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Abstract

Enhancing model robustness under new and even adversarial
environments is a crucial milestone toward building trustwor-
thy machine learning systems. Current robust training meth-
ods such as adversarial training explicitly uses an “attack”
(e.g., L-inf-norm bounded perturbation) to generate adver-
sarial examples during model training for improving adver-
sarial robustness. In this paper, we take a different perspec-
tive and propose a new framework called SPROUT, self-
progressing robust training. During model training, SPROUT
progressively adjusts training label distribution via our pro-
posed parametrized label smoothing technique, making train-
ing free of attack generation and more scalable. We also mo-
tivate SPROUT using a general formulation based on vicinity
risk minimization, which includes many robust training meth-
ods as special cases. Compared with state-of-the-art adversar-
ial training methods (PGD-L-inf and TRADES) under L-inf-
norm bounded attacks and various invariance tests, SPROUT
consistently attains superior performance and is more scal-
able to large neural networks. Our results shed new light
on scalable, effective and attack-independent robust training
methods.

Introduction
While deep neural networks (DNNs) have achieved unprece-
dented performance on a variety of datasets and across do-
mains, developing better training algorithms that are capable
of strengthening model robustness is the next crucial mile-
stone toward trustworthy and reliable machine learning sys-
tems. In recent years, DNNs trained by standard algorithms
(i.e., the natural models) are shown to be vulnerable to ad-
versarial input perturbations (Biggio et al. 2013; Szegedy
et al. 2014). Adversarial examples crafted by designed input
perturbations can easily cause erroneous decision making of
natural models (Goodfellow, Shlens, and Szegedy 2015) and
thus intensify the demand for robust training methods.

State-of-the-art robust training algorithms are primarily
based on the methodology of adversarial training (Goodfel-
low, Shlens, and Szegedy 2015; Madry et al. 2018), which
calls specific attack algorithms to generate adversarial exam-
ples during model training for learning robust models. Al-
beit effective, these methods have the following limitations:
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(i) poor scalability – the process of generating adversarial
examples incurs considerable computation overhead. For in-
stance, our experiments show that, with the same computa-
tion resources, standard adversarial training (with 7 attack
iterations per sample in every minibatch) of Wide ResNet
on CIFAR-10 consumes 10 times more clock time per train-
ing epoch when compared with standard training; (ii) attack
specificity – adversarially trained models are usually most
effective against the same attack they trained on, and the ro-
bustness may not generalize well to other types of attacks
(Tramèr and Boneh 2019; Kang et al. 2019); (iii) preference
toward wider network – adversarial training is more effec-
tive when the networks have sufficient capacity (e.g., having
more neurons in network layers) (Madry et al. 2018).

To address the aforementioned limitations, in this paper
we propose a new robust training method named SPROUT,
which is short for self-progressing robust training. We moti-
vate SPROUT by introducing a general framework that for-
mulates robust training objectives via vicinity risk minimiza-
tion (VRM), which includes many robust training methods
as special cases. It is worth noting that the robust training
methodology of SPROUT is fundamentally different from
adversarial training, as SPROUT features self-adjusted la-
bel distribution during training instead of attack generation.
In addition to our proposed parametrized label smoothing
technique for progressive adjustment of training label dis-
tribution, SPROUT also adopts Gaussian augmentation and
Mixup (Zhang et al. 2018) to further enhance robustness. We
show that they offer a complementary gain in robustness. In
contrast to adversarial training, SPROUT spares the need for
attack generation and thus makes its training scalable by a
significant factor, while attaining better or comparable ro-
bustness performance on a variety of experiments. We also
show exclusive features of SPROUT in terms of the novel
findings that it can find robust models from either randomly
initialized models or pretrained models, and its robustness
performance is less sensitive to network width. Our imple-
mentation is publicly available. 1.

Contributions
Multi-dimensional performance enhancement. To illus-
trate the advantage of SPROUT over adversarial training

1Code available at https://github.com/IBM/SPROUT
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Figure 1: Multi-dimensional performance comparison of four training methods using VGG-16 network and CIFAR-10 dataset.
All dimensions are separately normalized by the best-performance method. The average score of each method is 0.6718 for
natural (standard training), 0.6900 for PGD-`∞ based adversarial training (Madry et al. 2018), 0.7107 for PGD-`∞ based
TRADES (Zhang et al. 2019), and 0.8798 for SPROUT (ours). The exact numbers are reported in Appendix.

and its variations, Figure 1 compares the model perfor-
mance of different training methods with the following five
dimensions summarized from our experimental results: (i)
Clean Acc – standard test accuracy, (ii) L inf Acc – accu-
racy under `∞-norm projected gradient descent (PGD) at-
tack (Madry et al. 2018), (iii) C&W Acc – accuracy under
`2-norm Carlini-Wagner (C&W) attack, (iv) scalability – per
epoch clock run-time, and (v) invariance – invariant trans-
formation tests including rotation, brightness, contrast and
gray images. Comparing to PGD-`∞ based adversarial train-
ing (Madry et al. 2018) and TRADES (Zhang et al. 2019),
SPROUT attains at least 20% better L inf Acc, 2% better
Clean Acc, 5× faster run-time (scalability), 2% better invari-
ance, while maintaining C&W Acc, suggesting a new robust
training paradigm that is scalable and comprehensive.

We further summarize our main contributions as follows:
• We propose SPROUT, a self-progressing robust train-
ing method composed of three modules that are efficient
and free of attack generation: parametrized label smooth-
ing, Gaussian augmentation, and Mixup. They altogether at-
tain the state-of-the-art robustness performance and are scal-
able to large-scale networks. We will show that these mod-
ules are complementary to enhancing robustness. We also
perform an ablation study to demonstrate that our proposed
parametrized label smoothing technique contributes to the
major gain in boosting robustness.
• To provide technical explanations for SPROUT, we mo-
tivate its training methodology based on the framework of
vicinity risk minimization (VRM). We show that many ro-
bust training methods, including attack-specific and attack-
independent approaches, can be characterized as a specific
form of VRM. The superior performance of SPROUT pro-
vides new insights on developing efficient robust training
methods and theoretical analysis via VRM.
•We evaluate the multi-dimensional performance of differ-
ent training methods on (wide) ResNet and VGG networks
using CIFAR-10 and ImageNet datasets. Notably, although
SPROUT is attack-independent during training, we find
that SPROUT significantly outperforms two major adversar-
ial training methods, PGD-`∞ adversarial training (Madry
et al. 2018) and TRADES (Zhang et al. 2019), against the
same type of attacks they used during training. Moreover,

SPROUT is more scalable and runs at least 5× faster than
adversarial training methods. It also attains higher clean ac-
curacy, generalizes better to various invariance tests, and is
less sensitive to network width.

Related Work
Attack-specific robust training. The seminal work of ad-
versarial training with a first-order attack algorithm for
generating adversarial examples (Madry et al. 2018) has
greatly improved adversarial robustness under the same
threat model (e.g., `∞-norm bounded perturbations) as the
attack algorithm. It has since inspired many advanced ad-
versarial training algorithms with improved robustness. For
instance, TRADES (Zhang et al. 2019) is designed to mini-
mize a theoretically-driven upper bound on prediction error
ofadversarial examples. (Liu and Hsieh 2019) combined ad-
versarial training with GAN to further improve robustness.
Bilateral adversarial training (Wang and Zhang 2019) finds
robust models by adversarially perturbing the data samples
and as well as the associated data labels. A feature-scattering
based adversarial training method is proposed in (Zhang and
Wang 2019). Different from attack-specific robust training
methods, our proposed SPROUT is free of attack generation,
yet it can outperform attack-specific methods. Another line
of recent works uses an adversarially trained model along
with additional unlabeled data (Carmon et al. 2019; Stan-
forth et al. 2019) or self-supervised learning with adversar-
ial examples (Hendrycks et al. 2019) to improve robustness,
which in principle can also be used in SPROUT but is be-
yond the scope of this paper.
Attack-independent robust training. Here we discuss re-
lated works on Gaussian data augmentation, Mixup and la-
bel smoothing. Gaussian data augmentation during training
is a commonly used baseline method to improve model ro-
bustness (Zantedeschi, Nicolae, and Rawat 2017). (Liu et al.
2018a,b, 2019) demonstrated that additive Gaussian noise at
both input and intermediate layers can improve robustness.
(Cohen, Rosenfeld, and Kolter 2019) showed that Gaussian
augmentation at the input layer can lead to certified robust-
ness, which can also be incorporated in the training objec-
tive (Zhai et al. 2020). Mixup (Zhang et al. 2018) and its
variants (Verma et al. 2018; Thulasidasan et al. 2019) are
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Methods g(·) h(·) x̃ ỹ

Natural I I x y
GA I I N (x,∆2) y
LS I (1− α)y + αu x y
Adv Train I I PGDε(x) y
TRADES I (1− α)y + αf(x̃) PGDε(x) y
ST f(x) ◦ f(x̃) I N (x,∆2) y
Mixup I I (1− λ)xi + λxj (1− λ)yi + λyj
LS+GA I (1− α)y + αu N (x,∆2) y
BAT I I PGDε(x) (one or two step) (1− α)yi + αPGDε′(y)
SPROUT I Dirichlet((1− α)y + αβ) (1− λ)N (xi,∆

2) + λN (xj ,∆
2) (1− λ)yi + λyj

Table 1: Summary of robust training methods using VRM formulation in (4). PGDε(·) means (multi-step) PGD attack
with perturbation budget ε. Dirichlet(b) is the Dirichlet distribution parameterized by b. GA/LS stands for Gaussian-
Augmentation/Label-Smoothing.

a recently proposed approach to improve model robustness
and generalization by training a model on convex combina-
tions of data sample pairs and their labels. Label smooth-
ing was originally proposed in (Szegedy et al. 2016) as a
regularizer to stabilize model training. The main idea is to
replace one-hot encoded labels by assigning non-zero (e.g.,
uniform) weights to every label other than the original train-
ing label. Although label smoothing is also shown to benefit
model robustness (Shafahi et al. 2019; Goibert and Dohma-
tob 2019), its robustness gain is relatively marginal when
compared to adversarial training. In contrast to currently
used static (i.e., pre-defined) label smoothing functions, in
SPROUT we propose a novel parametrized label smooth-
ing scheme, which enables adaptive sampling of training la-
bels from a parameterized distribution on the label simplex.
The parameters of the label distribution are progressively ad-
justed according to the updates of model weights.

General Framework for Robust Training
The task of supervised learning is essentially learning a K-
class classification function f ∈ F that has a desirable map-
ping between a data sample x ∈ X and the corresponding
label y ∈ Y . Consider a loss function L that penalizes the
difference between the prediction f(x) and the true label y
from an unknown data distribution P , (x,y) ∼ P . The pop-
ulation risk can be expressed as

R(f) =

∫
L(f(x),y)P (x,y)dxdy (1)

However, as the distribution P is unknown, in practice ma-
chine learning uses empirical risk minimization (ERM) with
the empirical data distribution of n training data {xi, yi}ni=1

Pδ(x,y) =
1

n

n∑
i=1

δ(x = xi,y = yi) (2)

to approximate P (x,y), where δ is a Dirac mass. Notably, a
more principled approach is to use Vicinity Risk Minimiza-
tion (VRM) (Chapelle et al. 2001), defined as

Pν(x,y) =
1

n

n∑
i=1

ν(x̃, ỹ|xi,yi) (3)

where ν is a vicinity distribution that measures the proba-
bility of finding the virtual sample-label pair (x̃, ỹ) in the
vicinity of the training pair (xi,yi). Therefore, ERM can
be viewed as a special case of VRM when ν = δ. VRM
has also been used to motivate Mixup training (Zhang et al.
2018). Based on VRM, we propose a general framework that
encompasses the objectives of many robust training methods
as the following generalized cross entropy loss:

H(x̃, ỹ, f) = −
K∑
k=1

[log g(f(x̃)k)]h(ỹk) (4)

where f(x̃)k is the model’s k-th class prediction probability
on x̃, g(·) : R → R is a mapping adjusting the probability
output, and h(·) : R→ R is a mapping adjusting the training
label distribution. When x̃ = x, ỹ = y and g = h = I,
where I denotes the identity mapping function, the loss in
(4) degenerates to the conventional cross entropy loss.

Based on the general VRM loss formulation in (4), in Ta-
ble 1 we summarize a large body of robust training methods
in terms of different expressions of g(·), h(·) and (x̃, ỹ).

For example, the vanilla adversarial training in (Madry
et al. 2018) aims to minimize the loss of adversarial exam-
ples generated by the (multi-step) PGD attack with pertur-
bation budget ε, denoted by PGDε(·). Its training objective
can be rewritten as x̃ = PGDε(x), ỹ = y and g = h = I.
In addition to adversarial training only on perturbed samples
of x, Wang and Zhang (2019) designs adversarial label per-
turbation where it uses x̃ = PGDε(x), ỹ = (1 − α)y +
αPGDε(y), and α ∈ [0, 1] is a mixing parameter. TRADES
(Zhang et al. 2019) improves adversarial training with an
additional regularization on the clean examples, which is
equivalent to replacing the label mapping function h(·) from
identity to (1 − α)y + αf(x̃). Label smoothing (LS) alone
is equivalent to the setup that g = I, x̃ = x, ỹ = y and
h(·) = (1−α)y+αu, where u is often set as a uniform vec-
tor with value 1/K for a K-class supervised learning task.
Joint training with Gaussian augmentation (GA) and label
smoothing (LS) as studied in (Shafahi et al. 2019) is equiv-
alent to the case when x̃ = N (x,∆2), ỹ = y, g = I and
h(y) = (1−α)y+α/K. We defer the connection between
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SPROUT and VRM to the next section.

SPROUT: Scalable Robust Training
In this section, we formally introduce SPROUT, a novel ro-
bust training method that automatically finds a better vicinal
risk function during training in a self-progressing manner.

Self-Progressing Parametrized Label Smoothing
To stabilize training and improve model generalization,
Szegedy et al. (2016) introduces label smoothing that con-
verts one-hot label vectors into one-warm vectors repre-
senting low-confidence classification, in order to prevent a
model from making over-confident predictions. Specifically,
the one-hot encoded label y is smoothed using

ỹ = (1− α)y + αu (5)

where α ∈ [0, 1] is the smoothing parameter. A com-
mon choice is the uniform distribution u = 1

K , where K
is the number of classes. Later works (Wang and Zhang
2019; Goibert and Dohmatob 2019) use an attack-driven
label smoothing function u to further improve adversarial
robustness. However, both uniform and attack-driven label
smoothing disregard the inherent correlation between la-
bels. To address the label correlation, we propose to use
the Dirichlet distribution parametrized by β ∈ RK+ for la-
bel smoothing. Our SPROUT learns to update β to find a
training label distribution that is most uncertain to a given
model θ, by solving

max
β

L(x̃, ỹ,β; θ) (6)

where ỹ = Dirichlet((1 − α)y + αβ). Notably, instead of
using a pre-defined or attack-driven function for u in label
smoothing, our Dirichlet approach automatically finds a la-
bel simplex by optimizing β. Dirichlet distribution indeed
takes label correlation into consideration as its generated la-
bel z = [z1, . . . , zK ] has the statistical properties

E[zs] =
βs
β0
, Cov[zs, zt] =

−βsβt
β2
0(β0 + 1)

,
K∑
s=1

zs = 1 (7)

where β0 =
∑K
k=1 βk and s, t ∈ {1, . . . ,K}, s 6= t. More-

over, one-hot label and uniform label smoothing are our
special cases when β = y and β = u, respectively. Our
Dirichlet label smoothing co-trains with the update in model
weights θ during training (see Algorithm 1).

Gaussian Data Augmentation and Mixup
Gaussian augmentation. Adding Gaussian noise to data
samples during training is a common practice to im-
prove model robustness. Its corresponding vicinal func-
tion is the Gaussian vicinity function ν(x̃i, ỹi|xi,yi) =
N (xi,∆

2)δ(ỹi = yi), where ∆2 is the variance of a stan-
dard normal random vector. However, the gain of Gaussian
augmentation in robustness is marginal when compared with
adversarial training (see our ablation study). Shafahi et al.
(2019) finds that combining uniform or attack-driven label
smoothing with Gaussian smoothing can further improve

Algorithm 1 SPROUT algorithm

Input: Training dataset (X,Y ), Mixup parameter λ,
Gaussian augmentation variance ∆2, model learning rate
γθ, Dirichlet label smoothing learning rate γβ and param-
eter α, generalized cross entropy loss L
Initial model θ: random initialization (train from scratch)
or pre-trained model checkpoint
Initial β: random initialization
for epoch=1, . . . , N do

for minibatch XB ⊂ X,YB ⊂ Y do
XB ← N (XB ,∆

2)
Xmix, Ymix ←Mixup(XB , YB , λ)
Ymix ← Dirichlet(αYmix + (1− α)β)
gθ ← ∇θL(Xmix, Ymix, θ)
gβ ← ∇βL(Xmix, Ymix, θ)
θ ← θ − γθgθ
β ← β + γβgβ

end for
end for
return θ

adversarial robustness. Therefore, we propose to incorpo-
rate Gaussian augmentaion with Dirichlet label smoothing.
The joint vicinity function becomes ν(x̃i, ỹi|xi,yi,β) =
N (xi,∆

2)δ(ỹi = Dirichlet((1 − α)yi + αβ)). Training
with this vicinity function means drawing labels from the
Dirichlet distribution for the original data sample xi and its
neighborhood characterized by Gaussian augmentation.
Mixup. To further improve model generalization, SPROUT
also integrates Mixup (Zhang et al. 2018) that performs con-
vex combination on pairs of training data samples (in a mini-
batch) and their labels during training. The vicinity function
of Mixup is ν(x̃, ỹ|xi,yi) = δ(x̃ = (1− λ)xi + λxj , ỹ =
(1−λ)yi+λyj), where λ ∼ Beta(a, a) is the mixing param-
eter drawn from the Beta distribution and a > 0 is the shape
parameter. The Mixup vicinity function can be generalized
to multiple data sample pairs. Unlike Gaussian augmenta-
tion which is irrespective of the label (i.e., only adding noise
to xi), Mixup aims to augment data samples on the line seg-
ments of training data pairs and assign them convexly com-
bined labels during training.
Vicinity function of SPROUT. With the aforementioned
techniques integrated in SPROUT, the overall vicinity func-
tion of SPROUT can be summarized as ν(x̃, ỹ|xi,yi,β) =
δ(x̃ = λN (xi,∆

2) + (1 − λ)N (xj ,∆
2), ỹ =

Dirichlet((1− α)((1− λ)yi + λyj) + αβ).
In the experiment, we will show that Dirichlet label

smoothing, Gaussian augmentation and Mixup are comple-
mentary to enhancing robustness by showing their diversity
in input gradients.

SPROUT Algorithm
Using the VRM framework, the training objective of
SPROUT is

min
θ

max
β

n∑
i=1

L(ν(x̃i, ỹi|xi,yi,β); θ), (8)
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where θ denotes the model weights, n is the number of
training data, L is the generalized cross entropy loss de-
fined in (4) and ν(x̃, ỹ|xi,yi,β) is the vicinity function
of SPROUT. Our SPROUT algorithm co-trains θ and β via
stochastic gradient descent/ascent to solve the outer mini-
mization problem on θ and the inner maximization problem
on β. In particular, for calculating the gradient gβ of the
parameter β, we use the Pytorch implementation based on
(Figurnov, Mohamed, and Mnih 2018). SPROUT can either
train a model from scratch with randomly initialized θ or
strengthen a pre-trained model. We find that training from
either randomly initialized or pre-trained natural models us-
ing SPROUT can yield substantially robust models that are
resilient to large perturbations (see Appendix). The training
steps of SPROUT are summarized in Algorithm 1.

We also note that our min-max training method-
ology is different from the min-max formulation in
adversarial training (Madry et al. 2018), which is
minθ

∑n
i=1 maxδi:‖δi‖p≤ε L(xi + δi,yi; θ), where ‖δi‖p

denotes the `p norm of the adversarial perturbation δi.
While the outer minimization step for optimizing θ can be
identical, the inner maximization of adversarial training re-
quires running multi-step PGD attack to find adversarial per-
turbations {δi} for each data sample in every minibatch
(iteration) and epoch, which is attack-specific and time-
consuming (see our scalability analysis in Table 6). On the
other hand, our inner maximization is upon the Dirichlet pa-
rameter β, which is attack-independent and only requires
single-step stochastic gradient ascent with a minibatch to
update β. We have explored multi-step stochastic gradient
ascent on β and found no significant performance enhance-
ment but increased computation time.

Advantages of SPROUT. Comparing to adversarial
training, the training of SPROUT is more efficient and scal-
able, as it only requires one additional back propagation to
update β in each iteration (see Table 6 for a run-time anal-
ysis). As highlighted in Figure 1, SPROUT is also more
comprehensive as it automatically improves robustness in
multiple dimensions owing to its self-progressing training
methodology. Moreover, we find that SPROUT significantly
outperforms adversarial training and attains larger gain in
robustness as network width increases (see Figure 3), which
makes SPROUT a promising approach to support robust
training for a much larger set of network architectures.

Performance Evaluation
Experiment Setup
Dataset and network structure. We use CIFAR-10 and Im-
ageNet (Deng et al. 2009) for performance evaluation. For
CIFAR-10, we use both standard VGG-16 (Simonyan and
Zisserman 2015) and Wide ResNet. The Wide ResNet mod-
els are pre-trained PGD-`∞ robust models given by adver-
sarial training and TRADES. For VGG-16, we implement
adversarial training with the standard hyper-parameters and
train TRADES using the official implementation. For Ima-
geNet, we use ResNet-152.
Implementation details. As suggested in Mixup (Zhang
et al. 2018), we set the Beta distribution parameter a = 0.2

when sampling the mixing parameter λ. For Gaussian aug-
mentation, we set ∆ = 0.1, which is within the suggested
range in (Zantedeschi, Nicolae, and Rawat 2017). Also, we
set the label smoothing parameter α = 0.01. A parameter
sensitivity analysis on λ and α is given in Appendix. Unless
specified otherwise, for SPROUT we set the model initial-
ization to be a natural model. An ablation study of model
initialization is given in ablation study.

Adversarial Robustness under Various Attacks
White-box attacks. On CIFAR-10, we compare the model
accuracy under ε = 0.03 ≈ 8/255 strength of white-box
`∞-norm bounded non-targeted PGD attack, which is con-
sidered as the strongest first-order adversary (Madry et al.
2018) with an `∞-norm constraint ε (normalized between 0
to 1). All PGD attacks are implemented with random starts
and we run PGD attack with 20, 100 and 200 steps in our
experiments. To be noted, we use both PGDX (X-step PGD
with step size ε/5). As suggested, we test our model un-
der different steps PGD and multiple random restarts. In
Table 2, we find SPROUT achieves 62.24% and 66.23%
robust accuracy on VGG16 and Wide ResNet respectively,
while TRADES and adversarial training are 10-20% worse
than SPROUT. Moreover, we report the results of C&W-
`∞ attack (Carlini and Wagner 2017) in Appendix. Next,
we compare against `2-norm based C&W attack by us-
ing the default attack setting with 10 binary search steps
and 1000 iterations per step to find successful perturba-
tions while minimizing their `2-norm. SPROUT can achieve
85.21% robust accuracy under `2 ε = 0.05 constraint while
Adv train and TRADES achieves 77.76% and 82.58% re-
spectively. It verifies that SPROUT can improve `∞ ro-
bustness by a large margin without degrading `2 robust-
ness. SPROUT’s accuracy under C&W-`2 attack is similar
to TRADES and is better than both natural and adversarial
training. The results also suggest that the attack-independent
and self-progressing training nature of SPROUT can prevent
the drawback of failing to provide comprehensive robustness
to multiple and simultaneous `p-norm attacks in adversarial
training (Tramèr and Boneh 2019; Kang et al. 2019).
Transfer attack. We follow the criterion of evaluating trans-
fer attacks in (Athalye, Carlini, and Wagner 2018) to inspect
whether the models trained by SPROUT will cause the is-
sue of obfuscated gradients and give a false sense of ro-
bustness. We generate 10,000 PGD-`∞ adversarial examples
from CIFAR-10 natural models with ε = 0.03 and evaluate
their attack performance on the target model. Table 3 shows
SPROUT achieves the best accuracy when compared with
adversarial training and TRADES, suggesting the effective-
ness of SPROUT in defending both white-box and transfer
attacks.
ImageNet results. As many ImageNet class labels carry
similar semantic meanings, to generate meaningful adver-
sarial examples for robustness evaluation, here we follow
the same setup as in (Athalye, Carlini, and Wagner 2018)
that adopts PGD-`∞ attacks with randomly targeted la-
bels. Table 4 compares the robust accuracy of natural and
SPROUT models. SPROUT greatly improves the robust ac-
curacy across different ε values. For example, when ε =
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VGG-16 Wide-ResNet 20
Methods No attack PGD20 PGD100 PGD200 10 PGD100 No attack PGD20 PGD100 PGD200 10 PGD100

Nat train 93.34% 0.6% 0.1% 0.0% 0.0% 95.93% 0.0% 0.0% 0.0% 0.0%
Adv Train 80.32% 36.63% 36.29% 36.01% 36.8% 87.25% 45.91% 45.32% 45.02% 44.98%
TRADES 84.85% 38.81% 38.21% 37.95% 37.94% 84.92% 56.23% 56.13% 55.96% 56.01%
SPROUT 89.15% 62.24% 58.93% 57.9% 58.08% 90.56% 66.23% 64.58% 64.30% 64.32%

Table 2: The clean and robust accuracy of VGG-16 and Wide-ResNet 20 models trained by various defense methods. All robust
accuracy results use ε = 0.03 ( `∞ perturbation). B PGDA denotes an A-step PGD attack with B random restarts.
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Figure 2: Loss landscape comparison of different training methods

Method VGG 16 Wide ResNet
Adv Train 79.13% 85.84%
TRADES 83.53% 83.9%
SPROUT 86.28% 89.1%

Table 3: Robust accuracy of CIFAR-10 under transfer attack

Method Clean Acc ε = 0.005 ε = 0.01 ε = 0.015
Natural 78.31% 37.13% 9.14% 2.12%

SPROUT 74.23% 65.24% 52.86% 35.04%

Table 4: Accuracy of ImageNet under PGD-`∞ attack

0.01, SPROUT boosts the robust accuracy of natural model
by over 43%. When ε = 0.015 ≈ 4/255, a consider-
ably large adversarial perturbation on ImageNet, SPROUT
still attains about 35% robust accuracy while the natural
model merely has about 2% robust accuracy. Moreover,
comparing the clean accuracy, SPROUT is about 4% worse
than the natural model but is substantially more robust.
We omit the comparison to adversarial training methods as
we are unaware of any public pre-trained robust ImageNet
models of the same architecture (ResNet-152) prior to the
time of our submission, and it is computationally demand-
ing for us to train and fine-tune such large-scale networks
with adversarial training. On our machine, training a nat-
ural model takes 31,158.7 seconds and training SPROUT
takes 59,201.6 seconds. Comparing to the run-time analy-
sis, SPROUT has a much better scalability than adversarial
training and TRADES.

Loss Landscape Exploration
To further verify the superior robustness using SPROUT, we
visualize the loss landscape of different training methods in

Figure 2. Following the implementation in (Engstrom, Ilyas,
and Athalye 2018), we vary the data input along a linear
space defined by the sign of the input gradient and a ran-
dom Rademacher vector, where the x- and y- axes represent
the magnitude of the perturbation added in each direction
and the z-axis represents the loss. One can observe that the
loss surface of SPROUT is smoother. Furthermore, it attains
smaller loss variation compared with other robust training
methods. The results provide strong evidence for the capa-
bility of finding more robust models via SPROUT.

Invariance Test
In addition to `p-norm bounded adversarial attacks, here we
also evaluate model robustness against different kinds of
input transformations using CIFAR-10 and Wide ResNet.
Specifically, we change rotation (with 10 degrees), bright-
ness (increase the brightness factor to 1.5), contrast (increase
the contrast factor to 2) and make inputs into grayscale
(average all RGB pixel values). The model accuracy un-
der these invariance tests is summarized in Table 5. The re-
sults show that SPROUT outperforms adversarial training
and TRADES. Interestingly, natural model attains the best
accuracy despite the fact that it lacks adversarial robustness,
suggesting a potential trade-off between accuracy in these
invariance tests and `p-norm based adversarial robustness.

Method Rotation Brightness Contrast Gray
Natural 88.21% 93.4% 91.88 % 91.95%

Adv Train 82.66% 83.64% 84.99% 81.08%
TRADES 80.81% 81.5 % 83.08% 79.27%
SPROUT 85.95% 88.26 % 86.98% 81.64%

Table 5: Accuracy under invariance tests
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Methods CIFAR-10
VGG 16 Wide ResNet

Natural 146.7 1449.6
Adv Train 1327.1 14246.1
TRADES 1932.5 22438.4
SPROUT 271.7 2727.8

Table 6: Training-time (seconds) for 10 epochs

Scalability
SPROUT enjoys great scalability over adversarial training
based algorithms because its training requires much less
number of back-propagations per iteration, which is a domi-
nating factor that contributes to considerable run-time in ad-
versarial training. Table 6 benchmarks the run-time of dif-
ferent training methods for 10 epochs. On CIFAR-10, the
run-time of adverarial training and TRADES is about 5×
more than SPROUT.

Ablation Study
Dissecting SPROUT. Here we perform an ablation study us-
ing VGG-16 and CIFAR-10 to investigate and factorize the
robustness gain in SPROUT’s three modules: Dirichlet la-
bel smoothing (Dirichlet), Gaussian augmentation (GA) and
Mixup. We implement all combinations of these techniques
and include uniform label smoothing (LS) (Szegedy et al.
2016) as another baseline. Their accuracies under PGD-`∞
0.03 attack are shown in Table 7. We highlight some impor-
tant findings as follows.
• Dirichlet outperforms uniform LS by a significant factor,
suggesting the importance of our proposed self-progressing
label smoothing in improving adversarial robustness.
• Comparing the performance of individual modules alone
(GA, Mixup and Dirichlet), our proposed Dirichlet attains
the best robust accuracy, suggesting its crucial role in train-
ing robust models.
• No other combinations can outperform SPROUT. More-
over, the robust gains from GA, Mixup and Dirichlet appear
to be complementary, as SPROUT’s accuracy is close to the
sum of their individual accuracy. To justify their diversity in
robustness, we compute the cosine similarity of their pair-
wise input gradients and find that they are indeed quite di-
verse and thus can promote robustness when used together.
The details are given in Appendix.
Effect on network width. It was shown in (Madry et al.
2018) that adversarial training (Adv Train) will take ef-
fect when a network has sufficient capacity, which can be
achieved by increasing network width. Figure 3 compares
the robust accuracy of SPROUT and Adv Train with vary-
ing network width on Wide ResNet and CIFAR-10. When
the network has width = 1 (i.e. a standard ResNet-34 net-
work (He et al. 2016)), the robust accuracy of SPROUT and
Adv Train are both relatively low (less than 47%). However,
as the width increases, SPROUT soon attains significantly
better robust accuracy than Adv Train by a large margin
(roughly 15%). Since SPROUT is more effective in boost-
ing robust accuracy as network width varies, the results also

Methods VGG 16
PGD20 PGD100

GA 12.44% 9.46%
Mixup 0.76% 0.08%

Dirichlet 29.64% 9.77%
GA+Mixup 41.88% 40.29%

Mixup+Dirichlet 17.53% 7.97%
GA+Dirichlet 55.27% 53.79%
Uniform LS 15.36% 5.12%

SPROUT 62.64% 58.93%

Table 7: Robust accuracy under `∞ 0.03 strength with dif-
ferent combinations of the modules in SPROUT.
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Figure 3: Effect of network width against PGD-`∞ attack on
CIFAR-10 and ResNet-34.

suggest that SPROUT can better support robust training for
a broader range of network structures.

Conclusion
This paper introduced SPROUT, a self-progressing robust
training method motivated by vicinity risk minimization.
When compared with state-of-the-art adversarial training
based methods, our extensive experiments showed that the
proposed self-progressing Dirichlet label smoothing tech-
nique in SPROUT plays a crucial role in finding substan-
tially more robust models against `∞-norm bounded PGD
attacks and simultaneously makes the corresponding model
more generalizable to various invariance tests. We also find
that SPROUT can strengthen a wider range of network
structures as it is less sensitive to network width changes.
Moreover, SPOURT’s self-adjusted learning methodology
not only makes its training free of attack generation but also
becomes scalable solutions to large networks. Our results
shed new insights on devising comprehensive and robust
training methods that are attack-independent and scalable.
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