
estimate the uncertainty of a statistical prediction without
assuming a particular error model, but rely on the assump-
tion that the distribution of the unlabeled data is the same
as the train data. Ensemble methods have been proposed
for both traditional ML (Dietterich 2000; Kwok and Carter
1990) and DL models (Hansen and Salamon 1990; Lakshmi-
narayanan, Pritzel, and Blundell 2017; Osband, Aslanides,
and Cassirer 2018). The variance of the ensemble predic-
tions can be used as a feature-dependent measure of uncer-
tainty. We implement this strategy as one of our baselines.
Bayesian approaches have been extended to non-parametric
applications, including neural networks (Bishop 1997; Blun-
dell et al. 2015; Neal et al. 2011) and a popular approx-
imate version of Bayesian neural networks - the Monte-
Carlo dropout approximation (Gal and Ghahramani 2015;
Gal, Hron, and Kendall 2017) - also serves as a baseline in
our work.

Method

Our approach estimates prediction intervals for the perfor-
mance of a black-box classification model on a pool of un-
labeled data. First, we use meta-modeling to predict the ac-
curacy of the base classification model (performance pre-
diction). Second, a pre-trained uncertainty model is used to
estimate a prediction interval, which describes the probable
range for the true value of the accuracy.

Performance Predictors

As its name suggests, performance prediction is the prob-
lem of estimating the value of a performance metric that a

7306

machine-learning model will achieve for a given pool of un-
labeled data (referred to here as the production set). This
work focuses on classification accuracy, but the same meth-
ods could be applied to other metrics such as the F1 score
or the error of a regression model. We treat the base model
as a black box from which only the vector of predicted class
probabilities for each sample is available. We developed two
types of performance predictors (four variants in all) which
we will use as the basis for our prediction intervals.

The performance predictors that we use in this work each
output a confidence score for each unlabeled data point in
the production set. This score, between zero and one, is an
estimate of the likelihood that the base model predicted the
correct class label. For the purposes of computing an aggre-
gate accuracy score for the production set, we take the av-
erage of these confidences. This confidence averaging pro-
duced better estimates of the accuracy than making binary
correct/incorrect predictions for each sample.

The confidence predictor is a simple, binning-based
procedure, which recalibrates the base model confidence
score for the most likely class (Zadrozny and Elkan 2001).
The values of this confidence on the test set are gathered
into a histogram (binned in increments of 0.1), and the base
model accuracy is computed for each bin. A performance
prediction for a data point is given by the average accuracy
of the bin that spans that point’s base model confidence.

Our meta-model performance predictor uses its own
model to predict data points that are likely to be mislabeled
by the base model. Training data for the meta-model pre-
dictor is created by relabeling the test set with binary la-
bels indicating whether the base model correctly classified
each sample. The meta-model, which is an ensemble of a
Gradient Boosting Machine (GBM) and a logistic regression
model, classifies each sample as correct or incorrect, and the
probability assigned to the “’correct” class is returned as the
performance predictor confidence score. Further details of
the met a-model predictor implementation are provided in
the supplementary material.

Uncertainty Model

We propose a new approach for computing prediction in-
tervals by using an uncertainty model (a meta-meta-model)
that learns to predict the behavior of a performance predic-
tor (a meta-model). This uncertainty model (UM) is a re-
gression model that quantifies the uncertainty of the perfor-
mance predictor’s estimate of the base model accuracy on
the production set. We pre-train the UM using a library of
training datasets. The UM can then observe the behavior of
a performance predictor on a new target dataset and generate
a prediction interval.

The UM must be trained using examples of performance
prediction errors. Each training sample for the UM consists
of a full drift scenario, comprising: (1) labeled train and
test datasets, (2) a pool of unlabeled data (the production
set), (3) a base classification model trained on the train set,
and (4) a performance predictor trained for this dataset and
base model. We use two different simulation procedures de-
scribed below to generate a large number of such training
examples. The target values are the (absolute) differences



between the true and predicted accuracy on the entire pro-
duction set. This method could be extended to predict the
signed value of the errors, allowing for asymmetric predic-
tion intervals.

The UM architecture is an ensemble of GBM models. Ex-
perimentally, we found that an ensemble of ten models re-
duced prediction variance and led to improved accuracy. The
model was trained using a quantile loss function, which nat-
urally enables the calculation of prediction intervals targeted
to capture the true error with a specified probability. Further
implementation details are described in the supplementary
material.

Features The UM was trained using a set of derived
features that are generic enough to be compatible across
datasets with varying feature spaces and numbers of classes.
The derived features are extracted from a number of mod-
els, including (1) the base classification model, (2) the per-
formance predictor, (3) a group of proxy models, and (4) a
group of drift models. The proxy models (one logistic re-
gression, one random forest, and one GBM) were trained on
the same features and classification task as the base model,
and provide a complementary perspective on the classifica-
tion difficulty of each data point. The drift models are ran-
dom forest models trained to predict whether a given sample
came from the test set or the production set. They provide di-
rect insight into the degree of feature space drift for a given
scenario. Further implementation details for the proxy and
drift models are provided in the supplementary material.

A full list of the features used for the UM is shown in
Table 1. The procedure for constructing the features of type
Distance starts by choosing a function f that maps any
feature vector to a scalar value, for example the highest
value from the base model confidence vector. The value
of this function is used to construct two histograms, one
for the samples in the test set, and one for the production
set. Finally, the distance between these two histograms is
computed using some distance function D. We used three
functions for D: the Kolmogorov—Smirnov metric D;
max; |P; — Q;l, the inverse overlap Dy = ) . max(p; —
gi, 0), and the squared inverse overlap D3 = >°, ( max(p; —

qi, 0))2. Here p and q are the normalized histograms from
the test and production sets, ¢ indexes the bins in the his-
tograms (which must be identically spaced), and P, () are
the CDFs corresponding to p, q.

The remaining features can be grouped into three
types: Prediction, Noise, and Internal. The
Prediction features are directly derived from the pre-
dictions of one of the source models (without using the
Distance procedure). These include the entropy of the
base model predictions, the change in accuracy predicted by
the performance predictor, and the accuracy of the drift clas-
sifiers. The Noise features are the size of bootstrap confi-
dence intervals for the average of the top base model con-
fidence and the performance predictor confidence, both of
which approach zero as the number of points in the pro-
duction set approaches infinity. The Internal features are
white-box quantities extracted from the performance predic-

7307

tor or proxy models, such as the performance predictor in-
trinsic prediction intervals, or the difference between the cal-
ibrated and uncalibrated performance predictions. A com-
plete description of the features listed here is given in the
supplementary material.

An ablation study is presented in Table 2, showing the
performance of the UM, coupled with the meta-model
performance predictor, obtained using subsets of the full
set of features described above. This study shows that the
most effective information for understanding the perfor-
mance prediction uncertainty comes from the drift models.
It also shows that including the more numerous and compu-
tationally expensive Distance and Internal features
deliver a significant performance boost over the simpler
Prediction and Noise features.

Experimental Methodology

Fig. 1 shows example results for 1inear-skew drift sce-
narios simulated from the bng-zoo dataset. The middle and
right panel show accuracy predictions from the meta-model
performance predictor, and the uncertainty model prediction
intervals calibrated using two different levels of «, (0.5 and
0.9), as described below.

Drift Simulation

Training and evaluating the UM requires examples of data
drift. The breadth of the drift examples used for training
largely determines the quality and coverage of the result-
ing model. Tabular labeled datasets containing sufficient nat-
urally occurring drift are difficult to obtain, therefore we
chose to generate such examples through resampling-based
simulation. We focus on covariate shift because it has been
shown to encompass a wide range of real-world drift scenar-
ios (Card and Smith 2018).

We use two different algorithms for generating drift: (1)
linear-skew , is designed for breadth of coverage, for
providing training data, and ensuring the generation of ex-
treme drift (2) nearest-neighbors is designed to sim-
ulate drift more likely to occur in the real world for an ad-
ditional evaluation scenario. Examples of drift generated by
both algorithms is included in the supplementary material.

The 1inear-skew method requires choosing a feature
dimension (F") along which the bias will be induced, and a
threshold ¢ to split the dataset into two buckets. The sam-
pling parameter R controls the ratio of sampling from the
two buckets for the train/test sets and the production set, thus
also controlling the amount of drift in the scenario. When
R = 50, the train, test, and production sets all have the same
distribution, and there is no drift. When R = 0 or R = 100,
there is no overlap between the train/test distribution and the
production distribution. The 1inear—-skew procedure is
described in Alg. 1.

The nearest-neighbors algorithm strives to simu-
late a particular demographic either appearing, or disappear-
ing from production traffic. It does so by sampling a data
point and then uses nearest neighbors to identify other data
points that are similar (nearest neighbors) or dissimilar (fur-
thest neighbors) and remove them from the dataset. We used



Source Name Description Type | Count
Base top (&1st - 2nd) confidence highest (& 1st - 2nd) predicted class confidence D 6
confidence entropy entropy of confidence vector D 3
class frequency relative frequency of predicted classes D 3
entropy ratio avg. prod. set entropy/avg. test set entropy P 1
bootstrap size of bootstrap conf. intervals for avg. accuracy N 1
Perf. Pred. | predicted change predicted prod. acc. - base test acc. P 1
avg. pred. stdev. (& entropy) | stdev. (& entropy) of confidence scores (prod) P 2
predicted uncertainty intrinsic uncertainty interval I 1
bootstrap size of bootstrap conf. intervals for pred. acc. N 1
whitebox internal stats from meta-model ensemble and calibration I 20
Proxy top (&1st - 2nd) confidence | highest (& 1st - 2nd) predicted class confidence D 18
best feature projection onto most important feature D 3
num import. feat. num. features to make 90% feat. importance I 1
Drift accuracy test vs. prod classification accuracy P 3
(top-2nd) confidence top - second highest class probability D 9
Other ‘ PCA projection ‘ projection onto highest PCA component ‘ D ‘ 3 ‘

Table 1: Source models, names, descriptions, types (D=Distance, P=Prediction, N=Noise, [=Internal), and counts

for all UM features.

Average Cost (o = 0.9)
Base | Perf. Pred. | Proxy | Drift | All
Distance | 1.46 - 1.21 1.18 | 1.07
Internal | 1.61 1.15 - - 1.05
Pred. - 1.29 1.87 - 1.33
Noise 1.46 1.59 - - 1.32
All 1.30 1.25 1.21 1.16 1.0

Table 2: Average uncertainty model cost, Eq. (1), for the
meta-model predictor, with &« = 0.9, normalized by the
value when all features are used.

this algorithm to create fairly severe drift, removing 50-70%
of the original data points, which we believe covers the range
of realistic possible drift. The nearest-neighbors al-
gorithm is described in Alg. 2.

Datasets and Settings

For our experiments we use a set of fifteen publicly avail-
able tabular datasets, sourced from Kaggle, OpenML, and
Lending Club: Artificial Character, Bach Choral, Bank Mar-
keting, BNG Zoo, BNG Ionosphere, Churn Modeling, Cred-
itcard Default, Forest Cover Type, Higgs Boson, Lending
Club (2016 Q1, 2017 Q1), Network Attack, Phishing, Pul-
sar, SDSS, and Waveform. Details of the individual dataset’s
characteristics and our pre-processing procedures are pro-
vided in the supplementary material.

To simulate the effect of training the UM on an offline
library of training datasets and then deploying it to make
predictions on a new, unseen target dataset, we conducted
our experiments in a leave-one-out manner. Each dataset was
chosen in turn as the target, and its UM was trained on the re-
maining training datasets. All results are averaged over these
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fifteen different UMs.

Since we focused on tabular data, we used random
forest and logistic regression base models for all ex-
periments. In the linear-skew simulations we chose
two features per dataset, and performed Alg. 1 for
each feature with fifteen values of the sampling ratio
R = 0,1,5,10,20,30,40,50, 60, 70,80, 90, 95, 99, 100.
This was repeated using five random seeds, giving

Algorithm 1 Algorithm to create 1inear-skew drift sce-
narios

Input: Dataset X C X; pyy, Pres Ppr € [0, 1] @ Py + pre +
ppr = 1; Feature dimension F' : X(¥) C X; threshold
function t : X&) — {X4,Xp}; Sampling ratio R €
[0, 100]; minibatch size b
Output: X, Xy, X;,, C X
XA7 XBv Xttv Xp’!‘ < {}
for z in X do

Add z to t(X)) € {X4,Xp} > Add data point to
bucket, defined by threshold ¢
end for
while | X 4] > band | Xp| > bdo > Randomly sample
X, Xpr from buckets until out of data points

Add (ptr + pre) X % x b points from X 4 and (pe, +

Dre) X (1 — %) x b points from X g into X

Add pp, x (1 — {5) x b points from X 4 and p,, x
% x b points from X g into X,
end while
Randomly split X;,., X;. < Xy, with proportions o Tp i’bte
and - ij_;fp
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Figure 1: Example of performance prediction and the UM for 1inear—-skew drift scenarios. The left plot shows the model
accuracy drift (shaded area) induced by Alg. 1. The middle (right) plot shows the accuracy predicted by the meta-model
predictor, with UM prediction intervals calibrated to o = 0.5 (o = 0.9).

a total of 300 drift scenarios per dataset.! For the
nearest-neighbors simulations, 300 scenarios were
generated for each dataset/base model combination with pa-
rameters Py = 0.5, Ppeqr = 0.5, and Py € [0.5,0.7],
for a total of 9000 scenarios.

Model-Free Baselines

A set of model-free baseline techniques for computing pre-
diction intervals are compared against the UM. The first
set of techniques are three intrinsic methods which lever-
age white-box information from the performance predictors.
These intrinsic methods produce uncertainty estimates for

"Except for the Network Attack dataset, which only has one
feature amenable to this procedure, see supplementary material.

Algorithm 2 Algorithm to create nearest-neighbors
drift scenarios

Input: Dataset X C X; pyr, Die, Ppr € [0,1] & Dt +Dre +
Ppr = 1; Pser € [07 1}a Prear € [07 1L Piown € [0; 1]
Output: X, X4, X}, C X

Randomly split data into X, and X;; with proportions
Ppr and 1 — Ppr

With probability Ps., set downsample set X joun = Xt
and X,qng = Xpr’ else Xgown = Xpr and X,qng = Xy
> Choose distribution to bias non-randomly

Choose point p € X joun at random

Order points « # p € X jown by distance from p

Choose D=nearest (N) with probability P,c., else
D=furthest (F') > Choose nearest or furthest bias
Remove the fraction Py, points which are D € {N, F'}
from p

Remove fraction Py, from X4, randomly >
Randomly downsample non-biased distribution
Randomly split X;,., Xe < X4 with proportions o pj’r’“pt
and DPte

Ptr+Dte
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each point in the production set, and the average of these
estimates is used as the (uncalibrated) prediction interval.
For the confidence predictor, if the accuracy in bin &
is ag and the number of samples falling into bin k is ny, we
compute an uncertainty score for each point in the k—th bin

as ur, = v/ar(1l — ax)/nk, which is the standard error of a

Bernoulli distribution with parameter ay.

For the meta-model predictor, we created two variants
that replace the GBM and logistic regression meta-models
with different classifiers. The crossval predictor uses an
ensemble of ten random forest models, each trained with a
different cross-validation fold of the test set, and the stan-
dard deviation of their predictions is used as the uncertainty
estimate. The dropout predictor uses an XGBoost (Chen
and Guestrin 2016) model with the DART (Vinayak and
Gilad-Bachrach 2015) booster, which applies dropout (Sri-
vastava et al. 2014) regularization to GBM models. In the
spirit of the Monte-Carlo dropout approach for Bayesian
neural networks (Gal and Ghahramani 2015; Gal, Hron, and
Kendall 2017), ten predictions are made for each sample
with dropout turned on to introduce randomness in the con-
fidence scores, giving an estimated average and standard de-
viation for the model accuracy.

Besides the intrinsic baselines, we also compare with
three other baseline methods, which produce prediction in-
tervals using: (1) the standard error of the mean of the per-
formance predictor confidences, (2) the size of a bootstrap
uncertainty interval for the mean of these confidences, and
(3) a constant sized prediction interval.

Evaluation Metric

Evaluating the quality of a set of prediction intervals in-
volves a trade-off between two opposing kinds of errors:
prediction intervals that are too small and do not capture the
magnitude of the true error (Type I cost), and prediction in-
tervals that are unnecessarily large (Type II cost). In an ad
hoc comparison between two methods generating prediction
intervals, it is common that one method does not dominate



the other in the sense of having both smaller Type I and Type
IT error. A comprehensive comparison of such methods re-
quires making a tradeoff between the two.

One common approach to quantifying this trade-off is to
scale each set of prediction intervals by a constant factor to
achieve a common miss rate (eg 5%), and then compare their
average size or average excess. We chose instead to evaluate
results based on a cost function which penalizes both types
of error:

Ca(g, ) = Z {amax (57; — ui,O)
‘ (D
+ (1 — a) max (ul —0;, O)

In Eq. (1), §; = |a; — p;i| is the difference between the
true base model accuracy and the performance prediction
for production set ¢, and u; is the (single-directional) size of
the scaled prediction interval. The cost function parameter
a € [0,1] can be adjusted to control the balance between
the two types of error.

Calibration

Prediction intervals must be calibrated in order to achieve
reliable performance for a scale-sensitive metric such as
Eq. (1). We compare two calibration methods, one with ex-
ternal drift scenarios as a holdout set, and one without. With-
out the holdout set for calibration (Target Calibration), we
used the approximation that the performance prediction er-
ror is normally distributed, and multiplied the uncalibrated
prediction intervals by the Z-score of the desired confidence
interval (determined by the cost function parameter «).?
This calibration method is applied to all baselines.

The second calibration method (TL Calibration) used the
simulated drift scenarios from external holdout datasets as a
calibration set. A constant scale factor was computed which
minimized the cost function Eq. (1) for each set of predic-
tion intervals on this hold-out set. This calibration method
was applied to the model-free baselines using 100% of the
holdout drift scenarios, and to the UM prediction intervals
using an 80%/20% train/test split of the drift scenarios.

Experimental Results

In this section we demonstrate the performance of our
UM, trained using the linear-skew drift scenarios,
and evaluated using both the linear-skew and the
nearest-neighbors style scenarios. We use the four
performance predictors and the four baselines described
above. The quality of the prediction intervals is measured by
the cost function C,, from Eq. (1), with a between 0.5 and
0.95. This range covers most reasonable user preferences for
penalizing under- vs. over-shooting of the appropriate pre-
diction interval size.

Fig. 2 compares the cost C, of the UM and the stan-
dard error, bootstrap, and intrinsic baselines, evaluated using

2The cost is minimized by balancing the two terms in Eq. (1),
thus the a%-confidence interval chosen for calibration. For exam-
ple, if @ = 0.95 is chosen, then the scale factor is Z = 1.96.
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Figure 2: Average cost (Eq. (1)) for prediction intervals. The
baselines, calibrated without (top) and with (bottom) exter-
nal datasets, are compared to the UM. The evaluation uses
the 1inear—skew drift scenarios.

the 1inear-skew drift scenarios. The results are averaged
across the four performance predictors’, and calibrated us-
ing the target dataset method (top) and external holdout drift
scenarios (bottom). The error bars in Fig. 2 indicate the 95%
bootstrap confidence interval. The bottom plot also includes
the calibrated constant baseline.

It is clear from the upper panel of Fig. 2 that the UM
method trained with the 1 inear-skew simulated drift sce-
narios substantially outperforms the baselines. This is espe-
cially true for moderate to high values of «, which corre-
spond to penalizing prediction intervals that are too small
more than intervals which are too large. Comparing this re-
sult to the bottom panel, we see that merely calibrating with
the simulated drift scenarios can dramatically improve the
performance of the baseline methods. However, the UM still

3There are only three sets of results for the “intrinsic” curve, as
the met a-model predictor has no intrinsic prediction interval.
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Figure 3: Same experiments as Fig. 2, except using
nearest-neighbors drift scenarios for evaluation.

provides a major improvement at all values of a.

Fig. 3 shows the same experiments as Fig. 2, but using
nearest-neighbors scenarios for evaluation (and still
using 1inear—skew scenarios for training). The UM still
outperforms the baselines for the full range of a. The overall
costs tend to be smaller, since the model accuracy drift in the
nearest-neighbors scenarios was smaller on average
than in the 1inear—-skew scenarios. This result confirms
that the deliberately engineered 1inear-skew scenarios
are able to provide effective training for more realistic, or-
ganically created nearest-neighbors drift scenarios.

Table 3 provides all of the results in numeric form, bro-
ken down by performance predictor, and averaged across the
same range of « values. This confirms that the individual
predictor results align with the previous average results.

Choosing the source datasets for this transfer-learning
based approach is an important consideration. For a domain
specific application, it is obviously preferable to choose
source datasets from the same or a closely related domain.
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LS (train) — LS (eval)
Predictor
Method | Conf. | Crossval | Dropout | Meta
SE 2.88 2.57 3.09 241
BS 2.38 2.06 2.50 1.89
I 2.23 1.72 2.20 -
SE(TL) | 2.13 1.91 2.13 1.77
BS(TL) | 1.13 1.91 2.13 1.77
C (TL) 2.11 1.88 2.10 1.83
I1(TL) 1.83 1.67 1.86 -
UM 1.46 1.24 1.38 1.33
LS (train) — NN (eval)
Predictor
Method | Conf. | Crossval | Dropout | Meta
SE 1.97 1.87 2.48 1.75
BS 1.59 1.41 2.00 1.29
1 1.39 1.14 1.48 -
SE (TL) 1.36 1.25 1.58 1.15
BS(TL) | 1.36 1.25 1.58 1.15
C(TL) 1.30 1.20 1.49 1.16
I(TL) 1.26 1.17 1.29 -
UM 1.08 1.00 1.14 0.97

Table 3: Costs for both experiments, including the standard
error (SE), bootstrap (BS), and intrinsic (I) baselines, the
same methods with our transfer-learning (TL) calibration,
as well as the calibrated constant (C) and UM, averaged over
the values of o shown in the figures (0.5 to 0.95).

In addition to the domain, we expect that it is valuable to ap-
proximately match other dataset characteristics such as num-
ber of classes, number of features, feature sparsity, etc.

For applications to other data modalities, for example im-
age or text data, many standard benchmark datasets such as
ImageNet could be used for pre-training. The models used in
the UM and the feature extraction would need to be replaced
or supplemented with modality appropriate architectures to
extract meaningful features from the data. Finally, the base
models used in the drift scenarios for training the UM should
include models of the same class as those to which it will be
applied at prediction time.

Conclusion

Performance prediction is an invaluable part of the deploy-
ing, monitoring, and improving an Al model. This paper
addresses this problem by describing a novel technique for
quantifying model uncertainty. It leverages multi-task learn-
ing and meta-meta-modeling to generate prediction inter-
vals on any model-based performance prediction system.
Our method substantially outperforms a group of competi-
tive baselines on dataset shift produced by two different sim-
ulation mechanisms. We believe this work helps make per-
formance prediction more practical for real-world use, and
may encourage further innovation in this important area.



Ethics Statement

Training Al models to “know what they don’t know” is one
of the key challenges in Al today (Kindig 2020; Davey 2018;
Knight 2018). AI models can be notoriously overconfident
in scenarios that their training data did not prepare them
for (Nguyen, Yosinski, and Clune 2015), eroding trust in
Al and society’s willingness to accept Al as it continues
to replace human decision making in increasingly important
roles. Our work directly addresses this problem, proposing
a novel technique for quantifying quantifying model uncer-
tainty that beats all baselines we compare against. In addi-
tion, we hope that this work will encourage the community
to continue to invest and innovate in this important area. Due
to the nature of this problem we do not foresee any negative
consequences stemming from our work.
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