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Abstract

Deep spiking neural network (DSNN) is a promising compu-
tational model towards artificial intelligence. It benefits from
both the DNNs and SNNs through a hierarchy structure to ex-
tract multiple levels of abstraction and the event-driven com-
putational manner to provide ultra-low-power neuromorphic
implementation, respectively. However, how to efficiently
train the DSNNs remains an open question because of the
non-differentiable spike function that prevents the traditional
back-propagation (BP) learning algorithm directly applied to
DSNNs. Here, inspired by the findings from the biological
neural networks, we address the above-mentioned problem
by introducing neural oscillation and spike-phase information
to DSNNs. Specifically, we propose an Oscillation Postsy-
naptic Potential (Os-PSP) and phase-locking active function,
and further put forward a new spiking neuron model, namely
Resonate Spiking Neuron (RSN). Based on the RSN, we pro-
pose a Spike-Level-Dependent Back-Propagation (SLDBP)
learning algorithm for DSNNs. Experimental results show
that the proposed learning algorithm resolves the problems
caused by the incompatibility between the BP learning algo-
rithm and SNNs, and achieves state-of-the-art performance
in single spike-based learning algorithms. This work inves-
tigates the contribution of introducing biologically inspired
mechanisms, such as neural oscillation and spike-phase infor-
mation to DSNNs and providing a new perspective to design
future DSNNs.

Introduction
Deep neural networks (DNNs) have achieved great success
in computer vision(He et al. 2016), natural language pro-
cessing(Young et al. 2018; Ghaeini et al. 2018; Lee and
Li 2020), speech processing(Abdel-Hamid et al. 2014; Lam
et al. 2019) and other fields(Liu et al. 2018; Shao, Liew,
and Wang 2020). The hierarchical organization inspired by
the biological brain enables DNNs to extract multiple lev-
els of features and the back-propagation (BP) learning al-
gorithm offers an efficient global learning method. How-
ever, DNNs’ training performs highly rely on large-scale
computing resources (e.g., GPUs and server cluster). The
high requirements for hardware devices limit the deploy-
ment of DNNs on power-critical computation platforms,
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such as edge devices. Spiking neural networks (SNNs) sim-
ulate the biological brain at neuronal level and hold the
potential of ultra-low-power neuromorphic implementation
through event-driven computation. Besides, the spiking neu-
rons model the signal processing of biological neurons in
more detail, then the SNNs model can capture more types of
information such as neural oscillation and spike phase infor-
mation. The study of deep spiking neural networks (DSNNs)
benefits from both DNNs and SNNs, and is a promising way
towards human-level artificial intelligence. However, how to
efficiently train DSNNs remains an open question as the bi-
nary nature of spike train and non-differentiable spike func-
tion limit usage of BP learning algorithm. To resolve this
problem, many learning algorithms and training strategies
have been proposed. Depending on the training mechanisms,
they can be divided into three categories.

The first category adopts the ANN-SNN transformation
strategy, which means that the parameters of a pre-trained
ANN are transplanted to the SNN with a similar structure
(Esser et al. 2015; Hunsberger and Eliasmith 2015; Esser
et al. 2016; Peter et al. 2013; Liu, Chen, and Furber 2017;
Diehl et al. 2015, 2016; Bodo et al. 2017; Rueckauer and
Liu 2018; Han, Srinivasan, and Roy 2020). The original in-
tention of this transformation strategy is to make full use
of the state-of-the-art ANNs, and make the converted SNN
have a comparable performance. However, these attempts do
not meet the expectation that the loss of accuracy caused
by approximation in the transformation process seems in-
evitable. Although some mitigation strategies have been pro-
posed, such as weight/activation normalization (Diehl et al.
2015, 2016; Bodo et al. 2017) and additional noise (Peter
et al. 2013; Liu, Chen, and Furber 2017), the problem is not
completely resolved. Furthermore, in order to better match
the activation of ANNs, the corresponding SNNs normally
use the spike rate coding, which means that the SNN needs
to generate a relatively large number of spikes, resulting in
obscure time information of spike activity and huge energy
consumption (Mostafa 2017).

The second category is the local learning method based
on spike-timing-dependent plasticity (STDP), an unsuper-
vised form of synaptic plasticity observed in different brain
areas. This category update DSNNs layer-by-layer so that
derivative transport between layers in BP is not needed. Be-
sides, STDP updates synaptic weights by considering the
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time difference between presynaptic and postsynaptic spikes
so that the derivative of spike function is not needed either.
Although STDP is capable of training spiking neuron to de-
tect coincidence spike pattern, like other unsupervised learn-
ing algorithms, it is difficult to recognize rare but diagnostic
unique features. To enhance the neuron’s decision-making
ability, various STDP-variants have been proposed, such as
neuron competition(Kheradpisheh et al. 2018), lateral inhi-
bition, and reward system(Mozafari et al. 2018). However,
the improvements from these methods are limited, and most
of these methods need an external non-spiking encoding
or readout layer, e.g. support vector machines. Thus, these
methods Cannot take full advantage of SNNs.

Different from the above mentioned two categories, the
third category of learning algorithms directly trains the deep
spiking neural networks. The typical examples are Spike-
Prop(Bohte, Kok, and La Poutre 2002) and its various im-
provements(Shrestha and Song 2017a,b; Xu et al. 2013).
By a linear assumption, the problem of non-differentiable
spike function is addressed. However, their methods still suf-
fer from the problems of gradient exploding and dead neu-
rons. These two problems have been partially addressed by
adding extra strategies during the training process, such as
constraints on weights and gradient normalization (Mostafa
2017). In addition, some works resolve these problems
by applying non-leaky PSP function,such as S4NN (Kher-
adpisheh and Masquelier 2020)and STBDP(Zhang et al.
2020b), or multi-bits spikes(Voelker, Rasmussen, and Elia-
smith 2020; Xu et al. 2020). Another path of the third cate-
gory is the surrogate derivatives with the typical examples
of STBP(Wu et al. 2018, 2019; Zhang and Li 2020),and
SLAYER (Shrestha and Orchard 2018; Neftci, Mostafa, and
Zenke 2019). These learning algorithms show competitive
results as compared with their ANN counterparts. However,
the computational and memory demands of these algorithms
are high and the advantage of event-driven learning is not
fully utilized since they need to store the state of neurons at
all times in order to learn.

Recent neuroscience researchers have discovered that
neuron assemblies fire together and synchronize across
brain regions orchestrated by theta oscillations, to en-
code(Battaglia et al. 2011) and process information. Instead
of relying on the increasing firing rates as ANNs, episodic
encoding in hippocampal may rely on the temporal preci-
sion of single-unit firing with respect to the concurrent theta
phase(Hanslmayr, Staresina, and Bowman 2016). A large
number of experimental findings suggest that neurons do not
perform a simple weighted sum of their inputs and fire based
on that sum as in most neural network models. Moreover,
theta phase precession is ubiquitous throughout hippocam-
pal subregions, and has also been observed in the entorhinal
cortex(Bagur and Benchenane 2018). The phase precession
can synchronize the encoding of sequential spatial informa-
tion. These findings raise the possibility that the biological
neuron can be modeled with neural oscillation, and spike-
phase contains important information.

Among the existing learning algorithms, directly training
algorithms adjust the DSNNs’ synaptic weights more effi-
ciently, and are compatible with the sparse encoding method

like temporal coding. Hence, the directly training algorithms
hold the potential of providing an ultra-low-power neuro-
morphic implementation. With these considerations, we fo-
cus on developing a new spiking neuron model to solve
problem proposed before with neural oscillation and spike-
phase information. Our main contributions are summarized
as follows:

1) We analyze the issues that limit the usage of BP
learning algorithm for training DSNNs, including: non-
differentiable spike function, gradient explosion and dead
neurons during training. Based on these understandings,
we propose Oscillation Postsynaptic Potential (Os-PSP) and
phase-locking active function for spiking neurons to solve
these problems with a single spike.

2) Based on the proposed Os-PSP and phase-locking ac-
tive function, we propose a Spike-Level-Dependent Back-
Propagation (SLDBP) learning algorithm for DSNNs. Af-
ter that, we explain how to solve the above mentioned three
problems with the proposed algorithm.

3) We design the XOR problem from both absolute-
oriented and relative-oriented to test the ability of the single-
layer resonate SNN to deal with nonlinear problems. Then
we design resonate DSNN and apply it to MNIST and CI-
FAR10 dataset to test the model’s ability to process real data.

Experimental results demonstrate that the proposed learn-
ing algorithm achieves the state-of-art performance in spike
time based learning algorithms of SNNs. This work explores
the relationship between neural oscillations and phase-
locking from another perspective, providing a new direction
for brain-like computing systems.

Problem Description
The great success of DNNs in multiple fields because of the
BP algorithm, and this arouses the interest of applying the
BP algorithm to DSNN. However, the mechanisms of infor-
mation encoding and processing between typical artificial
neurons in DNNs and SNNs are different. Due to the non-
differential spike function, dead neurons, and gradient ex-
plosion problems, BP cannot be applied to DSNNs directly.
Next, we will discuss these three problems in depth.

In a fully connected DSNN, the dynamic process of a typ-
ical spiking neuron can be expressed as follow. Each spike
fired at tl−1

i by presynaptic neuron i will generate presy-
naptic potential (PSP), and further influence the membrane
potential V l

j (t) of the postsynaptic neuron j according to the
synaptic efficacywl

ij , as in Eq.1. As soon as the accumulated
membrane potential reaches the threshold θ from below, the
postsynaptic neuron fires a spike, like Eq.2. For brevity, we
assume each neuron fires only one spike, and the membrane
potential of a spiking neuron can be expressed as:

V l
j (t) =

N∑
i

wl
ijK(t− tl−1

i ), tl−1
i ≤ t, (1)

tlj = t, if V l
j (t) = θ, (2)

where V l
j (t) is the membrane potential on neuron j in layer l

with N presynaptic neurons, wl
ij is the synaptic efficacy be-

tween presynaptic neuron i and postsynaptic neuron j. The
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Figure 1: Hair trigger problem. The red line shows the
membrane potential of an active spiking neuron which just
reaches the threshold and fires a spike at 0.667s. While the
blue line indicates if the membrane potential is slightly re-
duced, this spiking neuron will remain silent without gen-
erating any output spike. It can be seen from the inserted
figure, the membrane potential reaches the threshold almost
in the horizontal direction.

kernel K controls the shape of PSPs, and a typical one used
in (Gütig 2016) is:

K(s) = Vnorm(exp(
s

τm
)− exp(

s

τs
)). (3)

In order to train DSNN with BP, the derivative of spike
time tlj with respect to synaptic efficacy wl

ij needs to be cal-
culated, and it can be expanded by the chain rule:

∂tlj
∂wl

ij

=
∂tlj
∂V l

j

∂V l
j

∂wl
ij

. (4)

As show in Eq. 2, the discrete spike function is mathe-
matically nondifferentiable, making it impossible to calcu-

late
∂tlj
∂V l

j

in Eq.4. To alleviate this problem, (Bohte, Kok,
and La Poutre 2002) assume the linear relationship between
membrane potential V l

j and spike time tlj within an infinite
tiny time period before tlj , as in Eq.5:

∂tlj
∂V l

j

= −
(∂V l

j

∂tlj

)−1
. (5)

However, the error caused by this approximation will in-
crease with the complexity of the network, and this assump-
tion leads to another problem: gradient exploding.

The gradient explosion problem raises when a spiking
neuron almost fires a spike, which also be known as “hair
trigger” neuron. As shown in Fig.1, the membrane potential
reaches the threshold almost in the horizontal direction, i.e.
∂V l

j

∂tlj
≈ 0, and leads to gradient exploding according to Eq.4

and 5. Various attempts, e.g. adaptive learning rate, limited
gradient strategy(Bohte, Kok, and La Poutre 2002; Mostafa

2017; Luo et al. 2019; Zhang and Li 2020), have been pro-
posed to alleviate the problem, but the problem has not been
completely resolved.

According to Eq.3, the back propagation of the error is
entirely dependent on the firing of the neuron. If the neuron
doesn’t fire, then there’s no error return. In a more extreme
case, if a neuron doesn’t fire a spike for all its synaptic in-
puts, its synaptic weight will never be “pop-up” again and it
becomes a “dead neuron”.

Methods
In this section, we integrate Oscillation Postsynaptic Poten-
tial (Os-PSP) and phase-locking active functions to spik-
ing neurons, and put forward a new spiking neuron model,
namely Resonate Spiking Neuron (RSN) to overcome the
three problems that restrict the usage of BP in DSNNs.
Then we analyze how these three problems are solved with
the proposed RSN. After that, we propose a Spike-Level-
Dependent Back-Propagation (SLDBP) learning algorithm
for DSNNs formed by RSNs.

Resonate Spiking Neuron Model
Inspired by the recent findings that neural oscillation and
phase information play a critical role in information pro-
cessing in brain, we propose the RSN with Oscillation Post-
synaptic Potential (Os-PSP) and phase-locking active func-
tion. Instead of the binary spike representation, we use the
amount of ions al−1

i released by spiking neuron i in one
spike to increase the encoding capacity of spike trains. The
oscillation membrane potential V l

j (t) of RSN j in layer l at
time t can be written as:

V l
j (t) =

∑
i

wl
ija

l−1
i K(t− (tl−1

i + dlij)), (6)

K(s) = al−1
i cos(s), tl−1

i + dlij ≤ t. (7)

As shown in Fig.2, an RSN contains two phases: the col-
lecting phase and the resonating phase. During the collect-
ing phase, the RSN will receive all the ions from presynap-
tic neurons and its membrane potential starts oscillating. In
the resonating phase, the membrane potential of the neuron
will gradually stabilize and show periodicity. The neuron
will spike when the membrane potential reaches its maxi-
mum V j

max in one cycle, the magnitude of the spike a(t) is
related to V j

max at the moment of firing, and then enters a
resting state. In Fig.2 upper, the amplitude of neural oscilla-
tion is reduced when the 3rd and 4th spike coming because
the time of the last two spikes is about half a period T dif-
ferent from the time of the first two spikes. On the contrary,
in Fig.2 lower, with proper delays, all presynaptic potentials
are resonated and generate a much larger membrane poten-
tial oscillation.

The information accuracy that a standard binary spike
train can encode is limited by its breadth (number of neu-
rons, e.g. population coding) and length (time step, e.g.
temporal-based coding or rate-based coding). Inspired by
the phase-lock mechanism found in auditory system, we pro-
posed a phase-locking active function. The relation between
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(a)Input Spikes (b)Synapses (c)Presynaptic Potentials (d)Membrane Potential (e)Phase Diagram

Figure 2: Resonate Spiking Neuron. (a) Input spike train generated by four input neurons. (b) Synaptic weights and delays
are represented by the thickness and length of the arrows, respectively. (c) The presynaptic potential is not only related to the
amount of ions in spike, but also to the spike time and synaptic delay. (d) The resonate spiking neuron accumulates membrane
potential in the first cycle T and then releases a pulse at the crest of the next cycle. (e) The phase diagram corresponding to (d).
The amplitude of neural oscillation is represented by the radius in the figure. The length and radius of the red arrows indicate
the spike size and time, respectively.

ion amount aj(t) of the RSN j and firing time t can be de-
fined by:

aj(t) =

{
F (Vj(t)), Vj(t) = V max

j

0, others
, (8)

where V max
j is the maximum membrane potential in one

cycle. Function F is defined to represent relation between
ion amount aj(t) and Vj(t). The specific formula for the
function F can be set as needed. In this paper, for simplicity,
we define function F as:

F (V ) = V. (9)
According to Eq.6, the RSN membrane potential is not

only related to the amount of ions in spikes, but also to
the time between spikes. When all input neurons fire spikes
at the same time, the resonance scale of the neuron is the
largest, then the RSN will be completely equivalent to ANN.
In contrast, when the time difference between the two input
spikes is exactly half a cycle, the membrane potential oscil-
lations generated by them will inhibit each other, resulting
in the decreased amplitude of the membrane potential oscil-
lations of the neurons.

Through the above mechanism, spike trains between RSN
neurons convey two kinds of information: one is the size of
the spike, which represents the activity level of neurons; the
other one is the relative time of the spike, which represents
the degree of association between different neurons. By ad-
justing the relative delay between neurons, a single neuron
can show both excitation and inhibition.

Next, we analyse how non-differential spike function, gra-
dient explosion and dead neuron problems can be solved
with the proposed RSN.

Solution for the Three Problems
For a DSNN formed with RSN, the binary spike trains are
replaced by the amount of ions, the outputs of DSNN are
ao. When training this DSNN with BP, the derivative of ions
amount with respect to synaptic efficacy can be calculated
as:

∂alj(t
l
j)

∂wl
ij

=
∂alj(t

l
j)

∂V l
j (tlj)

∂V l
j (tj)

∂wl
ij

. (10)

The calculation of non-differential part in Eq.2 is replaced
by Eq.8. The non-differential spike function is solved.

By introducing Eq.8 and Eq.9, the first term
∂al

j(t
l
j)

∂V l
j (t

l
j)

on
the right-hand side of Eq.10 can be calculated as:

∂alj
∂V l

j (tlj)
= 1. (11)

And from Eq.6 the second term
∂V l

j (t
l
j)

∂wl
ij

is:

∂V l
j (tlj)

∂wl
ij

= al−1
i cos(tlj − (tl−1

i + dlij)). (12)

The range of Eq.11 is [−
∑

i a
l−1
i ,

∑
i a

l−1
i ], rather than

(−∞,+∞). The gradient explosion problem caused by trig-
ger neuron is solved.
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As the phase-locking active function defined in Eq.8, RSN
always fires a spike when the membrane potential reaches its
maximum in one cycle in resonating phase. Information can
be fed forward without losing and so does the required error
in BP, which solves the dead neuron problem.

Spike-Level-Dependent Back-Propagation
(SLDBP) for Resonate SNN
The goal of the algorithm is to learn a set of target activity
amounts, denoted ald, at the output neurons for a given set
of input patterns P [a11, .., a

1
i ]. In order to be consistent with

the following vision task experiments, we adopt the cross
entropy error function as the cost function. Given target class
d and actual activity amounts ald, we define the following
loss function L:

L = −log
( exp(ald)∑

j exp(alj)

)
. (13)

Combining Eq.6 and Eq.8, it can be seen that L is a func-
tion of wl

ij and dlij . To apply the BP algorithm, we need to
calculate:

∆wl
ij = −η ∂L

∂wl
ij

, (14)

where η is the learning rate andwl
ij the synaptic weight from

neuron i to neuron j. According to the chain rule, we can get:

∂L

∂wl
ij

=
∂L

∂alj

∂alj
∂wl

ij

. (15)

and from Eq.11 and Eq.12

∂alj
∂wl

ij

= 1 · al−1
i cos(tlj − (tl−1

i + dlij))

= al−1
i cos(tlj − (tl−1

i + dlij)).

(16)

Similar to the traditional BP algorithm, the above weight
adjustment rules can be extended to networks with multiple
hidden layers. Combine Eq.6 and Eq.11, we get:

∂alj

∂al−1
i

=
∂alj

∂V l
j (tlj)

∂V l
j (tlj)

∂al−1
i

= 1 · wl
ijcos(t

l
j − (tl−1

i + dlij))

= wl
ijcos(t

l
j − (tl−1

i + dlij)).

(17)

The synaptic delays can also be adjusted by learning rules
similar to weights, where the difference lies in the calcula-

tion of partial derivatives
∂al

j

∂dl
ij

, which is:

∂alj
∂dlij

=
∂alj

∂V l
j (tlj)

∂V l
j (tlj)

∂dlij

= wl
ija

l−1
i sin(tlj − (tl−1

i + dlij)).

(18)

Figure 3: The XOR problems. (a)(b) Membrane potential
of RSN before and after learning in absolute-oriented XOR
problem. (c)(d) Membrane potential of RSN before and after
learning in relative-oriented XOR problem.

.

Experiments and Results
In this section, we first apply the RSN model to the XOR
problem. Then the proposed learning algorithm is tested on
multiple image data sets. We compare the proposed method
with several recent results with the same or similar network
sizes previously reported, including traditional ANNs, con-
verted SNNs and different SNN’s BP methods.

XOR Problem
In this part, we will apply the RSN model to multiple XOR
problems. As mentioned in previous section, the information
is encoded as the size and time of the spike. The size of the
spike can be used to represent positive and negative classes,
and the time of the spike can be used to represent the rela-
tionship between two inputs. We trained the model for 20
epochs and then test the ability of the model to handle XOR
problems from both absolute-oriented and relative-oriented.

First, we encode True and False as the size of the spike
aTrue = 0.9 and aFalse = 0.1, respectively, and the time
of two corresponding spike events is the same. After that,
we only adjust the weight of a single RSN with two input
neurons, and the delay of each synapse is always 0. The re-
sults are shown in the Fig.3 upper. It can be seen when the
input is False, False or True, True, the activity of RSN
is significantly higher than other cases in Fig.3(b). From the
absolute-oriented, RSN can handle the XOR problem.

Then, we encode the XOR input pattern from relative-
oriented: the size of the spike aTrue = aFalse = 1, which
means that both neurons have input, and the difference is the
time of the spike. The time corresponding to the same input,
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Model Structure Method Accuracy

(Hunsberger and Eliasmith 2016) MLP Converted SNN 98.51%
(Hunsberger and Eliasmith 2016) CNN Converted SNN 99.07%
(Diehl and Cook 2015) CNN STDP SNN 95.00%
(Zhang et al. 2020a) MLP Surrogated SNN 96.80%
(Deng et al. 2020) MLP Surrogated SNN 98.41%
(Deng et al. 2020) CNN Surrogated SNN 99.22%

This work MLP Resonate SNN 98.73%
This work CNN Resonate SNN 99.26%

Table 1: Comparison of the proposed algorithm against other baseline algorithms on MNIST

such as False, False or True, True, is the same, and the
time corresponding to different inputs differs by half a cy-
cle T . This time, we still use a single RSN with two inputs
for testing. The difference is that this time we only learn the
synaptic delay, that is, the relationship between the two in-
puts, and do not care about their specific input size. Fig.3
shows that When the input is False, False or True, True,
the activity of RSN is significantly higher than other cases.

Vision Task
To demonstrate the capability of the proposed model and
learning algorithm, we choose MNIST and CIFAR10, which
are two commonly used datasets for benchmarking vision
classification algorithms. All reported experiments below
are conducted on an NVIDIA 1080 GPU with Pytorch
framework. The experimented SNNs are based on the RSN
model described in the last section and all experiment re-
sults are obtained by repeating the experiments five times.
For the MNIST dataset, we adopted Adaptive moment esti-
mation(Adam) as the optimizer and trained for 150 epochs.
For the CIFAR10 dataset, we adopted Stochastic Gradient
Descent(SGD) as the optimizer and trained for 200 epochs .

Network Structure The network models we trained or
compared with are either multi-layered perceptron(MLP) or
convolutional neural networks(CNNs). These two network
structures are shown in Table.2 with C stands for convolu-
tional layer, P stands for pooling layer and FC stands for
fully a connected layer.

Dataset Network Structure
MNIST 784-400-10
MNIST 6C5-P2-16C5-P2-128FC-10
CIFAR10 64C3-P2-128C3-128C3-P2-256FC-10

Table 2: Network structure used for vision task.

In the spike-pooling layer, we select the spike with the
largest amount and retain its phase information to achieve a
winner-takes-all effect while retaining its temporal informa-
tion with other spike.

Encoding When SNNs are used to process real-world
data, the data should be encoded into spike patterns. Here,
we encode each pixel value of image into spike’s amount ai

directly and time ti base on latency coding method. It should
be noticed that the firing time is limited in [0 · · · 0.5T ], T is
the period of neural oscillation. For example, the input spike
amount corresponding to pixel value of 0.4Imax is ai = 0.4,
and the firing time is ti = 0.4× 0.5T . In this way, the pixel
with higher value in the original image fires a larger spike,
and the pixels with similar value fire at the same time.

Accuracy Table.1 compares the performance of different
network architectures and algorithms on the MNIST dataset.
It can be seen that the proposed algorithm achieves the best
results without additional optimization strategies. The accu-
racy reported below is obtained by repeating the experiments
five times.

Model Method Accuracy
(Nair and Hinton 2010) CNN with ReLU 84.15%
(Sengupta et al. 2019) Converted SNN 76.81%
(Deng et al. 2020) Surrogated SNN 74.23%

This work Resonate SNN 84.87%

Table 3: Comparison of the proposed model against other
baseline models on CIFAR10

Table.3 lists the results of the existing state-of-the-art
SNNs-based learning methods on CIFAR10 dataset. To en-
sure the fairness of the comparison, all the learning algo-
rithms are compared with same network structure as shown
in Table. 2. We use the CNN with ReLU as the activation
function as the baseline, which contains only the convolu-
tional layer and the max-pooling layer. As shown in Table.
3, both conversion and surrogate SNNs-based learning algo-
rithms suffer from accuracy loss because of the approxima-
tion. However, our work achieves an accuracy of 84.87%,
which is 8.06% higher than its counterparts.

Conclusion
In this paper, we put forward a new DSNN model composed
of the proposed RSN that considers the neural oscillation
mechanism and spike-phase information. In addition, we
also propose a Spike-Level-Dependent Back-Propagation
(SLDBP) learning algorithm for DSNNs. Experimental re-
sults demonstrate that the proposed method helps to resolve
the problems caused by the incompatibility between the BP
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learning algorithm and SNNs. We also design both fully-
connected and convolution architectures to compare the pro-
posed algorithm with other state-of-the-art SNN models on
the classical visual processing data sets MNIST and CI-
FAR10. The experimental results show that the proposed
model achieves the best results, and exceeds the best model
by 0.04% and 8.06% respectively on MNIST and CIFAR10.
This work investigates the contribution of introducing bi-
ologically inspired mechanisms, such as neural oscillation
and spike-phase information to DSNNs and providing a new
perspective to design future DSNNs.
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