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Abstract
Graph-structured data is ubiquitous throughout the natural
and social sciences, ranging from complex drug molecules to
artificial neural networks. Evaluating their functional proper-
ties, e.g., drug effectiveness and prediction accuracy, is usu-
ally costly in terms of time, money, energy, or environment,
becoming a bottleneck for the graph generation task. In this
work, from the perspective of saving cost, we propose a novel
Cost-Aware Graph Generation (CAGG) framework to gener-
ate graphs with optimal properties at as low cost as possible.
By introducing a robust Bayesian graph neural network as
the surrogate model and a goal-oriented training scheme for
the generation model, the CAGG can approach the real ex-
pensive evaluation function and generate search space close
to the optimal property, to avoid unnecessary evaluations. In-
tensive experiments conducted on two challenging real-world
applications, including molecular discovery and neural archi-
tecture search, demonstrate its effectiveness and applicabil-
ity. The results show that it can generate the optimal graphs
and reduce the evaluation costs significantly compared to the
state-of-the-art.

Introduction
Deep graph generative models have recently become a popu-
lar research topic with their promising applications, includ-
ing real-world network imitation (Bojchevski et al. 2018),
inverse design of materials (Sanchez-Lengeling and Aspuru-
Guzik 2018), and chemical molecular generation (Li, Zhang,
and Liu 2018; Jin, Barzilay, and Jaakkola 2018; Ma, Chen,
and Xiao 2018; Qi et al. 2018; You et al. 2018; Samanta
et al. 2019). These deep models produce more fascinating,
practical, and complex structures than simple random graph
generation methods, such as Erdős-Rényi model (Erdős and
Rényi 1959) and Barabási-Albert model (Barabási and Al-
bert 1999). Beyond learning the distribution of an existing
dataset, to produce optimal graphs for some certain goals in
practical applications is the expectation, such as discover-
ing the molecules with the best drug characteristics (Zha-
voronkov et al. 2019) and designing neural architectures
with the excellent performance (Ma, Cui, and Yang 2019).

Recently, some efforts have been made to explore the
goal-oriented graph generative task, which has been for-
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mulated as reinforcement learning (RL) (Guimaraes et al.
2017; Baker et al. 2017; Zoph et al. 2018; Cao and Kipf
2018; Bojchevski et al. 2018; You et al. 2018; Zhavoronkov
et al. 2019; Jin, Barzilay, and Jaakkola 2020b), graph-
to-graph translation (Jin et al. 2019; Jin, Barzilay, and
Jaakkola 2020a), continuous optimization over the latent
space learned by variational autoencoders (VAEs) (Gómez-
Bombarelli et al. 2018; Kusner, Paige, and Hernández-
Lobato 2017; Dai et al. 2018; Qi et al. 2018; Jin, Barzi-
lay, and Jaakkola 2018; Samanta et al. 2019; Zhang et al.
2019; Luo et al. 2018), and optimization directly on graph
space (Ramachandram et al. 2018; Kandasamy et al. 2018;
Jin, Song, and Hu 2019; Ma, Cui, and Yang 2019). How-
ever, these existing approaches usually require a large num-
ber of evaluations, such as 34K∼99K (Jin et al. 2019),
5K (Guimaraes et al. 2017; Cao and Kipf 2018), and 3K
(Samanta et al. 2019).

Moreover, the evaluation costs of practical graphs are usu-
ally expensive in terms of time, money, energy, or environ-
ment. When evaluating the classification performance of a
single deep VGG network, the training phase on a system
equipped with four NVIDIA Titan Black GPUs takes 2∼3
weeks (Simonyan and Zisserman 2015). Based on the car-
bon emission estimation model (Strubell, Ganesh, and Mc-
Callum 2019), the estimated CO2 emission in this train-
ing stage alone has reached 506∼760 lbs, which is roughly
equivalent to a round trip by a car from Los Angeles to
Las Vegas (CSS 2018). To evaluate the chemical properties
of a single 9 heavy atom molecule via an expensive den-
sity functional theory (DFT) calculation (Zhang and Mus-
grave 2007) on a single-core processor takes around an hour
(Gilmer et al. 2017). Assuming that the molecular evaluation
time is one hour, the aforementioned goal-oriented graph
generative methods would take about four months to eleven
years, roughly estimated from the number of their assess-
ments. Such a high evaluation cost will become a bottleneck
in practical applications.

Motivated by these, from the perspective of saving evalu-
ation cost, we propose to study how to generate the graphs
with optimal properties at as low cost as possible. In this
work, we propose a novel cost-aware framework, named as
Cost-Aware Graph Generation (CAGG), to solve this prob-
lem. The CAGG is composed of three key components: a
surrogate model, a generation model, and an acquisition
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function. The surrogate model is to approximate the high-
cost evaluation function of graphs and can predict a dummy
landscape for real goal. The generation model is to gener-
ate graphs as a search space. To generate a desirable search
space composed of graphs close to optimal properties, we
train the generation model using the predicted dummy land-
scape to avoid real evaluation. An acquisition function is to
choose an optimal candidate graph from the search space.
Through the cooperation of three components, our frame-
work can thus generate the graphs with optimal properties
under low evaluation costs. Our main contributions are sum-
marized as follows.
• The CAGG is proposed to generate the graphs with opti-

mal properties at as low cost as possible.
• We propose a robust Bayesian graph neural networks

as the surrogate model to approach real expensive-to-
evaluate objective closely.

• We design a goal-oriented training scheme for the gen-
eration model to produce desirable search space close to
optimal properties.

• The effectiveness and applicability of the CAGG are eval-
uated on two challenging real-world applications, includ-
ing molecular discovery and neural architecture search.
The CAGG outperforms the state-of-the-art significantly.

Related Work
In recent years, reinforcement learning (RL) has been used
to guide the generators, which are usually modeled by a
generative adversarial network (GAN) or a variational au-
toencoder (VAE), to move forward in the desired direc-
tion for goal-oriented graph generation (Guimaraes et al.
2017; Baker et al. 2017; Zoph et al. 2018; Cao and Kipf
2018; Bojchevski et al. 2018; You et al. 2018; Zhavoronkov
et al. 2019; Jin, Barzilay, and Jaakkola 2020b). The lat-
est RL-based methods introduced domain constraints, in-
cluding valence rules (You et al. 2018) and molecular sub-
structures (Jin, Barzilay, and Jaakkola 2020b), into the gen-
eration policy to ensure the molecular validity by repre-
senting molecules as graphs rather than as SMILES strings
(Guimaraes et al. 2017). A current generative tensorial RL
approach (Gentrl) is developed to accelerate drug develop-
ment (Zhavoronkov et al. 2019). It pre-trained a VAE with
a learned prior as a generator, and then learned the prior
via the RL for the desired molecular generation. Although
the generative policy in these RL-based methods can move
in the desired direction gradually, they usually require a
large number of evaluations, e.g., 5K evaluated molecules
(Guimaraes et al. 2017; Cao and Kipf 2018) or 12.8K trained
nets (Zoph et al. 2018).

Jin et al. (2019) proposed to transform a goal-oriented
generation problem into a graph-to-graph (G2G) translation
problem. This way maps an input graph into a better graph
by performing adversarial regularization on a pre-trained
VAE. Jin, Barzilay, and Jaakkola (2020a) introduced mo-
tifs as building blocks for generating molecular graphs to
deal with larger molecules. However, these methods need to
supervised train using large-scale evaluated bad-good pairs,
e.g., 34K∼99K evaluated molecular pairs (Jin et al. 2019).

Continuous optimization over the latent space learned by
variational autoencoders (VAEs) is another popular way.
These methods encoded graphs into continuous representa-
tions via a VAE, and then applied the Bayesian optimiza-
tion (BO) (Shahriari et al. 2016) or gradient-based optimiza-
tion methods to find the optimal representation over the la-
tent space to decode the found representation into desirable
graphs (Gómez-Bombarelli et al. 2018; Kusner, Paige, and
Hernández-Lobato 2017; Dai et al. 2018; Qi et al. 2018; Jin,
Barzilay, and Jaakkola 2018; Samanta et al. 2019; Zhang
et al. 2019; Luo et al. 2018). They, however, usually train the
VAE unsupervised; that is, these learned continuous encod-
ings may not always be appropriate for specific tasks. More-
over, they still need many evaluations, e.g., 3K∼90K evalu-
ated molecules (Jin, Barzilay, and Jaakkola 2018; Samanta
et al. 2019) or 1K∼5K trained neural architectures (Luo
et al. 2018; Zhang et al. 2019), due to the high-dimensional
nature of the continuous latent space, e.g.,196 dimensions.
To bypass the high-dimensional issue and use graph struc-
tures, some other BO-related methods operate directly on the
graphs (Ramachandram et al. 2018; Kandasamy et al. 2018;
Jin, Song, and Hu 2019). However, their predetermined ker-
nels are explicitly and exclusively designed for neural ar-
chitecture search (NAS), resulting in limited applications.
A more recent approach, the DGBO (Cui, Yang, and Hu
2019), used a Bayesian graph neural network as the surro-
gate model, where a Bayesian linear regressor is applied to
the last layer. However, unlike the above generative meth-
ods and our work, it only performs the search in a given
fixed search space but does not produce new graphs. Built
on the DGBO, the NASGBO (Ma, Cui, and Yang 2019) is to
optimize the neural nets by combining an evolutionary algo-
rithm that is just used for acquisition function optimization
instead of obtaining the generative mechanism of graphs.

In addition, there are some task-specific approaches, es-
pecially for the NAS. These methods usually reduce the ex-
tra training costs by joint training and search process (Liu,
Simonyan, and Yang 2019; Lu et al. 2020), fine-tuning the
nets instead of training from scratch (Cai et al. 2020), or in-
troducing performance predictor (Kokiopoulou et al. 2020;
Li et al. 2020), etc. They, however, are difficult to extend to
other fields due to the different intrinsic assessments.

In contrast to existing approaches, our method focuses
on reducing the evaluation costs in generating the optimal
graphs. Moreover, since our method can automatically learn
from data without explicitly designing kernels, it can deal
with a variety of graphs in many fields.

CAGG: Cost-Aware Graph Generation
In this section, we propose a framework to generate graphs
with optimal properties at as low cost as possible.

First, we define a graph G with dx node types and dy
edge types as consisting of four tuples (V,E,X, Y ), where
V is a set of nodes, E ⊆ (V × V ) is a set of edges, and
X ⊆ R|V |×(1+dx) and Y ⊆ R|E|×(1+dy) are the attribute
matrices of all nodes and all edges respectively. Note that
the 0-th index in the column of the attribute matrices indi-
cates whether the node/edge exists (0) or not (1). Thus, the
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Figure 1: Overview of the CAGG framework. A surrogate model f̂θ is to approach the expensive-to-evaluate function f , which
is trained based on current observed data and can predict a dummy landscape with uncertainty. A generation model gφ is to
produce desirable graphs as a search space, which is guided by the dummy landscape. An acquisition function γ is to choose a
graph from a search space. After choosing, the selected graph is evaluated by the costly f to obtain its corresponding property
and update current observed data. Through the cooperation of these three components, the CAGG effectively generates graphs
with optimal properties under low evaluation costs.

node types range from 1 to dx and the edge types from 1 to
dy . Given a graph G and the costly evaluation function f ,
we can evaluate the property of G using z = f(G).

Overview of the CAGG
The CAGG is an iterative framework. Its main idea at each
iteration is to use a generation model to generate the desir-
able graphs, whose properties are close to the optimal, and
then use a deep Bayesian optimization to select an optimal
candidate for real evaluation. Specifically, it is composed
of three key components: a surrogate model, a generation
model, and an acquisition function (see Fig. 1).

A surrogate model f̂θ is to approximate the expensive-to-
evaluate function f , where θ is the parameters of this sur-
rogate model. It is trained based on current observed data
D = {(G1, z1), (G2, z2), ...} and can predict a dummy land-
scape with uncertainty for real f . The generation model is to
produce graphs as a search space. We denote gφ as a gen-
eration model, where φ is the parameters of the generation
model. To generate a desirable search space composed of
graphs with good properties and reduce the possibility of
evaluating undesirable candidates, the generation model is
guided by the dummy landscape to generate desirable search
space G. The advantage of the dummy landscape is that we
avoid real evaluations while guiding the generation model.
Since the generation model is trained continuously, we ob-
tain the generative mechanism of the optimal graphs simul-
taneously. An acquisition function γ is to choose a candi-
date graph from a search space G. This strategy can balance
exploration and exploitation by using the predictive distri-
bution of graph properties, to reduce unnecessary evalua-
tion. After choosing, we evaluate the selected graph G′ via
the costly f to obtain its corresponding property z′ and up-
date current observed data D. Through the cooperation of
these three components, the CAGG effectively designs opti-
mal graphs under low costs.

The specific procedure is described in Algorithm 1. To in-

Algorithm 1 Procedure of the CAGG
Input: A budget B, the number of graphs for initial evalua-
tions M , and the training interval K;
Output: The optimal graph;

1: Pre-train a generator gori in an unsupervised way;
2: gφ ← gori;
3: Initialize M graphs randomly and evaluate them into
D ← {(Gi, zi)}Mi=1;

4: while B is not reached do
5: Every K steps update f̂θ based on current D;
6: Every K steps update gφ using f̂θ;
7: Generate search space G;
8: Choose a G′ from G by maximizing γ;
9: EvaluateG′ and augment it intoD ← D∪{(G′, z′)};

10: return The optimum in D.

crease the validity of the graphs generated in the early stage,
a generation model gori performs unsupervised training on a
certain number of graphs in a VAE framework. We produce
several graphs (e.g., 500) using gφ as the search space (line
7). To increase the diversity of candidates, some graphs (e.g.,
500) generated by gori are also integrated into the search
space. When reaching a given budget B, which could be a
maximum running time or a maximum number of evalua-
tions, the process terminates and returns the optimum.

We detail each key component in the rest of this section.

Surrogate Model f̂θ: Robust Bayesian Graph
Neural Network
As a core component of reducing the cost, the surrogate
model should have the ability to approach f under a small
number of evaluations. To achieve this, we thus introduce a
robust Bayesian graph neural network, where each layer is
discussed as follows.

Embedding layer. Since the original features on nodes
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and edges are usually sparse, such as one-hot encodings, we
use an embedding layer to convert these sparse features to
dense representations. The specific operations to update the
edge e and node i are as follows:

F (0)
e = (1− Ye,0)× ψ(em)

E (Ye,1:), (1)

H
(0)
i = (1−Xi,0)× ψ(em)

V (Xi,1:), (2)

where ψ(em)
E and ψ(em)

V denote the trainable networks for
edges and nodes respectively. Note that if edge e does not ex-
ist, then (1−Ye,0) is equal to 0, the same for node i. We dis-
card the update of non-existent nodes or edges to avoid their
effect on learning features by multiplying these weights.

Graph network layer. To learn the features of graphs,
we use a simple message-passing strategy to fuse structure
and attribute information of graphs. Specifically, we pass the
messages on nodes and edges multiple rounds. At t-th round,
we update the feature of edge e : i→ j through its neighbor
nodes i and j by

F (t)
e = (1− Ye,0)× ψ(gn)

E ([F (t−1)
e , H

(t−1)
i , H

(t−1)
j ]),

(3)

where ψ(gn)
E is a trainable update neural network for edges.

And then, we update the node features through the aggre-
gation of neighbor edge information by

H
(t)
i = (1−Xi,0)× ψ(gn)

V ([H
(t−1)
i ,

∑
e∈ℵ(i)

F (t−1)
e ]), (4)

where ψ(gn)
V is a trainable neural network for nodes and ℵ(i)

is a set of all edges pointing to node i.
Note that, in these two update operations, we still shut off

the message passing process at non-existent nodes and edges
to stop their influence by multiplying the weights.

In this way, through multiple rounds (e.g., T ) of message
passing, we collect the output of each round as the final out-
put of this layer, i.e.,{H(t)}Tt=1.

Global pooling layer. We calculate the entire graph’s rep-
resentation hG from the output of the GN layer by

hG = concat(
∑
i∈V

H
(t)
i | t = 1, 2, ..., T ), (5)

where concat(.) is a concatenation operation.
Readout layer. After obtaining the graph representation

hG, we feed it into a Multi-Layer Perceptron (MLP) fol-
lowed by a linear layer for prediction.

All parameters of the surrogate model are uncertain.
Let θ be the trainable parameters of the surrogate model. We
treat all parameters θ as random variables and place a prior
distribution p(θ) on them. Thus, predictive distribution for a
new graph G′ can be formed by integrating with respect to
the posterior distribution p(θ | D) of θ as follows:

p(z′ | G′,D) =
∫
p(z′ | G′,θ)p(θ | D)dθ, (6)

where D = {(Gi, zi)}ni=1 denotes a set of n evaluated
graphs. This integral, however, is in general intractable. For-
tunately, it has been shown that Monte Carlo dropout is

equivalent to drawing samples of θ from the approximate
posterior when choosing a suitable variational approxima-
tion for the posterior p(θ | D) (Gal and Ghahramani 2016).
Thus, in this work, we use a Monte Carlo dropout technol-
ogy (Gal and Ghahramani 2016) to approximate the integral.
Specifically, we sample S θi via dropout and then approxi-
mate Eq. 6 by

p(z′ | G′,D) ≈ 1

S

S∑
i=1

p(z′ | G′,θi). (7)

Moreover, to facilitate the calculation of the acquisition
function, we place a Gaussian on the predictive distribution,
i.e., N (µ(G′), σ2(G′)). Therefore, after training the surro-
gate with dropout using l2 loss, the predictive mean and vari-
ance of a new G′ can be calculated practically as follows:

µ(G′) ≈ 1

S

S∑
i=1

f̂θi(G
′), (8)

σ2(G′) ≈ 1

S

S∑
i=1

(f̂θi(G
′)− µ(G′))2. (9)

Generation Model gφ: Goal-Oriented Search Space
Generation
The second key component is a generation model denoted as
gφ = pφ(G | r) that can generate graphs by feeding a ran-
dom vector r sampled from a multivariate standard Gaus-
sian distribution. Following (Ma, Chen, and Xiao 2018), we
use a multi-layer deconvolutional neural net as gφ. Given
the maximum number of nodes N , we denote the output of
gφ as P ∈ RN×[(1+dx)+N×(1+dy)] that can cover all graphs
with nodes no more than N . The generated probability tem-
plate, thus, can be represented by G̃ = (Ṽ , Ẽ, X̃, Ỹ ), where
Ṽ and Ẽ denote all nodes and edges of the complete graph
withN nodes, X̃ ∈ RN×(1+dx) is the first (1+dx) columns
of P after softmax operation, and Ỹ ∈ RN2×(1+dy) is the
rest of P after reshaping and softmax operation. And then,
candidate graphs can be sampled from this template.

Now, the problem we face is how to train this model to
produce the desired graph search space? In this work, we
design a two-phase process to train the generation model.

The first phase is an unsupervised pre-training. To in-
crease the validity of the graphs generated in the early stage,
we train the generation model on a certain number of graphs
(i.e., 1,000) in a VAE framework by combining an encoder
(see line 1 in Algorithm 1). The encoder has the same archi-
tecture as the proposed surrogate model, except for replacing
the last linear layer with two separate fully connected layers
to generate the mean and variance of the latent vector.

The second phase is to learn the pre-trained generation
model towards the goals (see line 6 in Algorithm 1). To pro-
duce graphs with good properties as search space and reduce
unnecessary evaluations, we propose a goal-oriented train-
ing scheme. Specifically, the objective is formulated as:

φ∗ = argmax
φ

EG∼gφ [f(G)] +
∑
i

λici(φ), (10)
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where ci denotes the constraint i on the generation model,
and λi is a coefficient for constraint i.

The first term in this objective can guide the generation
model to the desired direction, but it contains the costly eval-
uation function f . Thus, we replace f with f̂θ to avoid real
evaluation in training. However, we need to sample predic-
tions from the predictive distribution outputted by the surro-
gate model. Herein, we use a reparameterization technique
to deal with the issue of nondifferentiable sampling, i.e., the
prediction is 1

L

∑L
l=1 [µ(.) + εlσ(.)], where εl ∼ N (0, 1), L

is the number of samples of ε in prediction, and µ and σ are
the predictive mean (Eq. 8) and standard deviation (Eq. 9),
respectively. Moreover, we replace the essentially nondiffer-
entiable graphG with the differentiable probability template
G̃. The objective, thus, can be converted to

φ∗ = argmax
φ

Er∼N (0,I)[ẑ] +
∑
i

λici(φ), (11)

where ẑ = 1
L

∑L
l=1 [µ(G̃) + εlσ(G̃)] and G̃ = gφ(r). We,

then, learn the parameters φ in the generation model by per-
forming a stochastic gradient ascent algorithm on Eq. 11.

The second term in Eq. 11 (ci) is to constrain the gener-
ation model, such as to restrict the generated graphs to be
connected. It can be designed according to different tasks
and should also be differentiable. Here, we give an example
for molecules used in our experiments (please see Section
S1 in the supplementary material1 for the constraint details
on neural architectures).

Constraints on molecules. First, we introduce a con-
straint on connectivity. A molecular graph is connected if
there is a path between every pair of existent nodes. To be
differentiable, we use a probabilistic adjacency matrix de-
noted Ã, which can be easily constructed by Ỹ:,0, to con-
struct constraints. The path matrix C can be calculated by
C = sigmoid(

∑N−1
i=0 Ãi), where Ã0 = I , Ã1 = Ã,

Ãi+1 = sigmoid(ÃiÃ) and sigmoid(x) = 1
1+e−a(x−0.5) .

Following (Ma, Chen, and Xiao 2018), we set a to 100 to
make the output of sigmoid close to either 0 or 1. Thus, the
differentiable constraint is formulated as:
c1 := −

∑
i,j∈Ẽ

p(i)p(j)Ci,j + (1− p(i)p(j))Ci,j , (12)

where p(i) = 1 − X̃i,0 is the probability that node i exists
and Ci,j = 1− Ci,j .

A molecule is valid iff its configuration of the bonds meets
the valence criteria of the atoms. We model this domain
knowledge into a constraint to ensure molecular validity.
Specifically, the differentiable constraint is formulated as:

c2 := −
∑
i∈Ṽ

max(
∑

e∈ℵ(i)

∑
j

B(j)Ỹe,j −
∑
j

U(j)X̃i,j , 0),

(13)

where ℵ(i) is a set of edges pointing to node i, B(j) is the
capacity function of an edge type j, U(j) is the valence of
node type j, and both B(0) and U(0) are set to 0. max is to
filter out the desirable case without penalty.

1https://csjtx1021.github.io/files/doc/CAGG-supp.pdf

Acquisition Function γ
The third component is an acquisition function γ. In this
work, we use Expected Improvement (EI), which is one of
the most commonly used acquisition functions in Bayesian
optimization (Shahriari et al. 2016), as a quantitative met-
ric to choose a candidate graph. It quantifies the expecta-
tion of the improvement over the current optimal solution
(z+). Moreover, it can balance exploration and exploitation
in searching without introducing extra parameters. In our
framework, the exploration is to find a graph that makes f̂θ
closer to f and the exploitation is to find a graph with the
better property. Specifically, γ is formulated as:

γ(G) =

∫ +∞

z+

(z − z+)p(z | D, G)dz. (14)

As the predictive distribution p(z | D, G) is Gaussian, the
integral can be solved analytically.

We choose a G′ to evaluate from the search space G by

G′ = argmax
G∈G

γ(G). (15)

Experiments
In this section, we rigorously evaluate the CAGG2 by ap-
plying it to two challenging applications and answering two
questions: 1) Can the CAGG produce optimal graphs with
few evaluations? 2) Can it be applied to various domains?

Tasks
Molecular discovery is very challenging, especially for new
drugs, mainly because the candidate space is quite large
(Polishchuk, Madzhidov, and Varnek 2013) and the required
resources are intensive, including a development cycle of
10∼20 years and costs of US$0.5∼2.6 billion (Paul et al.
2010; Avorn 2015). We apply the CAGG to accelerate the
discovery process and reduce costs. Specifically, we focus
on discovering the molecules with optimal properties. The
following two common chemical properties (Jin, Barzilay,
and Jaakkola 2018; Cui, Yang, and Hu 2019) are used as
optimization goals: 1) z = logP − SA, where logP is the
octanol-water partition coefficient and SA is the synthetic ac-
cessibility score; 2) z = 5 × QED − SA, where QED is the
quantitative estimation of drug-likeness. The molecules with
high z are what we expect.

NAS is a key subfield of automatic machine learning
(Elsken, Metzen, and Hutter 2019). It aims to automati-
cally design a deep neural architecture with excellent perfor-
mance for specific tasks. Herein, we perform the following
two tasks according to the different types of architectures: 1)
cell-based NAS is to design the optimal cell for image classi-
fication tasks; 2) multi-branch NAS is to design the optimal
whole architecture for regression tasks.

Datasets
QM9 (Ramakrishnan et al. 2014) is a benchmark dataset in
quantum chemistry, which contains about 134K molecules
with at most 9 heavy atoms.

2Code available at: https://github.com/csjtx1021/CAGG
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Goals Methods # Eval Algorithm cost Evaluation Total cost CSP(hours) cost (hours) Hours CO2e (lbs) Google Cloud Platform

logP−SA

Gentrl 3,000 4.3 3,000 3,004.3 412.1 US$1,254.6∼US$1616.3 95.70%
GCPN 3,000 0.2 3,000 3,000.2 411.5 US$1,252.9∼US$1614.1 95.69%
JTVAEBO 3,000 22.5 3,000 3,022.5 414.6 US$1,262.2∼US$1626.1 95.73%
G2G 1,600 2.8 1,600 1602.8 219.8 US$669.3∼US$862.3 91.94%
DGBO 189 0.3 189 189.3 26.0 US$79.1∼US$101.8 31.75%
CAGG (ours) 128 1.2 128 129.2 17.7 US$54.0∼US$69.6 N/A

5×QED−SA

Gentrl 3,000 4.3 3,000 3,004.3 412.1 US$1,254.6∼US$1616.3 95.16%
GCPN 3,000 0.2 3,000 3,000.2 411.5 US$1,252.9∼US$1614.1 95.16%
JTVAEBO 1,550 21.5 1,550 1,571.5 215.6 US$656.3∼US$845.5 90.75%
G2G 1,600 2.8 1,600 1602.8 219.8 US$669.3∼US$862.3 90.93%
DGBO 448 1.0 448 449.0 61.6 US$187.5∼US$241.6 67.64%
CAGG (ours) 144 1.3 144 145.3 19.9 US$60.7∼US$78.2 N/A

Table 1: Comparison of cost with molecular discovery methods. # Eval means the number of evaluations to find the optimal
solution (lower is better). We set the maximum # Eval to 3,000. Algorithm cost represents the algorithm execution time, where
the Gentrl, JTVAEBO, and CAGG contain the running time in pre-training and designing, the G2G only includes the training
time, and both the DGBO and GCPN include only running time in searching or designing, because they do not require pre-
training. Evaluation cost represents the cost of evaluating molecules, which is calculated based on # Eval and an hour per
molecular evaluation. According to the report in (Gilmer et al. 2017), it is reasonable to estimate the time for calculating the
molecular properties to be one hour. CO2e is the estimated CO2 emission, which is calculated based on the carbon emission
estimation model (Strubell, Ganesh, and McCallum 2019). Google Cloud Platform cost is calculated based on the price of
on-demand c2-standard-8 instances. CSP means the Cost Saving Percentage of the CAGG over other baselines.

NASBench201 (Dong and Yang 2020) is a unified bench-
mark for most up-to-date cell-based NAS methods. Due to
the different search space designs, hyper-parameter adjust-
ments and data augmentation tricks, it is still an open ques-
tion to evaluate different NAS methods (Yang, Esperança,
and Carlucci 2020). Therefore, we evaluate the methods
fairly under the same conditions using the NASBench201
benchmark, which provides the full training and testing
records on several common image classification datasets, in-
cluding CIFAR100 and ImageNet16-120.

Indoor (Torres-Sospedra et al. 2014) collects about 20K
localization records of mobile devices. Slice (Graf et al.
2011) contains 53,500 CT images from 74 patients. They
are used to evaluate regression performance for neural nets.

Baselines and Setup
We compare our method against the following state-of-
the-art methods for molecule discovery: the RL-based ap-
proaches, i.e., GCPN (You et al. 2018) and Gentrl (Zha-
voronkov et al. 2019); an end-to-end method, i.e., G2G (Jin
et al. 2019); a VAE method, i.e., JTVAEBO (Jin, Barzilay,
and Jaakkola 2018); and a search algorithm, i.e., DGBO
(Cui, Yang, and Hu 2019).

Since we use the NASBench201 benchmark to evaluate
the cell-based NAS methods, we compare against the meth-
ods that perform top-3 in terms of the accuracy of searched
architectures under a given budget, as reported in this bench-
mark (Dong and Yang 2020): a random search (RS) algo-
rithm (Bergstra and Bengio 2012); an evolution algorithm,
i.e., REA (Real et al. 2019); and a commonly used baseline
RL method (REINFORCE) (Williams 1992). We also use
a classical hand-crafted deep residual architecture (ResNet)
(He et al. 2016) as a baseline.

For multi-branch NAS, the representative baselines on re-

gression tasks include: RAND (Kandasamy et al. 2018); the
Gaussian process-based BO methods, e.g., TreeBO (Jenat-
ton et al. 2017), NASBOT (Kandasamy et al. 2018), and
Auto-Keras (Jin, Song, and Hu 2019); and a method com-
bining evolutionary algorithm with BO, i.e., NASGBO (Ma,
Cui, and Yang 2019).

Due to space limitations, please see Section S2 in the sup-
plementary material for the detailed description of the base-
lines and experimental setup.

Results on Molecular Discovery
From Fig. 2, we see that the CAGG outperforms others and
converges quickly to the optimal solution. The JTVAEBO
only finds the optimum for the property of 5 × QED − SA,
whereas both the Gentrl and GCPN cannot converge at a
given budget of 3K evaluations. Besides the CAGG, the
DGBO shows the fastest convergence, mainly because its
predetermined search space contains the optimum. Other-
wise, it would perform poorly due to no optimum. Since the
G2G is an end-to-end method, which needs to input all the
supervision pairs at one time without the process of aug-
menting data, we thus do not include it here. We also ob-
served that the CAGG can produce better molecules in op-
timizing than other baselines (see Fig. S3 in the supplemen-
tary material for details).

We report the cost of finding the optimal solution for
each method in Table 1. For the property of logP − SA,
the total cost of the Gentrl, GCPN, and JTVAEBO is more
than 3,000 hours. This computing consumption will cost
US$1,252.9∼US$1,626.1 on the cloud platform and emit
411.5∼414.6 pounds of CO2e, which is roughly equivalent
to a person’s two-week carbon emissions (Strubell, Ganesh,
and McCallum 2019). However, the CAGG can reduce the
costs of these three methods by more than 95% to 129.2
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Figure 2: Convergence comparison of methods to optimize
a molecule. All methods ran at least three times to eliminate
random effects. Solid lines represent mean values. We nor-
malize the z for readability by z−zmin

zmax−zmin
, where zmax and

zmin are the max and min in the QM9 dataset, respectively.

hours, US$54.0∼US$69.6, and 17.7 pounds of CO2e, which
is only equivalent to a person’s carbon emissions in less than
one day. We use 16K bad-good pairs constructed by 1,600
evaluations to train the G2G for each property. We see that
the cost of the G2G can be reduced by 91.94%. Although
the DGBO also converges at a small cost, our CAGG can
still further reduce its cost by 31.75%. For the property of
5 × QED − SA, the CAGG can reduce the total cost of the
Gentrl, GCPN, JTVAEBO, G2G, and DGBO by 95.16%,
95.16%, 90.75%, 90.93%, and 67.64%, respectively. These
significant reductions on cost demonstrate its effectiveness.

To find out the specific role of the internal components in
the CAGG, we also verify the effectiveness of the proposed
surrogate model and generation model in Section S3 in the
supplementary material. The observations are: 1) our sur-
rogate model adequately characterizes uncertainty, resulting
in better prediction ability than others in the case of scarce
data; 2) the generation model produces the desired graphs,
which is contributed by the two-phase training strategy.

Results on Neural Architecture Search
Results on cell-based NAS. From Table 2, we clearly see

Methods Total cost CIFAR100 ImageNet16-120
ResNet N/A 70.86 43.63
RS 205 hours 72.48±1.04 46.04±0.46
REINFORCE 205 hours 72.48±0.31 45.85±0.51
REA 205 hours 73.09±0.25 46.12±0.67

CAGG (ours)
50.3 hours 72.87±0.27 46.13±0.46

140.9 hours 73.25±0.42 46.34±0.27
201.5 hours 73.38±0.16 46.37±0.24

Table 2: Comparison of cost and classification accuracy with
baselines for cell-based NAS. The total cost includes the al-
gorithm execution time and evaluation costs. The evaluation
cost per architecture is assigned to half an hour, which is es-
timated based on the running time on a personal computer.
The last two columns show the test classification accuracy
(%). All methods ran five times to eliminate random effects.
We set the budget to 205 hours for all baselines and report
the results found by the CAGG under various total costs.

that all methods find a cell that is superior to the hand-crafted

one (ResNet). The CAGG can find the comparable cells to
baselines, reducing the total cost of 205 hours by 75.46%
to 50.3 hours. Moreover, the cells found by the CAGG at
the total cost of 140.9 hours (i.e., 31.27% reduction) outper-
form that found by other methods under 205 hours on both
datasets. This demonstrates that the CAGG can find a bet-
ter cell with less cost. When the total cost reaches similar to
other methods, our CAGG finds the optimal cells, which are
shown in Fig. S6 in the supplementary material. In the de-
sign process, the CAGG still shows the fastest convergence
on both datasets and can produce the better cells than others
(see Figs. S4 and S5 in the supplementary material).

Results on multi-branch NAS. From Table 3, we see that

Methods Total cost Indoor Slice
RAND 12 hours 0.156±0.023 0.932±0.044
TreeBO 12 hours 0.168±0.023 0.759±0.079
NASBOT 12 hours 0.114±0.009 0.615±0.044
Auto-Keras 12 hours 0.112±0.010 0.870±0.054
NASGBO 12 hours 0.090±0.012 0.560±0.046

CAGG (ours)
4 hours 0.072±0.003 0.788±0.003
8 hours 0.066±0.002 0.625±0.001

12 hours 0.063±0.001 0.433±0.010

Table 3: Comparison of cost and the test regression mean
squared error (lower is better) with baselines for multi-
branch NAS. We set the budget to 12 hours and report the
results found by the CAGG under 4, 8, and 12 hours.

under the same 12-hour budget, the CAGG can find better ar-
chitectures than others for both datasets (the found optimal
whole architectures are shown in Fig. S6 in the supplemen-
tary material). For the Indoor dataset, the architecture found
by the CAGG under a 4-hour budget outperforms that found
by others; that is, our CAGG reduces the cost by 66.67%
to find the optimum. For the Slice dataset, the architectures
found by the CAGG under a 4/8-hour budget are comparable
to others. Therefore, the CAGG can find optimal or compa-
rable architectures under less cost in this task.

Conclusion
In this work, we propose a novel cost-aware framework to
design optimal graphs at as low cost as possible. We apply it
to two challenging real-world problems, i.e., molecular dis-
covery and NAS, to rigorously evaluate its effectiveness and
applicability. The results show that the CAGG can quickly
converge to the optimal solution and significantly reduce the
cost compared with the state-of-the-art.

Several challenges and further studies to make the CAGG
more powerful are worth mentioning. First, how to relax the
limit of the maximum number of nodes fixed in advance
when generating graphs will be considered in future work.
Second, we assume that graphs have the same evaluation
cost, so we mainly focus on reducing the number of eval-
uations. To be more in line with the actual situation that dif-
ferent graphs usually have different evaluation costs, how to
introduce these differences between costs is also an interest-
ing research direction. Handling other complex generative
tasks and multi-objective situation are promising extensions.
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