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Abstract

We propose two generic methods for improving semi-
supervised learning (SSL). The first integrates weight pertur-
bation (WP) into existing “consistency regularization” (CR)
based methods. We implement WP by leveraging variational
Bayesian inference (VBI). The second method proposes a
novel consistency loss called “maximum uncertainty regular-
ization” (MUR). While most consistency losses act on per-
turbations in the vicinity of each data point, MUR actively
searches for “virtual” points situated beyond this region that
cause the most uncertain class predictions. This allows MUR
to impose smoothness on a wider area in the input-output
manifold. Our experiments show clear improvements in clas-
sification errors of various CR based methods when they are
combined with VBI or MUR or both.

Introduction

Recent success in training deep neural networks is mainly
attributed to the availability of large, labeled datasets. How-
ever, annotating large amounts of data is often expensive
and time-consuming, and sometimes requires specialized
expertise (e.g., healthcare). Under these circumstances, semi-
supervised learning (SSL) has proven to be an effective means
of mitigating the need for labels by leveraging unlabeled data
to considerably improve performance. Among a wide range
of approaches to SSL (van Engelen and Hoos 2019), “con-
sistency regularization” (CR) based methods are currently
state-of-the-art (Bachman, Alsharif, and Precup 2014; Saj-
jadi, Javanmardi, and Tasdizen 2016; Laine and Aila 2016;
Tarvainen and Valpola 2017; Miyato et al. 2018; Verma et al.
2019; Xie et al. 2019; Berthelot et al. 2019b; Sohn et al.
2020). These methods encourage neighbor samples to share
labels by enforcing consistent predictions for inputs under
perturbations.

Although the perturbations can be created in either the
input/feature space (data perturbation) or the weight space
(weight perturbation), existing CR based methods focus ex-
clusively on the former and leave the latter underexplored.
Despite being related, weight perturbation (WP) is inher-
ently different from data perturbation (DP) in the sense that
WP directly reflects different views of the classifier f on the
original data distribution (e.g., f., () Vv.8. fu () while DP
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Figure 1: The most uncertain “virtual” point x* usually lies
outside the vicinity of x( and is the most disruptive.

indirectly causes the classifier to adjust its view to adapt to
different data distributions (e.g., f,(z) v.s. fi(2')). There-
fore, we hypothesize that the two types of perturbations are
complementary and could be combined to increase the clas-
sifier’s robustness. To implement WP, we treat the classi-
fier’s weights w as random variables and perform variational
Bayesian inference (VBI) on w. This approach has several
advantages. First, perturbations of w can be generated easily
via drawing samples from an explicit variational distribution
g4(w|D). We also take advantage of the local reparameteri-
zation trick and variational dropout (VD) (Kingma, Salimans,
and Welling 2015; Molchanov, Ashukha, and Vetrov 2017)
to substantially reduce the sampling cost and variance of the
gradients w.r.t. the weight samples, making VBI scalable for
deep neural networks. Second, since VBI is a realization of
the Minimum Description Length (MDL) framework (Hinton
and von Cramp 1993; Honkela and Valpola 2004), a classifier
trained under VBI, in principle, often generalize better than
those trained in the standard way.

Standard DP methods (e.g., Gaussian noise, dropout) of-
ten generate perturbations in the vicinity of each data point
and ignore those in the vacancy among data points, which
means consistency losses equipped with standard DPs can
only train locally smooth classifiers that do not generalize
well in general. To overcome this limitation, we propose a
novel consistency loss called “maximum uncertainty regu-
larization” (MUR) of which the key component is finding
for each real data point ¢ a neighbor “virfual” point =* that
has the most uncertain class prediction given by the classifier
f. During training, f becomes increasingly confident about



its predictions of the real data points and their neighborhood
(otherwise, the training cannot converge). Thus, by choosing
x* with the above properties, we can guarantee, with high
probability, that i) x* is situated outside the vicinity of xg,
and ii) x* causes the biggest disruption to the classifier’s
predictions (Fig. 1). This observation suggests that MUR
enforces smoothness on a wider and rougher area in the input
space than conventional consistency losses, hence, making
the classifier generalize better. As MUR operates in the input
space not the weight space, it is complementary to WP and
in some cases, both can be used together.

In our experiments, we show that when strong data aug-
mentation is not available, WP and MUR significantly boost
the performance of existing CR based methods on various
benchmark datasets.

Preliminaries

Consistency Regularization Based Methods for
Semi-supervised Learning

We briefly present two representative CR based methods
namely II-model (Laine and Aila 2016) and Mean Teacher
(Tarvainen and Valpola 2017). Other methods are discussed
in the related work.

In II-model, a classifier f has deterministic weights 6
but contains random input/feature perturbation layers such
as binary dropout (Srivastava et al. 2014) and/or additive
Gaussian noise. Thus, if we pass an input sample x through
fo twice, we will get two different distributions p(y|x, #) and
p(y|z’, 0) where 2’ is a perturbation of x in the input/feature
space. The loss of II-model is given by:

En(e) = E(wl,yZ)NDl [* logp(yl\xl, 9)] +

1 K
AOEowp |22 > (oKl 6) — p(kl2', 6))”
k=1
()
= £xent,l(9) + )\(t)‘CH,COHS(eu ng) (2)

where D, D,, denote the disjoint labeled and unlabeled train-
ing datasets; D = D; U D,; K is the number of classes;
A(t) is a “ramp” function which depends on the training
step t; 6y, denotes 6 with no gradient update; Lyen () is the
cross-entropy loss on labeled samples and Ly cons(6) is the
consistency loss on both labeled and unlabeled samples.

Mean Teacher (MT), on the other hand, introduces an-
other network f5 called “mean teacher” whose weights 6
are the exponential moving averages (EMA) of 6 across
training steps: 6; = af;_; + (1 — @)f (o € [0,1] is a mo-
mentum). Based on fz, MT defines a new consistency loss
Liteons (0, 0) between the outputs of fp and f5, which leads
to the final loss:

CMT(G) - E(ml,yl)NDl [_ logp(yl “'L'l, 0)] +
1 & ~
— 5" (p(k|z,0) — p(k|a',0))?

3)
4)

/\(t)]Ewa
k=1

= Exent,l(e) + )‘(t)EMT,conS(aa 9_)
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Variational Bayesian Inference and Variational
Dropout

In Bayesian learning, we assume there is a prior distribu-
tion of weights, denoted by p(w). After observing the train-
ing dataset D, we update our belief about w as p(w|D) =

P (wzfé?lw) = ff S‘(’q)lf’)(p?gl’i]). Since p(w|D) is generally in-

tractable to compute, we approximate p(w|D) with a varia-
tional distribution g4 (w):

min Dier, (g4 (w)|p(w[D))

— min og —J6(®)
=it By, ) [l gp(w)p(Dlw)}
:m(gn]EwN%(w) [—log p(D|w)] + Dk 1, (¢o(w)|p(w))

®)

For discriminative classification tasks with an i.i.d. assump-
tion of data, Eq. 5 is equivalent to:

m(gn E1u~q¢(w) [E(m,y)N'D [_ logp(y\x, w)]] +
ADk 1 (q¢(w)[lp(w)) (6)

where z € RM and y € {1, ..., K} denote an input sample
and its corresponding label, respectively; A is a balancing
coefficient, usually set to ﬁ.

The loss function in Eq. 6 consists of two terms: the ex-
pected negative data log-likelihood w.r.t. ¢, (w) and the KLD
between g, (w) and p(w) which usually acts as a regulariza-
tion term on the model complexity. In order to minimize this
loss, we need to find a model that yields good classification
results yet still being as simple as possible. In fact, Eq. 6 can
also be viewed as the bits-back coding objective under the
scope of the Minimum Description Length (MDL) principle
(Graves 2011; Hinton and von Cramp 1993; Honkela and
Valpola 2004).

Generally, we could assume g4 (w) to be a factorized Gaus-
sian distribution g, (w) = N (w; 6, oI) and compute the gra-
dient of the first term in Eq. 6 w.r.t. § and o using the reparam-
eterization trick (Kingma and Welling 2013; Rezende, Mo-
hamed, and Wierstra 2014). However, this approach (Blun-
dell et al. 2015) is computationally inefficient and has high
variance since it requires sampling of multiple weight compo-
nents for every data point. To handle this problem, Kingma
et. al. (Kingma, Salimans, and Welling 2015) proposed the
local reparameterization trick and variational dropout (VD).
Details about these techniques are given in the appendix.

Our Approach

We describe how to integrate weight perturbation (WP) and
maximum uncertainty regularization (MUR) into CR based
methods. Since WP is realized via variational Bayesian in-
ference (VBI), we will use VBI in place of WP henceforth.
We consider a general class of CR based methods whose
original objectives are of the form Lyent;(6) + A(t) Leons (6, -)s
denoted as M. Any method M € M can be combined with
VBI and MUR (denoted as M +VBI+MUR) by minimizing



the following loss:

LM+VBI+MUR(¢) =
]EIUNQ(;)(UJ) [‘Cxem,l(w)] + A1 (t)Ew~q¢(w) [‘CJ\/I,cons (w) )] +

A2 () Drer (g6 (w)][p(w)) + A3()Ewngy (w) [Lvur (w)]
N

where ¢4 (w) = N (w; 0, 021) is the variational distribution
of the classifier’s weights w; Lyyr is the MUR loss defined
below; A1 (t), A2(t), A3(t) are different “ramp” functions.

Since II-model and Mean Teacher are specific instances
of M, we can easily derive the losses of II+VBI+MUR and
MT+VBI+MUR from Eq. 7 by replacing £z cons(w, -) With
L1 ,cons(w, Osg) (Eq. 2) and Lyreons(w, 0) (Eq. 4), respec-
tively. For other CR based methods M’ having additional
loss terms £'(0) apart from Lyene,; () and Leons(6, ), we can
still construct the loss of M’+VBI+MUR by simply adding
Eq, (w) [£'(w)] to the RHS of Eq. 7.

M+VBI+MUR has two special cases which are M +VBI
and M+MUR. The loss of M+VBI (L,vB1) is similar to
L pr+vBremur but with the last term on the RHS discarded
(e.g., by setting A3(t) = 0 V¢). On the other hand, by remov-
ing the third term as well as the expectation w.r.t. g4(w) in
all the remaining terms on the RHS of Eq. 7, we obtain the
loss of M+MUR (£M+MUR)-

It is important to note that the second and the last terms
on the RHS of Eq. 7 are novel and have never been used
for SSL. While the second term shares some similarity with
ensemble learning in which different views of a classifier
are combined to obtain a robust prediction for a particular
training example, the last term is more related to multi-view
learning (Qiao et al. 2018) as different classifiers are applied
to different views of data. However, compared to ensemble
learning and multi-view learning, our approach is much more
efficient since we can have almost infinite numbers of views
without training multiple classifiers.

Weight Perturbation via Variational Bayesian
Inference

In Eq. 7, we perturb the classifier’s weights w by draw-
ing random samples from gg(w). Minimizing Lyene;(w),
Ls cons(w, +), and Lyur(w) makes the classifier robust
against different weight perturbations while minimizing
Dgr (gy(w)||p(w)) prevents the classifier from being too
complex. Both improve the classifier’s generalizability.

We can see that the first and the third terms on the RHS
of Eq. 7 form a VBI objective similar to the one in Eq. 6 but
with the negative log-likelihood computed on labeled data
only. Due to the scarcity of labels in SSL, it seems reasonable
to take into account of the unlabeled data to model g4 (w)
better by adding E,,q, (w) [Ez~p [~ log p(z|w)]] to Eq. 7.
However, there are some difficulties: i) we need to create an
additional model for p(x) that shares weights with the default
classifier, and ii) the impact of modeling both p(z|w) and
p(y|z, w) using the same w on the classifier’s generalizability
is unclear. We observe empirically that the loss in Eq. 7
produces good results, thus, we leave modeling p(x|w) for
future work with a note that the work by Grathwohl et. al.
(Grathwohl et al. 2019) may provide a good starting point.
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To implement VBI, we adopt the variational dropout (VD)
technique from (Molchanov, Ashukha, and Vetrov 2017). Our
justification for this is presented in the appendix.

Maximum Uncertainty Regularization

Some CR based methods enforce smoothness on the vicinity
of training data points by using standard data perturbation
(DP) techniques (e.g., Gaussian noise, dropout). However,
there are points in the input-output manifold unreachable by
standard DPs. These “virfual” points usually lie beyond the
local area of real data points and prevent a smooth transition
of the class prediction from a data point to another. We argue
that if we can find such “virtual” points and force their class
predictions to be similar to those of nearby data points, we
will learn a smoother classifier that generalizes better. We
do this by introducing a novel consistency loss called max-
imum uncertainty regularization (MUR) Lyur. In case the
classifier’s weights 0 are deterministic, Lyur is given by:

K
Z (p(k‘x*a 9) - p(k|£€07 esg))2
k=1
(8)

1

Lymur(0) = Egyp I

where z* is mathematically defined as follows:

x* =argmax H(p(y|z)) st |z —zoly <7 (9)

where H(-) is the Shannon entropy, r € R is the largest
distance between x* and x(. In general, it is hard to compute
x* exactly because the objective in Eq. 9 usually has many
local optima. However, we can approximate z* by optimizing
a linear approximation of H (p(y|x)) instead. In this case, the
original optimization problem becomes convex minimization
and it has a unique solution which is:

90
”90“2

*

TR =x9+7

(10)

where gg = w o—a, 18 the gradient of H(p(y|z)) at

T = x. Its derivation is presented in the appendix.

Iterative Approximations of +* Linearly approximating
H(p(y|z)) may cause some information loss. We can avoid
that by optimizing Eq. 9 directly via projected gradient as-
cent (details in the appendix). Alternatively, vanilla gradient
ascent update based on the Lagrangian relaxation of Eq. 9
can be done via maximizing:

F(z) = H(p(ylz)) = A" () ([l = zoll, — 7)

where \*(z) = %. Insight on \*(x) is given in
the appendix.

Y

Connection to Adversarial Learning Adversarial learn-
ing (AL) (Szegedy et al. 2013) aims to build a system robust
against various types of adversarial attacks. Madry et. al.
(Madry et al. 2017) have shown that these methods attempt
to solve the following saddle point problem:

meinE(m’y)ND sup L(fo(x+e),y) (12)
€c



where L is a loss function (e.g., the cross-entropy), S is
the support set of the adversarial noise €. For example, in
case of Fast Gradient Sign Method (Goodfellow, Shlens, and
Szegedy 2014), S is defined as S = {e : ||¢e|| . < r}. Adver-
sarial learning has also been shown by Sinha et. al. (Sinha,
Namkoong, and Duchi 2017) to be closely related to (distri-
butionally) robust optimization (Farnia and Tse 2016; Glober-
son and Roweis 2006) whose objective is given by:

min sup Eq, )y [L(fo(2),y)] (13)

b peP(D)

where P (D) is a class of distributions derived from the em-
pirical data distribution D.

At the high level, MUR (Egs. 8, 9) is similar to AL (Eq. 12)
as both consist of two optimization sub-problems: an inner
maximization w.r.t. the data and an outer minimization w.r.t.
the parameters. However, when looking closer, there are
some differences between MUR and AL: In MUR, the two
sub-problems optimize two distinct objectives (the consis-
tency loss and the conditional entropy) while in AL, the
two sub-problems share the same objective. Moreover, since
MUR’s objectives do not use label information, MUR is
applicable to SSL while AL is not.

Compared to virtual adversarial training (VAT) (Miyato
et al. 2018), MUR is different in how z* is chosen. VAT
defines z* to be a point in the local neighborhood of zg
whose output p(y|z*) is the most different from p(y|zo). It
means that 2* can have very low H (p(y|z*)) as long as its
corresponding pseudo class is different from the (pseudo)
class of xy. MUR, by contrast, always looks for z* with the
highest H (p(y|z*)) regardless of the (pseudo) class of xg.
Inspired by VAT and MUR, we propose a new CR based
method called maximum uncertainty training (MUT) with
the loss function defined as:

Lyut(0) = Len,1(8) + A(t) Laur (0)

MUT can be seen as a special case of II+MUR in which
the coefficient of Ly cons (6, b5 ) equals 0. We can also view it
as a variant of IT-model (Eq. 2) with Ly cons (6, ) replaced
by Lmur (6). Note that for other CR based methods like MT
or ICT, their original consistency losses cannot be replaced
by Lmur since these losses and Lyur are inherently differ-
ent. For example, in MT, Lyrcons(f,6) involves both the
student and teacher networks while Lyyr () only involves
the student network.

Experiments

We now show that using VBI (or VD in particular) and MUR
leads to significant improvements in performance and gen-
eralization of CR based methods that do not use strong data
augmentation. For methods that use strong data augmenta-
tion (e.g., FixMatch (Sohn et al. 2020)), results are discussed
in the appendix. We evaluate our approaches on three stan-
dard benchmark datasets: SVHN, CIFAR-10 and CIFAR-100.
Details about the datasets, data preprocessing scheme, the
classifier’s architecture and settings, and the training hyper-
parameters are all provided in the appendix.
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Classification Results on SVHN, CIFAR-10 and
CIFAR-100

In Tables 1 and 2, we compare the classification errors of
state-of-the-art CR based methods with/without using VD
and MUR on SVHN, CIFAR-10, and CIFAR-100. Results of
the baselines are taken from existing literature. We provide
results from our own implementations of some baselines
when necessary. Each setting of our models is run 3 times.

SVHN When there are 500 and 1000 labeled samples, com-
bining II with MUR reduces the error by about 1-2% com-
pared to the plain one. In case VD is used instead of MUR,
the error reduction is about 0.5-0.9%. It suggests that MUR
is more helpful for II than VD. On the other hand, when the
base model is MT, using VD leads to bigger improvements
than using MUR. Interestingly, using both VD and MUR for
MT boosts the performance even further. By contrast, using
both VD and MUR for II leads to higher error with larger
variance compared to using individual methods. We think the
main cause is the inherent instability of II as this model does
not use weight averaging for prediction like MT. Thus, too
much randomness from both VD and MUR can be harmful
for II.

When the number of labels is 250, our implementations
of II and MT yield much poorer results than the original
models. However, we note that the same problem can also
be found in (Berthelot et al. 2019b) (Table 6) and (Sohn
et al. 2020) (Table 2). Therefore, to ensure fair comparison,
we only consider the results of our implementations. While
using VD still improves the performances of IT and MT, using
MUR hurts the performances of these models. A possible
reason is that with too few labeled examples, the classifier is
unable to learn correct class-intrinsic features (unless strong
data augmentation is given), hence, the gradient of H (p(y|x))
w.r.t. z (Eq. 9) may point to wrong directions.

CIFAR-10/CIFAR-100 We observe the same pattern for
MT on CIFAR-10 and CIFAR-100 as on SVHN: Using
VD+MUR leads to much better results than using either VD
or MUR. Specifically on CIFAR-10, VD+MUR decreases
the errors of MT by about 3-4.5% while for VD and MUR,
the amounts of error reduction are 2-2.7% and 1.5-2.8%,
respectively. Compared to MT+FSWA (Athiwaratkun et al.
2018), our MT+VD+MUR achieves slightly better results
on CIFAR-10 but perform worse on CIFAR-100. The reason
could be that they use better settings for CIFAR-100 than
ours, which is reflected in the lower error of their MT com-
pared to our reimplemented MT. However, we want to note
that FSWA only provides MT with advanced learning rate
scheduling (Loshchilov and Hutter 2016) and postprocess-
ing (Izmailov et al. 2018) but does not change the objective
of MT like VD or MUR. It means one can easily combine
MT+VD+MUR with FSWA to further improve the results.
In case of ICT, using VD leads to impressive decreases
of error by 1.7-4% on CIFAR-10 and by 1.5% on CIFAR-
100. Meanwhile, MUR only improves the results slightly,
by about 0.6-1% on CIFAR-10 and by 0.7% on CIFAR-100.
The performance of ICT+VD+MUR is also just comparable



Model CIFAR-10 CIFAR-100
1000 2000 4000 10000

I 31.65 £1.20 17.5740.44 12.364+0.31 | 39.19+0.54
II + FSWA® 17.23+0.34  12.61£0.18 10.07+0.27 | 34.25+0.16
TempEns + SNTG*® | 18.144+0.52 13.64+0.32 10.9340.14 -

VAT# - - 10.55+0.05 -

MTV 21.55+1.48 15.73£0.31 12.31+0.28 -

MT® 18.78+0.31 14.43+0.20 11.414+0.27 | 35.96+0.77
MT + FSWA© 15.58+0.12 11.02+0.23  9.05+£0.21 | 33.62+0.54
MT* 19.63+0.33  15.074£0.10 11.654+0.09 | 37.65+0.25
MT + VD~ 16.35+0.18 12.51£0.43  9.624+0.13 | 35.47+0.21
MT + MUR* 17.96+0.32  12.23+0.21 10.16+0.04 | 35.93+0.32
MT + VD + MUR* 15.47+0.13 10.57+0.28 8.54+0.20 | 35.2440.06
ICT* 15.484+0.78  9.264+0.09  7.924+0.02 -

ICT* 14.15+0.16  11.56+0.07 9.1840.03 | 35.67+0.07
ICT + VD* 10.13+0.21  8.83+0.15 7.48+0.11 | 34.1240.16
ICT + MUR* 13.544+0.23  10.494+0.07 8.55+0.06 | 34.91+0.20
ICT + VD + MUR* | 10.37+0.25 8.794+0.16  7.55+0.14 | 33.21-+0.24
Co-train (8 views)T - - 8.354+0.06 -

Table 1: Classification errors on CIFAR-10 and CIFAR-100. “: (Tarvainen and Valpola 2017), ©: (Athiwaratkun et al. 2018), *.

(Luo et al. 2018), ®: (Verma et al. 2019), T: (Qiao et al. 2018), *: Our implementations.

Model | 250 500 1000

v 9.694+0.92  6.65+0.53 4.82+0.17
II + SNTG® 5.074£0.25 4.52+030 3.82+0.25
I* 13.374£0.97 7.254+0.36  5.18+0.13
II + VD* 12.9840.84 6.38+042 4.65+0.23
I + MUR* 15.04+0.75 5.434+0.27 4.154+0.10
II + VD + MUR* 16.63+£1.22  6.574+0.73 4.72+0.48
VAT* - - 3.8610.11
MTY 453+0.50 4.18+0.27 3.95+0.19
MT + SNTG® 4.29+0.43 3.99+0.24 3.86+0.27
MT* 5.574+1.52  3.864+0.15 3.72+0.10
MT + VD* 526+1.73  3.39+0.10 3.28+0.08
MT + MUR* 6.45+1.29  3.66+0.07 3.484+0.04
MT + VD + MUR* | 6.8242.01 3.21+0.13 3.16+0.07
ICT* 478+0.68 4.23+0.15 3.89+0.04
Co-train (8 views)" - - 3.2940.03

Table 2: Classification errors on SVHN. “: (Tarvainen and
Valpola 2017), g (Luo et al. 2018), *. (Verma et al. 2019),
L (Qiao et al. 2018), *: Our implementations.

to that of ICT+VD. A possible reason is that because ICT
enforces smoothness on points interpolated between pairs of
random real data points which, to some extent, are similar to
the “virtual” points in MUR. Thus, the regularization effect
of ICT may overlap that of MUR.

Effects of VBI and MUR on Sensitivity

Besides accuracy, we should also examine sensitivity since
this metric is closely related to generalization (Alain and
Bengio 2014; Novak et al. 2018; Rifai et al. 2011). The
sensitivity of a classifier f w.r.t. small changes of a data point

Table 3: Sensitivities of MT, ICT and their variants trained

Sensitivity
MT [ ICT
Default 0.21+0.26 | 0.22+0.44
+VD 0.19£0.30 | 0.2040.46
+MUR 0.124+0.16 | 0.16£0.32
+VD+MUR | 0.13+0.29 | 0.19+0.38

on CIFAR-10 with 1000 labels.

x is measured as the Frobenius norm of the Jacobian matrix

of f wrt. x:
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Sensitivity(z) = ||J(x)||r = Z Ji%j ()
%,

where J; ;(z) = Bi;ff_)f

— 8”((?)’2"‘”). A low sensitivity value
means that the local area surrounding x is flat! and f is robust
to small variations of z.

Compared to MT and ICT, the corresponding variants us-
ing VD and/or MUR achieve lower sensitivity on average
(Table 3) and have more test data points with sensitivities
close to O (Figs. 2, 3 in the appendix). These results empiri-
cally verify that VD and MUR actually make the classifier
smoother.

Ablation Study

The coefficient of Dy, (¢4(w)|lp(w)) in VBI In Fig. 2a,
we compare the errors of MT+VD w.r.t. different values

'Tt should not be confused with flat minima (Hochreiter and
Schmidhuber 1997) in the weight space.
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Figure 2: (a), (b): Classification errors and weight sparsity curves of MT+VD w.r.t. different coefficients of the KLD of weights.
(c): Classification errors of MT+MUR wi.r.t. different values of the radius r. The dataset is CIFAR-10 with 1000 labels.
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Figure 3: Classification errors of MUT w.r.t. different val-
ues of the radius r. For the PGA update of z*, Ir=0.3 and
#steps=5. The dataset is SVHN with 1000 labels.

of the coefficient of D1, (qs(w)||p(w))?. Either too small
or too large coefficients lead to inferior results since they
correspond to too little or too much regularization on weights
(Fig. 2b). However, even in the worst setting, MT+VD still
outperforms MT. This again demonstrates the clear advantage
of VBI in improving the robustness of models.

The radius » in MUR We now examine how the radius r
(Eq. 9) affects performance. If r is too small, it is hard to find
an adequate virtual point x* that the classifier f is uncertain
about. Moreover, as x* is very close to xg, minimizing Lyyr
causes f to focus too much on ensuring the local flatness
around z( instead of smoothing the area between x( and other
data points, exacerbating the problem. By contrast, if r is too
big, z* is very different from x( and forcing consistency
between these points may be inappropriate. Fig. 2c shows
the error of MT+MUR on CIFAR-10 with 1000 labels as
a function of  (r € {4,7,10,20,40}), which reflects the
intuition presented: MT+MUR performs poorly when 7 is
too small (4) and worse than MT. When 7 is too big (20, 40),
the results are also not good. The optimal value of r is 10.
To make sure that this result is reasonable, we visualize the
virtual samples w.r.t. different values of r in the appendix.

Iterative approximations of z* in MUR We investigate
the performance of MT+MUR when iterative approximations

2The “coefficient” in this context is referred to as the maximum
value of A2(¢) in Eq. 7
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of x* are used instead of the direct (linear) approximation
(Eq. 10). We try both projected gradient ascent (PGA) and
vanilla gradient ascent (GA) updates with the learning rate «
varying in {0.1,1.0,10.0} and the number of steps s varying
in {2,5,8}. We report results of the GA update in Fig. 4. .
Clearly, larger a and s both lead to smaller gradient norms of
(real) data points (||go||, in Eq. 10) (Fig. 4b) and causes the
model to learn faster early in training. However, if « is too
large (10.0), the model performance tends to degrade over
time. If o is too small (0.1), the results are usually suboptimal
when s is small (2) and many update steps are required to
achieve good results (8). The best setting of the GA update
is (o, $)=(0.1,8) at which the error is 17.21, smaller than
the error in case the direct approximation is used (17.96).
(Results of the PGA update are presented in the appendix)

How important is finding the most uncertain virtual
points? We define a “random regularization” loss Lgrgr
which has the same formula as Lyur in Eq. 8 except that
it acts on a random virtural points £* instead of the most
uncertain virtual point *. £* is computed as follows:

¥ =xo+7r X
[[ull,

where u is a random vector/tensor whose elements are drawn
independently from a standard Gaussian distribution A/'(0, 1).
Choosing w like this ensures that £* is sampled uniformly on
the sphere of radius r centered at xy (Muller 1959).

We compare MT+MUR (with the direct approximation of
x*) against MT combined with Lggr (denoted as MT+RR)
w.r.t. different values of r and show the results in Fig. 4c.
The advantage of finding the most uncertain virtual points is
clear when 7 is not too big (e.g., 7 or 10). However, when r
becomes bigger and bigger (e.g., 20 or 40), this advantage
disappears and MT+MUR performs similarly to MT+RR.
We think the main reason is that when 7 is big, the direct
approximation of 2* (Eq. 10) is no longer correct, making
z* look more like a random point.

Maximum Uncertainty Training (MUT) It is important
to know how well MUT performs compared to VAT and II-
model. To this end, we train MUT using the same settings
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Figure 4: (a), (b): Classification errors and gradient norm curves of MT+MUR with the GA update of x* w.r.t. different learning
rates and numbers of steps. (c): Classification errors of MT+RR and MT+MUR w.r.t. different values of the radius r. The dataset

is CIFAR-10 with 1000 labels.

for training II-model on the SVHN dataset. The classifica-
tion errors of MUT w.r.t. different values of the radius r are
shown in Fig. 3. At » = 0.5, MUT with the direct approxi-
mation of z* (blue bars in Fig. 3) achieves the best error of
3.58=+0.08 which is smaller the reported errors of VAT (Miy-
ato et al. 2018) (3.86+0.11) and II-model (Laine and Aila
2016) (4.82+0.17), and the error of our own implemented II-
model (5.18+0.13 in Table 2). However, the results become
worse as r increases. We believe the reason is that without
the local smoothness term Ly cons (6, fsg) in MUT, the true
most uncertain point x* usually lies closely to the real data
point g while the direct approximation 7* = xg + r —2— is

llgoll,
always r away from xq. Therefore, if r is not small enough,

Z* is no longer a correct approximation of x*, which elim-
inates the smoothing effect of Lyyr. Luckily, we can relax
the distance constraint of Z* by using the projected gradient
ascent (PGA) update instead. To this end, the distance be-
tween z* and x( can be smaller than r, which gives us more
freedom in choosing large r. This can be seen from Fig. 3 as
the performance of MUT with the PGA approximation of z*
is almost unaffected by 7.

Related Work

Semi-supervised learning (SSL) is a long-established re-
search area with diverse approaches (Chapelle, Scholkopf,
and Zien 2006). Within the scope of this paper, we mainly
focus on “consistency regularization” (CR) based methods.
Details about other methods can be found in (van Engelen
and Hoos 2019) and (Ouali, Hudelot, and Tami 2020). CR
based methods aim at learning a smooth classifier by forcing
it to give similar predictions for different perturbed inputs.
There are many ways to define data perturbation but usually,
the more distinct the two perturbations are, the smoother the
classifier is. Standard methods such as Ladder Network (Ras-
mus et al. 2015), II-model (Laine and Aila 2016) and Mean
Teacher (Tarvainen and Valpola 2017) perturb data by apply-
ing small additive Gaussian noise and binary dropout to the
input and hidden activations. VAT (Miyato et al. 2018) and
VAdD (Park et al. 2018) use adversarial noise and adversarial
dropout for perturbation, respectively. Both can be viewed
as performing selective smoothing because they only flatten
the input-output manifold along the direction that gives the
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largest variance in class prediction.

Data augmentation is another perturbation technique which
is more effective than general noise injection in specific do-
mains because it exploits the intrinsic domain structures (Xie
et al. 2019). For example, augmenting image data with dif-
ferent color filters and affine transformations encourages the
classifier to be insensitive to changes in color and shape
(Cubuk et al. 2020). In case of text, using thesaurus (Zhang,
Zhao, and LeCun 2015; Mueller and Thyagarajan 2016) and
back translation (Sennrich, Haddow, and Birch 2016; Edunov
et al. 2018) for augmentation makes the classifier robust to
different paraphrases. These generalization capabilities can-
not be obtained with general noise injections. However, data
augmentation also comes with several limitations such as
domain dependence and requirement for external knowledge
not available in the training data.

Apart from data augmentation, standard CR based meth-
ods can also be improved by using additional smoothness-
inducing objectives. For example, SNTG (Luo et al. 2018)
introduces a new loss that forces every two data points with
similar pseudo labels (up to a certain confidence level) to be
close in the low-dimensional feature space. ICT (Verma et al.
2019) is a variant of MT which leverages MixUp (Zhang et al.
2017) to encourage linearity of the classifier. Holistic meth-
ods like MixMatch (Berthelot et al. 2019b), ReMixMatch
(Berthelot et al. 2019a) and FixMatch (Sohn et al. 2020) com-
bine different advanced techniques in SSL such as strong
data augmentation (Cubuk et al. 2020), MixUp (Zhang et al.
2017), entropy minimization (Grandvalet and Bengio 2005)
and pseudo labeling (Lee 2013) into a unified framework that
performs well yet uses very few labeled data.

Conclusion

We have presented VBI and MUR - two general methods for
improving SSL. We have demonstrated that combining exist-
ing CR based methods with VBI and MUR significantly re-
duces errors of these methods on various benchmark datasets.
In the future, we would like to incorporate the likelihood of
unlabeled data into VBI to learn a better posterior distribu-
tion of classifier’s weights. We also want to apply MUR to
other machine learning problems that demand robustness and
generalization.
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