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Abstract

Multi-view outlier detection recently attracted rapidly grow-
ing attention with the development of multi-view learning.
Although promising performance demonstrated, we observe
that identifying outliers in multi-view data is still a challeng-
ing task due to the complicated characteristics of multi-view
data. Specifically, an effective multi-view outlier detection
method should be able to handle (1) different types of out-
liers; (2) two or more views; (3) samples without clusters; (4)
high dimensional data. Unfortunately, little is known about
how these four issues can be handled simultaneously. In this
paper, we propose an unsupervised multi-view outlier detec-
tion method to address these issues. Our method is based on
the proposed novel neighborhood consensus networks termed
NC-Nets, which automatically encodes intrinsic information
into a comprehensive latent space for each view (for issue
(4)) and uniforms the neighborhood structures among differ-
ent views (for issue (2)). Accordingly, we propose an outlier
score measurement which consists of two parts: the within-
view reconstruction score and the cross-view neighborhood
consensus score. The measurement is designed based on the
characteristics of the different outlier types (for issue (1)) and
no cluster assumption is needed (for issue (3)). Experimen-
tal results show that our method significantly outperforms
state-of-the-art methods. On average, our method achieves
11.2% ∼ 96.2% improvement in term of AUC and 33.5% ∼
352.7% improvement in term of F1-Score.

Introduction
Unsupervised outlier detection aims at identifying outliers
in a given dataset without labels, which has been intensively
studied and widely used in various applications, such as
medical diagnosis (Wang et al. 2019), fraud detection (Wang
et al. 2018), and information security (Kang et al. 2019;
Wang and Ma 2014), to name just a few. In recent decades,
a number of outlier detection methods have been proposed
including distance-based methods, density-based methods,
and clustering-based methods (Aggarwal 2015; Wang et al.
2013). These outlier detection algorithms are designed for
data from one source, i.e., single-view data.

Nowadays, data are usually collected from diverse
sources and features from a particular source are regarded as
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Figure 1: Illustration of three types of outliers: (i) attribute
outlier (the red triangle): outlier that exhibits consistent ab-
normal behaviors in each view; (ii) class outlier(the red
diamond): outlier that exhibits inconsistent characteristics
(e.g., cluster membership) across different views; (iii) class-
attribute outlier(the red square): outlier that exhibits consis-
tent abnormal behaviors in some views, while exhibits in-
consistent characteristics across some other views.

a particular view. Multi-view learning approaches can utilize
the complementary information across various views and ex-
plore the consensus property to get better performance than
their single-view counterparts (Xu, Wang, and Lai 2016;
Tang et al. 2020; Sheng et al. 2019; Ji et al. 2019; Zhao et al.
2017). Although promising performance has been demon-
strated in existing methods, detecting outliers from multi-
view data is still a challenging problem due to the com-
plicated distribution and inconsistent behavior of samples
across different views. Specifically, based on the characteris-
tics of multi-view data and existing literature, we argue that
there are four important issues that need to be addressed:
• I1 handle different types of outliers: there are three types

of outliers, i.e., attribute outlier, class outlier and class-
attribute outlier, as illustrated in Figure 1;

• I2 handle two or more views: there are usually more than
two data sources, which indicates that the detection pro-
cess could not be conducted in a pairwise manner and
should be easily extended to multiple views;

• I3 handle samples without clusters: there may exist no
clusters in complex data, thus the commonly used cluster
membership is no longer effective;

• I4 handle high dimensional data: there are quite a num-
ber of features that could be extracted in practical appli-
cations. Such data may contain a few abundant features,
leading to unsatisfying detection performance.
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Method I1 I2 I3 I4
HOAD(Gao et al. 2011) × × × ×
CC(Liu and Lam 2012) ×

√
× ×

AP(Marcos Alvarez et al. 2013) × × × ×
DMOD(Zhao and Fu 2015)

√
× × ×

CRMOD(Zhao et al. 2017)
√ √

× ×
LDSR(Li and Li 2018)

√ √
× ×

MODDIS(Ji et al. 2019)
√ √ √

×
MUVAD(Sheng et al. 2019)

√
×

√
×

Our method
√ √ √ √

Table 1: The comparisons between existing methods and our
proposed method on solving the issues. The value is

√
if the

method can address this issue and × otherwise.

A number of methods have been proposed for multi-view
outlier detection (Gao et al. 2011; Liu and Lam 2012; Mar-
cos Alvarez et al. 2013; Zhao and Fu 2015; Zhao et al. 2017;
Li and Li 2018). Early methods usually identify outliers in
a pairwise manner, leading to serious complications when
faced with three or more views. Most existing methods rely
on the clustering assumption: multiple views of inliers share
consistent clustering structures while class outliers tend to
fall into different clusters and attribute outliers consistently
deviate from all clusters w.r.t. different views. Apparently,
such methods failed to detect outliers when there are no
clusters in data. Recently, a nearest neighbor-based outlier
measurement criterion has been proposed in (Sheng et al.
2019) to handle data without clusters. It uses the naive dis-
tance calculation on the original features, which is risky due
to the high-dimensionality and possible noise involved. The
method in (Ji et al. 2019) is the first one to adopt neural net-
works into multi-view outlier detection. It tries to learn an
intact space that preserves the original pairwise distances,
which may be biased in high-dimensional data. Besides, its
objective is not designed for outlier detection, leading to
unsatisfying performance. In summary, to the best of our
knowledge, there is still a lack of methods that can simul-
taneously address the aforementioned four issues (see Table
1), which makes the outlier detection problem on multi-view
data more challenging. It motivates us to find out an integral
solution to solve all four issues together.

In this paper, we propose a neighborhood consensus net-
works based multi-view outlier detection method, termed
NCMOD. The key advantage of NCMOD lies in the joint
consideration of within-view reconstruction and the cross-
view neighborhood consensus. Specifically, the major con-
tributions of this paper are summarized as follows:
• We propose a novel Neighborhood Consensus Networks

framework for multi-view outlier detection, which can
encode intrinsic information into a comprehensive latent
space for each view and uniform neighborhood structures
among different views. Learning an effective latent space
enables NCMOD to handle high-dimensional data (issue
I4) and such a learning strategy allows our model to con-
veniently handle two or more views (issue I2).
• We propose an outlier score measurement which consists

of two parts: the within-view reconstruction score and the
cross-view neighborhood consensus score. The measure-

ment is designed according to the characteristics of the
three outlier types (issue I1) and no cluster assumptions
are needed. Consequently, NCMOD can handle data that
have no clusters (issue I3).
• To the best of our knowledge, NCMOD is the first multi-

view outlier detection method to adopt neural networks
with direct outlier detection objective. Extensive experi-
mental results verify the superiority of NCMOD.

Related Work
Outlier detection is an important research topic in machine
learning and data mining (Aggarwal 2015; Wang and Li
2006). Various methods have been proposed for outlier de-
tection (Aggarwal and Yu 2001; Knorr, Ng, and Tucakov
2000; Breunig et al. 2000; Schölkopf et al. 2001; Liu, Ting,
and Zhou 2008; Keller, Muller, and Bohm 2012). However,
most existing outlier detection methods are designed for
single-view data.

The pioneering work on this topic is horizontal anomaly
detection (HOAD) method (Gao et al. 2011). HOAD can
be regarded as performing constrained spectral clustering in
each view firstly and then finding instances that belong to
different clusters in different views. Two similar clustering
based methods were proposed in (Liu and Lam 2012; Mar-
cos Alvarez et al. 2013), aiming at detecting class outliers
by exploring the inconsistency of clustering results across
multiple views. As a result, these methods are only de-
signed to detect class outliers. Zhao and Fu proposed Dual-
Regularized Multi-View Outlier Detection (DMOD) (Zhao
and Fu 2015), which represents multi-view data with la-
tent coefficients and sample-specific errors and character-
ize each type of outlier explicitly. The above models have
a common disadvantage that they must identify outliers in
a pairwise manner, leading to serious complication prob-
lem when faced with three or more views. To overcome the
pairwise constraints, an enhanced version of DMOD is pro-
posed, name CRMOD (Zhao et al. 2017), which uses a con-
sensus cluster indicator rather than a dual one. Another low-
rank subspace learning based method detects the outliers by
learning a latent discriminant representation for each view
data and defining a novel outlier score function based on the
latent discriminant representations of all views. However, all
the previous methods are based on cluster assumption and
can not effectively handle data with no clusters. There is also
another low-rank analysis based method MLRA (Li, Shao,
and Fu 2015). We do not detail it since it is a supervised
method that makes use of class labels.

Most recently, a nearest neighbor-based outlier measure-
ment criterion has been proposed in (Sheng et al. 2019) to
handle data without clusters. Since it uses the naive distance
calculation on the original data, the performance may drop
on high dimensional data because of the “curse of dimen-
sionality”. Our proposed NCMOD fills this gap by jointly
considering mapping from heterogeneous views into a com-
prehensive latent space and uniforming neighborhood struc-
tures among different views. The method in (Ji et al. 2019) is
the first one to adopt neural networks into multi-view outlier
detection. But its objective is to integrate multi-view data
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Figure 2: Overview of the proposed NC-Nets. The key components are the within-view reconstruction and the cross-view
neighbor consensus. Within-view reconstruction automatically extracts features for each view with the intrinsic information
preserved (the blue arrows), while cross-view neighborhood consensus tries to uniform the neighborhood structure of differ-
ent views (the orange arrows). The joint consideration of reconstruction error and neighborhood distance in the latent space
can characterize the multi-view outliers explicitly. For instance, we can easily identify the sample with id 5 as an outlier by
comparing the consensus adjacent matrix and the adjacent matrix for each view.

into a latent intact space, which is not designed for outlier
detection, leading to unsatisfying performance.

The Proposed Algorithm
In this section, we present the NCMOD for outlier detection
with a set of multi-view samples X = {X1,X2, . . . ,XV },
where Xv ∈ Rdv×N is the feature matrix of the v-th view.
V , n and dv are the number of views, number of samples and
number of features for the v-th view, respectively. Specifi-
cally, Xv = {xv

1,x
v
2, . . . ,x

v
N} where xv

i is the i-th sample
of the v-th view.

The recent success and powerful learning capacity of neu-
ral networks on high dimensional data naturally motivate
the use of neural networks. The key goal of NC-Nets (as
presented in Figure 2) is to recover a latent space that can
well reveal the neighborhood structure of data across mul-
tiple views. The proposed model jointly learns representa-
tion for each single view and the consistent neighborhood
structure for all the views. Then, the intrinsic information
of each view is automatically extracted with the within-view
networks, while the neighborhood consensus involved be-
tween cross-view networks ensures the neighborhood struc-
tures of all views are similar. Based on the analysis of the
three types of outliers, we adopt the combination of recon-
struction error and neighborhood distance in the latent space
as the outlier score measurement.

Neighborhood Consensus Networks
We adopt the autoencoder (AE) networks in the within-view
part, the reasons of using AE networks are: (1) since no su-
pervised information is provided to guide the learning pro-
cess, we employ AE networks instead of general neural net-
works to ensure the intrinsic information to be preserved in
the learned latent space; (2) with variants of AE (e.g., con-
volutional autoencoder for images), our model has the po-

tential to be extended to multiple real world applications;
(3) for existing multi-view outlier detection models, outlier
scoring is usually directly based on the given features, which
is risky due to the high-dimensionality and possible noise in-
volved. The introduced encoding networks could extract in-
trinsic information to be encoded into the latent representa-
tion instead of the original high-dimensional/noisy features.

For simplicity, the AE network for the v-th view is de-
noted as (fv(·);hv(·)), where fv(·), hv(·) are the encoder
and decoder, respectively. Let Z = f(X) be the latent space,
X̂ = h(f(X)) be the recovered representations of AE. To
preserve the intrinsic information in the low dimensional la-
tent space, we should minimize the reconstruction loss:

min
{fv,hv}Vv=1

V∑
v=1

N∑
i=1

||xvi − x̂vi ||2 (1)

where x̂v
i is the recovered representation of xv

i .
Inspired by the works (Sheng et al. 2019; Keller, Muller,

and Bohm 2012), we use k nearest neighbors to refer to the
neighborhood structure, which indicates that an inlier have
similar k nearest neighbors across different views while an
outlier does not. We first define the adjacent matrix for the
v-th view:

Gv
ij =

{
1, zvj ∈ knn(zvi ),
0, otherwise. (2)

where knn(z) denotes the k nearest neighbors of z.
Accordingly, the goal is to equalize Gv and Gu for each

pair (u, v). To overcome the pairwise constraints, we change
the aim to approximate all the adjacent matrices to a consen-
sus adjacent matrix G∗. In other words, the goal becomes
finding a consensus adjacent matrix G∗ which minimizes
the neighbors’ distances for each view:

min
G∗

V∑
v=1

N∑
i,j=1

G∗ij ||zvi − zvj ||2 (3)
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Considering that the elements in the k nearest neigh-
bors may have different affinities, which indicates that they
should have different weights in the objective. We use the
commonly used Gauss kernel based affinity matrix rather
than adjacent matrix:

Aij =

{
exp(−

∑V
v=1 ||z

v
i−zvj ||

2

2δ2
),G∗ij = 1,

0, otherwise.
(4)

where δ is the bandwidth parameter and we set δ = 1.0 by
default for simplicity.

Then we can get the final objective of the proposed NC-
Nets:

min
G∗,f,h

L =

V∑
v=1

N∑
i=1

(||xvi − x̂vi ||2 + α

N∑
j=1

Aij ||zvi − zvj ||2)

s.t. G∗ij ∈ {0, 1},
N∑
j=1

G∗ij = k

Aij = G∗ij ∗ exp(−
∑V
v=1 ||z

v
i − zvj ||2

2δ2
)

(5)

where α is the trade-off parameter.

Outlier Scoring
On one hand, multi-view data may provide abundant in-
formation, especially on high-dimensional data which may
contain a few abundant features; on the other hand, it should
provide consistent information since they are describing the
same samples from different perspectives. In particular, for
the task of outlier detection, the consistency refers to similar
neighborhood structures. Thus it is natural to assume that:
if we can remove the abundant information by mapping the
original view onto a low-dimensional latent space, the mul-
tiple views of an inlier have similar neighborhood structures.
With the learned latent representations, we propose a novel
outlier scoring strategy:

s(xi) = sr(xi) + sn(xi) (6)

where

sr(xi) =

V∑
v=1

||xvi − x̂vi ||2

sn(xi) =

V∑
v=1

N∑
j=1

G∗ij ||zvi − zvj ||2
(7)

are respectively the reconstruction error and the sum of k
nearest neighbors’ distances. This strategy helps to identify
all the three types of outliers simultaneously. The analysis is
given as follows:
• For an inlier xi, its reconstruction errors on all the views

should be small since inlier is the majority, resulting in a
small value of sr(xi); since it is consistent across multiple
views, its neighborhood structure in one view should be
similar to the consensus one, which would give a small
value of sn(xi). Thus the value of s(xi) should be small.

• For an attribute outlier xi, since it is consistently anoma-
lous and dissimilar to the majority of samples in each
view, both its reconstruction error and neighborhood dis-
tances are large. Consequently, the values of both sr(xi)
and sn(xi) are large, leading to a large value of s(xi).

Algorithm 1 Optimization of NCMOD
Input: Multi-view input.
Output: AE Networks (fv(·);hv(·))Vv=1,

Consensus Adjacent Matrix G∗.
1: Initialize (fv(·);hv(·))Vv=1;
2: repeat
3: Update G∗ by optimizing Equation (8);
4: Update A by Equation (4);
5: for v = 1→ V do
6: Update (fv(·);hv(·)) by Equation (9);
7: end for
8: until convergence
9: return {(fv(·);hv(·))}Vv=1, G∗.

• For a class outlier xi, since it is inconsistent across mul-
tiple views, its neighborhood structure in one view could
be dissimilar to it in the other view. Thus, it is difficult
to find an optimal G∗ for xi, leading to a large value of
sn(xi). Then the value of s(xi) should be large, too.

• For a class-attribute outlier xi, it is easy to derive that
the values of both sr(xi) and sn(xi) are large since it
contains the characteristics of both attribute outlier and
class outlier. Thus the value of s(xi) should be large, too.
The above strategy adopts the neighborhood structure of

data rather than the cluster structures. Consequently, it can
handle data that have no clusters. By taking both the within-
view reconstruction and cross-view neighborhood consen-
sus into account, it explicitly captures the characteristics of
all the three types of multi-view outliers.

Optimization
The optimization of our proposed NCMOD is summarized
in Algorithm 1. We first pre-train the deep AE without the
neighborhood consensus part on all multi-view data because
the initial value of G∗ is unknown. We then use the pre-
trained parameters to initialize the consensus adjacent ma-
trix G∗. There are multiple blocks of variables in our prob-
lem, and the objective function of our NCMOD is not jointly
convex for all these variables. Therefore, we optimize our
objective function by employing Alternating Direction Min-
imization (ADM) strategy (Lin, Liu, and Su 2011; Zhang,
Liu, and Fu 2019). To adopt the ADM strategy, the opti-
mization is cycled over the following three steps: updating
the consensus adjacent matrix G∗, updating the affinity ma-
trix A and updating the AE networks {(fv(·);hv(·))}Vv=1
by fixing the other blocks of variables. The optimization for
each step is as follows:

Updating the consensus adjacent matrix G∗. When f
and h are fixed, we can obtain the latent representation Z

and the recovered representation X̂, then the optimization
of G∗ can be simplified as:

min
G∗

L =

N∑
i=1

N∑
j=1

V∑
v=1

G∗ij ||zvi − zvi ||2

s.t. G∗ij ∈ {0, 1},
N∑
j=1

= k

(8)
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the above problem is a k nearest neighbors searching prob-
lem, which can be efficiently solved by several algorithms
such as kd-tree, ball-tree, and so on(Bhatia et al. 2010).

Updating the affinity matrix A. When G∗, f and h are
given, A can be easily recalculated by Equation (4).

Updating the networks {(fv(·);hv(·))}Vv=1. When A is
fixed, the gradients of NCMOD for the back propagation
are:

∂L

∂hv
=

N∑
i=1

2(hv(fv(xvi ))− xvi )

∂L

∂fv
=

N∑
i=1

2(hv(fv(xvi ))− xvi )
∂hv

∂x
(fv(xvi ))

+ α

N∑
i=1

N∑
j=1

2Aij(f
v(xvi )− fv(xvj ))

(9)

Experiments
Setup
For experimental purposes, we follow the way in the previ-
ous work (Zhao et al. 2017; Sheng et al. 2019) to generate
multi-view data with three types of outliers in given outlier
ratios and make some reasonable changes to the generation
of attribute outliers. Given a standard benchmark with mul-
tiple classes, we first randomly choose N samples from two
or three classes(”inlier class”) as the original dataset. The
remained classes are called “outlier class” here. Then the
original features are split into a serial of feature subsets, each
corresponding to a view. For instance, to generate two view
data, we can cut a D-dimension sample and take features of
the first bD2 c dimensions as the first view and the other di-
mensions as the second view. The next step is to generate
outliers. For attribute outliers, we randomly select samples
and replace features of all D dimensions in all views with
an object randomly sampled from “outlier classes”, which is
different from existing works that use random values. This
is because replacing with random values is too biased when
compared to the original pattern and too easy to detect in our
empirical tests. For class outliers, we randomly take some
pairs of samples and swap feature vectors in bV2 c views
while keeping feature vectors in the other views unchanged.
For class-attribute outliers, we also randomly choose some
pairs of samples, swap feature vectors in bV2 c views, and
replacing features with values of randomly sampled objects
from the “outlier classes” in the other views.

Three widely used high dimensional benchmarks are
used: MNIST, REUTERS, TTC, and the dimensionality of
them are respectively 784, 2000 and 7507. We generate var-
ious datasets with a fixed size of N = 1000 by different set-
tings of outlier ratios and number of views. The datasets are
formatted as ”BenchmarkAbbr+id”. For BenchmarkAbbr,
”M”, ”R” and ”T” denotes MNIST, REUTERS and TTC, re-
spectively. And the ”id” refers to different ratios of attribute
outlier(ρ1), class outlier(ρ2) and class-attribute outlier(ρ3),
which is shown in Table 2. For instance, ”M1” is generated
from MNIST with 2% attribute outlier, 5% class outlier and
8% class-attribute outlier.

id ρ1 ρ2 ρ3
1 0.02 0.05 0.08
2 0.02 0.08 0.05
3 0.05 0.02 0.08
4 0.05 0.08 0.02
5 0.08 0.02 0.05
6 0.08 0.05 0.02

Table 2: The settings of outlier ratios for different id.

We compare our proposed NCMOD with seven state-of-
the-art methods: OCSVM (Schölkopf et al. 2001), HOAD
(Gao et al. 2011), DMOD (Zhao and Fu 2015), CRMOD
(Zhao et al. 2017), MUVAD (Sheng et al. 2019), LDSR
(Li and Li 2018) and MODDIS (Ji et al. 2019). Notably,
OCSVM is a representative approach for single-view out-
lier detection and we include it to investigate the perfor-
mance of single-view approach on multi-view data. As for
OCSVM, multiple views are first concatenated into one sin-
gle view and then used as input. MUVAD is complex and
there is no available source code online. We only imple-
ment the naı̈ve version which uses both inliers and outliers to
calculate the outlier scores. However, our method also uses
both inliers/outliers and the learned latent representations
can also be fed into the MUVAD, thus it is still a meaning-
ful comparison. The methods are all implemented in Python
3.4 executed at a PC in a 3.6GHz CPU with 16GB mem-
ory. All the source codes, including the proposed NCMOD,
the competitors and datasets generation, are provided in the
supplementary.

As for evaluation, we adopt the commonly-used Area
under the Receiver Operating Characteristic Curve (AUC)
as threshold-independent metric, and F1-Score (F1) as
threshold-dependent metric (Cheng et al. 2020; Gupta et al.
2013; Wang et al. 2017). The threshold is set as the outlier
ratio, i.e., 0.15. The higher the two metrics are, the better the
approach performs.

Comparison Results
We compare AUC and F1 values of the NCMOD and its
competitors as shown in Table 3 and 5. According to the
experimental results, we have the following observations:
• In most cases, our proposed NCMOD performs better

than other competitors. And NCMOD significantly out-
performs other baselines on average.

• Some multi-view outlier detection methods, i.e. HOAD,
DMOD and CRMOD, failed to work on high-dimensional
data. The later methods, i.e., MUVAD, LDSR and MOD-
DIS, have relatively good performance.

• In general, the detection performance of 3-view case is
slightly worse than that of 2-view case.
The above observations are within expectation. For the 2-

view case, NCMOD gets the best performance on 15 and
13 of 18 datasets in terms of AUC and F1 respectively,
while the performance on the other ones is close to the best.
NCMOD averagely performs better than seven competitors
with 11.2% ∼ 96.2% improvement in term of AUC. And in
term of F1, the average improvements are 33.5% ∼ 349.3%.
For the 3-view case, NCMOD gets the best performance
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OCSVM HOAD DMOD CRMOD MUVAD-s LDSR MODDIS NCMOD
Data AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
M1 0.572 0.173 0.503 0.133 0.267 0.033 0.311 0.033 0.934 0.707 0.963 0.773 0.617 0.247 0.929 0.707
M2 0.654 0.280 0.461 0.127 0.365 0.047 0.366 0.053 0.906 0.600 0.935 0.693 0.687 0.307 0.916 0.607
M3 0.731 0.327 0.471 0.133 0.169 0.000 0.233 0.000 0.920 0.633 0.927 0.620 0.746 0.293 0.953 0.727
M4 0.578 0.253 0.522 0.167 0.358 0.053 0.388 0.047 0.754 0.453 0.752 0.533 0.615 0.267 0.768 0.427
M5 0.633 0.247 0.491 0.141 0.269 0.020 0.303 0.020 0.823 0.533 0.824 0.527 0.706 0.340 0.867 0.593
M6 0.639 0.240 0.564 0.153 0.311 0.020 0.319 0.020 0.871 0.647 0.849 0.580 0.699 0.273 0.909 0.660
R1 0.595 0.280 0.495 0.154 0.371 0.087 0.380 0.080 0.779 0.380 0.432 0.187 0.624 0.273 0.913 0.713
R2 0.463 0.187 0.542 0.194 0.514 0.140 0.527 0.200 0.704 0.273 0.533 0.287 0.548 0.233 0.920 0.687
R3 0.649 0.347 0.544 0.175 0.324 0.113 0.335 0.113 0.736 0.407 0.420 0.187 0.602 0.287 0.858 0.513
R4 0.610 0.333 0.493 0.135 0.358 0.120 0.377 0.133 0.680 0.267 0.492 0.287 0.580 0.260 0.890 0.613
R5 0.436 0.120 0.504 0.165 0.527 0.167 0.526 0.173 0.823 0.400 0.446 0.167 0.703 0.320 0.827 0.487
R6 0.453 0.120 0.475 0.142 0.518 0.173 0.520 0.180 0.684 0.340 0.435 0.220 0.569 0.253 0.761 0.507
T1 0.456 0.120 0.599 0.160 0.612 0.227 0.613 0.220 0.480 0.120 0.647 0.300 0.456 0.113 0.602 0.193
T2 0.545 0.167 0.509 0.120 0.553 0.213 0.553 0.213 0.577 0.185 0.650 0.307 0.538 0.167 0.662 0.260
T3 0.559 0.167 0.533 0.307 0.314 0.078 0.314 0.079 0.598 0.160 0.409 0.240 0.568 0.180 0.642 0.293
T4 0.531 0.160 0.435 0.133 0.528 0.193 0.533 0.193 0.537 0.185 0.539 0.213 0.531 0.153 0.655 0.293
T5 0.517 0.173 0.509 0.080 0.603 0.267 0.603 0.267 0.550 0.173 0.601 0.340 0.512 0.173 0.612 0.427
T6 0.506 0.153 0.506 0.157 0.296 0.044 0.311 0.074 0.450 0.127 0.429 0.253 0.523 0.187 0.560 0.253

Avg. 0.563 0.214 0.509 0.154 0.403 0.111 0.417 0.117 0.711 0.366 0.627 0.373 0.601 0.240 0.791 0.498
∆(%) 40.6 133.0 55.5 222.9 96.2 349.3 89.5 327.3 11.2 36.0 26.2 33.5 31.5 107.2 - -

Table 3: Detection performance on on datasets with 2-view split. The best results are in bold. AVG is the average performance
of a method over all datasets, and ∆ is the improvement of NCMOD compared to the corresponding competitor.

on 13 and 16 of 18 datasets in terms of AUC and F1 re-
spectively, while the performance on the other ones is close
to the best. NCMOD averagely performs better than seven
competitors with 13.3% ∼ 81.3% improvement in term of
AUC. And in term of F1, the average improvements are
49.1% ∼ 352.7%. These results are due to the reason that
NCMOD effectively captures the characteristics of all the
three types of outliers on high dimensional data, resulting
in high-quality outlier rankings.

As single-view outlier detection methods can not cap-
ture the inconsistency across multiple views, OCSVM ob-
tains poor performance on multi-view datasets. By making
full use of the multi-view data representation in the latent
space, our proposed NCMOD better characterizes all the
three types of outliers across views. Different from HOAD,
DMOD, CRMOD and LDSR that adopt inconsistent clus-
ter membership to evaluate the outlierness, our proposed
method abandons this clustering assumption. This enables
NCMOD to successfully handle data without cluster struc-
tures, substantially reduce its detection errors and obtain
significant detection improvement. Among these four meth-
ods, LDSR achieves relatively better performance on some
datasets, e.g., M2, M3, T1. This is because LDSR actually
utilizes multi-view subspace clustering technique, which
could alleviate the problem caused by high dimensionality.
MUVAD adopts a nearest neighbor-based outlier measure-
ment criterion and makes no assumption on the clustering
structures. Consequently, it can handle data that have no
clusters and achieve relatively good performance. However,
the naive distance calculation on the original features may
becomes ineffective, especially on high dimensional data.
Thus NCMOD performs much better than MUVAD. MOD-
DIS is the first one to introduce neural networks into multi-
view outlier detection. It integrates multi-view data into a

AUC F1
M R T M R T

AE 0.629 0.544 0.547 0.247 0.197 0.196
NC 0.692 0.491 0.533 0.341 0.285 0.157

NCMOD 0.884 0.834 0.616 0.607 0.540 0.232

Table 4: Ablation study. Due to space limit, we only report
the average performance over the three benchmarks, i.e.,
MNIST(M), REUTERS(R) and T(TTC).

latent intact space that preserves sufficient irregularities of
samples. Unfortunately, the objective of MODDIS is not di-
rectly served for outlier detection, leading to unsatisfying
performance. In our proposed NC-Nets, the objective is di-
rectly designed for outlier detection, which consequently en-
sures good performance of NCMOD.

Furthermore, let us take a closer look at the Table 3 and
5. By averaging the performance of all outlier settings in 2-
view case, we get the mean AUC and F1 as 0.791 and 0.498
for the proposed NCMOD. While these numbers are 0.764
and 0.433 for 3-view case. The reasons could be: (1) the
more views make the data group structure more disordered
than that in 2-view case, which further influence the accu-
racy of neighborhood consensus; (2) The ratio of abnormal
features in 3-view case is lower than that in 2-view case. For
instance, 1/3 features are swapped for the class-outlier in 3-
view case. And in 2-view case, the ratio is 1/2, which makes
the anomaly easier to be identified.

Ablation Study
To verify the effectiveness of within-view reconstruction
part and cross-view neighborhood consensus part, we con-
duct the ablation study with respect to the proposed NC-
MOD. AE represents the proposed model without neighbor-
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OCSVM HOAD DMOD CRMOD MUVAD-s LDSR MODDIS NCMOD
Data AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
M1 0.584 0.213 0.493 0.173 0.208 0.007 0.380 0.027 0.851 0.487 0.890 0.593 0.647 0.233 0.896 0.607
M2 0.619 0.213 0.543 0.220 0.227 0.013 0.272 0.013 0.913 0.673 0.931 0.673 0.633 0.213 0.913 0.687
M3 0.756 0.380 0.500 0.327 0.280 0.013 0.236 0.027 0.862 0.533 0.902 0.727 0.779 0.433 0.878 0.587
M4 0.588 0.220 0.479 0.207 0.429 0.080 0.386 0.067 0.839 0.473 0.846 0.527 0.647 0.260 0.881 0.593
M5 0.637 0.260 0.445 0.133 0.374 0.053 0.370 0.047 0.776 0.420 0.833 0.513 0.687 0.313 0.822 0.527
M6 0.678 0.353 0.539 0.307 0.340 0.053 0.300 0.067 0.848 0.487 0.838 0.533 0.709 0.413 0.871 0.567
R1 0.570 0.293 0.506 0.120 0.402 0.153 0.425 0.140 0.653 0.260 0.374 0.107 0.561 0.287 0.823 0.473
R2 0.497 0.180 0.469 0.153 0.478 0.147 0.484 0.147 0.727 0.347 0.385 0.047 0.600 0.347 0.888 0.607
R3 0.432 0.173 0.551 0.147 0.586 0.240 0.554 0.180 0.616 0.313 0.313 0.093 0.474 0.213 0.771 0.480
R4 0.542 0.280 0.503 0.167 0.434 0.147 0.440 0.140 0.645 0.320 0.357 0.087 0.583 0.320 0.810 0.433
R5 0.450 0.153 0.503 0.153 0.550 0.180 0.544 0.167 0.658 0.347 0.370 0.060 0.569 0.293 0.729 0.473
R6 0.401 0.133 0.512 0.167 0.612 0.287 0.578 0.207 0.742 0.353 0.269 0.100 0.623 0.300 0.822 0.493
T1 0.565 0.193 0.525 0.167 0.478 0.140 0.477 0.127 0.580 0.200 0.603 0.213 0.570 0.180 0.585 0.213
T2 0.518 0.147 0.477 0.127 0.521 0.160 0.519 0.147 0.510 0.160 0.631 0.327 0.515 0.133 0.584 0.167
T3 0.580 0.147 0.509 0.180 0.514 0.180 0.517 0.167 0.600 0.147 0.453 0.120 0.568 0.147 0.623 0.200
T4 0.528 0.147 0.522 0.167 0.543 0.146 0.543 0.153 0.543 0.133 0.503 0.160 0.519 0.153 0.590 0.207
T5 0.609 0.193 0.518 0.220 0.482 0.120 0.474 0.093 0.652 0.233 0.367 0.080 0.601 0.193 0.646 0.233
T6 0.529 0.113 0.472 0.187 0.396 0.051 0.400 0.064 0.551 0.127 0.342 0.127 0.554 0.147 0.628 0.240

Avg. 0.560 0.211 0.504 0.185 0.436 0.121 0.439 0.110 0.698 0.334 0.567 0.283 0.602 0.254 0.764 0.433
∆(%) 41.2 136.5 57.0 169.8 81.3 313.1 80.3 352.7 13.3 49.1 39.5 76.2 31.4 95.8 - -

Table 5: Detection performance on on datasets with 3-view split. The best results are in bold. AVG is the average performance
of a method over all datasets, and ∆ is the improvement of NCMOD compared to the corresponding competitor.

Figure 3: The performance curve w.r.t k.

hood consensus part while NC refers to the one without AE.
As presented in Table 4, NCMOD substantially outperforms
NC, which numerically indicates that we cannot ignore the
intrinsic information. Besides, our proposed method con-
sistently performs better than AE, which validates that the
neighborhood consensus can successfully capture the char-
acteristics of multi-view outlier. In sum, both within-view
reconstruction part and cross-view neighborhood consensus
part contribute to the enhancement of the proposed model in
terms of multi-view outlier detection performance.

Parameters Sensitivity
To analyze the impacts of the parameters on the detection
performance of NCMOD, We plot both the average AUC
and F1 values over the three benchmarks with respect to
nearest neighbors number k and trade-off parameter α. As
shown in Figure 3 and 4, we present the parameter tuning
with different values for k and α. It is observed that the
promising performance could be expected when the values
of k and α are within a wide range and our method is fairly
robust with various values of k and α. We set k = 8 and
α = 1.0 as default.

Figure 4: The performance curve w.r.t α.

Conclusion
We propose a novel neighborhood consensus networks
based unsupervised multi-view outlier detection method,
termed NCMOD. NCMOD automatically encode intrinsic
information of each view into a comprehensive latent space
with consensus neighborhood structures. Accordingly, we
propose an outlier score measurement to characterize the
three types of multi-view outliers. Extensive experimental
results verify the superiority of the proposed NCMOD.
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