
THOR, Trace-Based Hardware-Driven Layer-Oriented Natural Gradient Descent
Computation

Mengyun Chen1*, Kaixin Gao2*, Xiaolei Liu2*, Zidong Wang1*, Ningxi Ni1*, Qian Zhang3∗

Lei Chen4†, Chao Ding5, Zhenghai Huang2, Min Wang1,
Shuangling Wang1, Fan Yu1, Xinyuan Zhao3, Dachuan Xu3

1Huawei Technologies Co. Ltd
2Tianjin University

3Beijing University of Technology
4Hong Kong University of Science and Technology

5Chinese Academy of Sciences
chenmengyun1, wang1, niningxi, wangmin106, wangshuangling1, fan.yu@huawei.com

gaokaixin, liuxiaolei, huangzhenghai@tju.edu.cn, zhangqian@emails.bjut.edu.cn
xyzhao, xudc@bjut.edu.cn, leichen@cse.ust.hk, dingchao@amss.ac.cn

Abstract
It is well-known that second-order optimizer can accelerate the
training of deep neural networks, however, the huge compu-
tation cost of second-order optimization makes it impractical
to apply in real practice. In order to reduce the cost, many
methods have been proposed to approximate a second-order
matrix. Inspired by KFAC, we propose a novel Trace-based
Hardware-driven layer-ORiented Natural Gradient Descent
Computation method, called THOR, to make the second-order
optimization applicable in the real application models. Specif-
ically, we gradually increase the update interval and use the
matrix trace to determine which blocks of Fisher Informa-
tion Matrix (FIM) need to be updated. Moreover, by resorting
the power of hardware, we have designed a hardware-driven
approximation method for computing FIM to achieve better
performance. To demonstrate the effectiveness of THOR, we
have conducted extensive experiments. The results show that
training ResNet-50 on ImageNet with THOR only takes 66.7
minutes to achieve a top-1 accuracy of 75.9 % under an 8 As-
cend 910 environment with MindSpore, a new deep learning
computing framework. Moreover, with more computational
resources, THOR can only takes 2.7 minutes to 75.9 % with
256 Ascend 910.

Introduction
Recently, deep learning has made significantly progress in
various computer vision and natural language applications.
However, with the increase of complexity of models, tons of
parameters needed to be trained. For example, according to
[Devlin et al. 2018] and [He et al. 2016], training BERT (over
340 million parameters) and ResNet-50 (over 23 million
trainable parameters) will take around 3 days on 16 TPUv3
and 29 hours on 8 Tesla P100, respectively. Therefore, many
efforts have been put to propose optimization solutions to
reduce the training time.
∗Equal contribution.
†Corresponding author

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Among all the proposed optimization techniques, the most
popular and promising one is Stochastic Gradient Descent
(SGD) [Robbins and Monro 1951], which is a first-order
optimization algorithm. Specifically, SGD tries to minimize
an objective function J(θ) with respect to the parameters θ,
i.e., θ is updated as: θ ← θ − α∇θJ(θ), where ∇θJ(θ) is
gradient, α represents the learning rate.

SGD is difficult to choose proper learning rate. Therefore,
many variants of SGD have been introduced, such as Momen-
tum [Qian 1999], AdaGrad [Zeiler 2012], Adam [Kingma
and Ba 2014], etc. These improved optimization algorithms
can use the historical information of gradient to adaptively up-
date the parameters, making easier to adjust hyper-parameters.
However, considering that the loss function of the neural net-
work is a highly non-convex function and the curvature of
loss surface is unbalanced, using second-order matrix infor-
mation will speed up the convergence.

Specifically, for the second-order optimization algorith-
m, the parameters θ are usually updated by θ ← θ −
αG−1∇θJ(θ), where G−1 is the inverse of second-order
information matrix G. The definitions of G in different
second-order optimization algorithms are not the same. Com-
mon second-order optimization algorithms include Newton’s
method and natural gradient method, where their second-
order information matrix G is Hessian matrix (HM) and
Fisher information matrix (FIM), respectively. The biggest
challenge to use second-order optimizer is that its computa-
tion increases cubically and space cost increases quadratically
compared to SGD. Therefore, it is quite impractical to com-
pute the inverse of second-order information matrix directly.

To reduce the computation cost of the second-order op-
timizer, quite a few approximation approaches have been
proposed. For instance, for Newtons method, Quasi-Newton
methods [Nocedal and Wright 2006] can be used to approxi-
mate the inverse of HM. One of the advantages of these meth-
ods over the classical Newton method is that the HM does
not need to be inverted explicitly. In particular, the Limited-
memory BFGS (L-BGFS) algorithm [Zhu et al. 1997]has

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7046



been implemented and used to speed up the training process
in Deep Neural Networks (DNN) (e.g., [Le et al. 2011]).
Other structured stochastic Quasi-Newton methods are al-
so developed and studied recently in [Keskar and Berahas
2016, Berahas, Jahani, and Takáč 2019]. Another class of
Newton type second-order methods is the Hessian Free opti-
mization method [Martens 2010, Kiros 2013, Pan, Innanen,
and Liao 2017], in which the matrix-free conjugate-gradient
(CG) algorithms are used to approximate the true Hessian
matrix. However, these CG algorithms usually require lots
of iterations to reach the desired accuracy, in particular for
ill-condition cases.

Unlike the Newton type methods, Kronecker-factored Ap-
proximate Curvature (KFAC) [Martens and Grosse 2015,
Grosse and Martens 2016, Martens, Ba, and Johnson 2018]
is a second-order method based on natural gradient method.
More precisely, in KFAC, one computes the inverse of the
FIM by computationally tractable approximations such as
block-diagonal approximation and tridiagonal-block diag-
onal approximation. [George et al. 2018] have introduced
an Eigenvalue-corrected Kronecker Factorization (EKFAC)
which can approximate FIM much better than KFAC does.
[Osawa et al. 2019, 2020] have demonstrated that KFAC is
efficient in large-scale distributed computing for deep neural
networks. Overall, among all these methods, the approxima-
tion scheme for the inverse of FIM is crucial for improving
the efficiency of the second-order optimizer, since the current
exact strategies still require significant computing power in
practice.

To address the issues of inefficient computing FIM, in
this paper, we propose an efficient approximation algorithm
based on natural gradient, named Trace-based Hardware-
driven layer-ORiented Natural Gradient Descent Computa-
tion (THOR), to compute FIM. Firstly, we observe from
experiments that the FIM for each layer usually changes
rapidly in the first few iterations and then tends to be stable.
Therefore, it is reasonable to increase the update interval
of the inverse of FIM in a proper manner without the loss
of convergence rate. Secondly, we make further decision to
decide which blocks of FIM need to be updated. Thirdly, we
introduce a new approximation scheme by using a hardware-
driven matrix splitting scheme to approximate the FIM, which
can be regarded as finding an optimal trade-off point between
the computational efficiency and the information loss of FIM.

Overall, the contributions of our work can be summarized
as follows:
• Under the assumption that the FIM converges to a sta-

tionary distribution, we gradually increase the update interval
of the inverse of FIM to save the overall computational time.
• Instead of using the Frobenius norm based updating

rule proposed in [Osawa et al. 2019], we introduce a more
computationally tractable trace-based updating rule for FIM
for each layer.
• We approximate the block diagonal matrix based on

KFAC to a smaller matrix by splitting matrix dimensions,
which trade the loss of FIM for efficient computation.
• Last but not the least, with THOR, we are able to train

ResNet-50 on ImageNet in 66.7/4.1/2.7 minutes with a top-1
accuracy of 75.9 % using 8/128/256 Ascend 910 on Mind-

Algorithm 1 THOR

Require: TFIM, TINV : FIM and its inverse matrix update
intervals

Require: ω1, ω2: two positive threshold parameters used in
Eq. (9)

Require: size: the split dimension of FIM
Require: α: the learning rate
Require: λ: the damping
Require: l: the number of the networks layers
k ← 0
while convergence is not reached do

for i;i ≤ l;i+ + do
if k ≡ 0 (mod TFIM) then

Update the factors Ai−1 and Gi
end if
if k ≡ 0 (mod TINV) then

Compute ∆k using Eq. (8)
if ∆k is updated according to Eq. (9) then

Using size to split the factors Ai−1 and Gi
according to Eq. (10)
Update the inverse of split matrix Â−1i−1 and Ĝ−1i

end if
end if
θ
(k+1)
i ← θ

(k)
i − α((Â

(k)
i−1 + λI)−1 ⊗ (Ĝ

(k)
i +

λI)−1)∇θiJk
end for
k ← k + 1

end while

return θ

Spore. Furthermore, part of our algorithm has been open
sourced 1, and the code will continue to be improved in the
future.

Background and Notations
The purpose of deep neural network training is to find a set
of model parameters θ ∈ Rn to minimize the loss function
J(θ). Given the cross-entropy loss function:

J(θ) = E[− log p(y|x, θ)], (1)

where x, y are the training input and label, p(y|x, θ) repre-
sents the density function of a predictive distribution Py|x.

The Natural Gradient
Our algorithm is based on the natural gradient proposed by
[Amari 1998]. Natural gradient gives the steepest direction
of the target function when the parameter space has a Rie-
mannian metric structure. In other words, it gives the largest
change of the loss function per unit change of the model. The
distance between the distribution Pθ and Pθ+δθ can be mea-
sured with the K-L divergence. More recent discussion of the
natural gradient can be found in [Martens 2020, Ollivier et al.
2017]. Natural gradient is typically defined as F−1∇θJ(θ),

1THOR: https://gitee.com/mindspore/mindspore/tree/master/
model zoo/official/cv/resnet thor.

7047



where F ∈ Rn×n is FIM. With the predictive distribution
defined as Py|x, FIM is formulated as

F = E[∇θ log p(y|x, θ)∇θ log p(y|x, θ)T ], (2)

It is impractical to compute the inverse of FIM directly in a
deep neural network since it has over millions of parameters.

KFAC
KFAC is an efficient method for approximation natural gra-
dient, which approximates FIM by block-diagonal or block-
tridiagonal matrices. Based on nice motivation and rigorous
mathematical derivation, it has exquisitely settled the prob-
lem of complex computation for inverting the second order
information matrix. [Osawa et al. 2019] have proved that
block-diagonal KFAC has good results in large-scale DNN
and block-diagonal KFAC computes more efficiently than
block tridiagonal. Thus, we focus on block-diagonal KFAC
to approximate FIM in this work.

KFAC is a two-step approximation method. In the first step,
KFAC decomposes the FIM into block matrices according to
the layers of the neural network, by assuming that parameters
of different layers are independent. Then the calculation of
the inverse of FIM is simplified as the inverse of these small
blocks. In the second step, these block matrices are further
approximated by the Kronecker product of two much smaller
matrices which we call Kronecker factors. Since the inverses
of the Kronecker product of two matrices are equal to the
Kronecker product of their inverses, and these two smaller
matrices are easier to calculate and invert than calculating and
inverting the entire block matrix. KFAC greatly simplifies
FIM calculation.

Consider a deep neural network with l layers and denote
the outputs of the i-th layer as si, the inputs of the i-th as
ai−1 which is the activations of previous layer and θi is a
weight vector of i-th layer.

In the first step, KFAC approximates FIM into block ma-
trix:
F ≈ diag(F1, F2, ..., Fl)

= diag
(
E[Dθ1D

T
θ1 ],E[Dθ2D

T
θ2 ], · · · ,E[Dθl , D

T
θl ]
)
,

(3)

where Dθ = −d log p(y|x,θ)
dθ .

In the second step, each block of FIM can be rewritten as

Fi = E[DθiD
T
θi ] = E[ai−1a

T
i−1 ⊗ gigTi ]

≈ E[ai−1a
T
i−1]⊗ E[gig

T
i ] = Ai−1 ⊗Gi,

(4)

where ⊗ denotes the Kronecker product, gi = Dsi ,
Ai−1 = E[ai−1a

T
i−1] andGi = E[gig

T
i ]. Since (A⊗B)−1 =

A−1 ⊗B−1 for any matrices A and B, we can compute the
block-diagonal FIM easily as

F−1
i = (Ai−1 ⊗Gi)−1 = A−1

i−1 ⊗G
−1
i , (5)

Furthermore, KFAC uses a damping technique in [Martens
and Grosse 2015] by adding λI to the Kronecker factors.
Finally, the weight vector θi with i-th layer can be updated
as follows:
θ
(k+1)
i ← θ

(k)
i − α((A

(k)
i−1 + λI)−1 ⊗ (G

(k)
i + λI)−1)∇θiJ

(k),
(6)

where α represents the learning rate.

0 10k 20k 30k 40k

10
-4

10
-2

10
0

10
2

 conv-1

 conv-2

 conv-3

 fc

F
-n

o
r
m

iteration

Figure 1: Changes of the Frobenius norm for FIM. We choose
the fully-connected layer and three different convolution lay-
ers when training the CIFAR-10 dataset on ResNet-18 using
KFAC. We record data every 20 iterations.

THOR
As mentioned in Section Introduction, although KFAC could
accelerate convergence, it still has no advantage on the overal-
l training time compared with first-order optimizer due to the
high computation cost of Kronecker product. To address this
problem, we propose a novel algorithm called Trace-based
Hardware-driven layer-ORiented Natural Gradient Descent
Computation (THOR). In THOR, we first use a gradually
increasing update interval for updating the inverse of FIM.
Second, instead of updating the whole inverse of FIM, we
further determine to update matrix blocks which are guided
by trace-based rules. Finally, by combining with the hard-
ware performance, we trade a little loss of FIM for efficient
approximating the matrix blocks. The detailed steps of the
THOR optimizer are given in Algorithm 1.

Update with Trace Constraint
In order to reduce the computation and achieve faster training,
KFAC and its variants all reduce the frequency of computing
the FIM and its inverse matrix [Martens and Grosse 2015,
Grosse and Martens 2016, George et al. 2018, Zhang et al.
2018, Osawa et al. 2019]. They update the FIM and its in-
verse matrix every few iterations. In particular, [Osawa et al.
2019] discussed the change rate of the FIM on the ResNet-50
network for ImageNet classification, and adopted a heuristic
scheme. They further reduced the update rate after 500 itera-
tions to accelerate training. However, the fixed update is not
highly profitable in the later stage of training. In other words,
the update times in the later training are still very large, which
costs many computing resources but can’t greatly improve
the training effect. Therefore, we propose a new updating
scheme in this subsection.

Figure 1 illustrates the changes of the Frobenius norm for
FIM at each layer. We can clearly observe that the FIM for
each layer changes rapidly in the first few iterations and then
tends to be stable. Based on existing research [Martens and
Grosse 2015, Grosse and Martens 2016, Osawa et al. 2019]
and our experiments, it is reasonable to assume {F k}nk=1 as
a Markov process converging to a stationary distribution π,
where F k represents the FIM updated at the k-th iteration.
Under this assumption, we can gradually increase the update
interval of the FIM and its inverse matrix during training.
However, as shown in Figure 1, some layers tend to stabilize
faster than others, it is too rough to set the same update

7048



split dimension 1 16 32 64 128 256 512 1024 2048
matrix number (L < 1%) 4 4 5 9 13 23 32 46 48

performance (µs) 35 59 83 121 212 534 1418 3738 9824
normalized loss

of matrix 0.0741 0.0741 0.0926 0.1667 0.2407 0.4259 0.5926 0.8519 0.8889

normalized
performance 1 0.6014 0.4276 0.2939 0.1669 0.0664 0.0250 0.0095 0.0036

Table 1: The data about split dimension on ResNet-50 with Ascend 910

interval for all blocks of FIM. Therefore, it is more reasonable
to select which blocks of FIM need to be updated. Moreover,
we can stop updating the FIM and its inverse matrix for
each layer if the FIM becomes stable. For example, if we
stop updating the FIM after the k-th iteration for the i-th
layer, then the parameters will be computed by θ(k+t)i =

θ
(k+t−1)
i − α(F

(k)
i )−1∇θiJ (k), t = 0, 1, 2, · · · .

To determine whether to update or stop updating, we shall
introduce an adaptive trace-based updating rule. In [Osawa
et al. 2019], the Frobenius norm ‖ · ‖F is used to estimate
the changes of FIM for each layer, which does not have good
scalability and may not suitable for large-scale tasks. How-
ever, it is well-known that for any matrix X , the relationship
of its Frobenius norm ‖X‖F and nuclear norm ‖X‖∗ can be
expressed as follows:

‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F , (7)

where r = rank(X) and ‖ · ‖∗ is the nuclear norm [Recht,
Fazel, and Parrilo 2010, Srebro, Rennie, and Jaakkola 2005]
of a matrix(i.e., the sum of singular values of a matrix). It
is well-known that for any matrix X , the trace of the abso-
lute value of matrix X |tr(X)| is also smaller or equal the
nuclear norm ‖X‖∗ and the equality holds if X is a positive
semidefinite matrix. Therefore, |tr(X)| can also be used to
estimate the changes of FIM for each layer. More importantly,
the computational cost of |tr(X)| is linear which means it
has much better scalability. Therefore, in THOR, for the i-th
layer, we further define the following relative change rate:

∆k =

∣∣|tr(F ki + λI)| − |tr(F k−1
i + λI)|

∣∣
|tr(F k−1

i + λI)|
, (8)

Then, we adopt the following trace-based updating scheme of
FIM and its inverse for each layer based on the above relative
change rate ∆k:

update F ki , if ∆k ∈ (ω1,+∞)

do not update F ki and set
F ki = F k−1

i , if ∆k ∈ [ω2, ω1]

stop update F ki and set
F k+ti ≡ F k−1

i for all t = 1, 2, . . . if ∆k ∈ [0, ω2)
(9)

where ω1 and ω2 are two given positive threshold parameters.
In Figure 2 and Figure 3, we demonstrate the changes of

∆k of some layers on two different networks. It can be seen
clearly that ∆k is relatively large at the beginning, and then
fluctuates around a relatively fixed small value after a few it-
erations. For most layers, ∆k lies in the interval (0.001, 0.01)
and fluctuates around 0.001 for some layers. Therefore, we

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-1

(a)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-2

(b)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-3

(c)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 fc

(d)

Figure 2: Change rate vs iterations on ResNet-18. We choose
three different convolution layers and the fully-connected
layer when training the CIFAR-10 dataset using K-FAC. We
record data every 20 iterations.

provide a recommendation of the choices ω1 = 0.01 and
ω2 = 0.001, which have performed well for training, con-
firmed by experiments in Section Experiments. We believe
that it is reasonable to increase the update interval of Fi if
∆k ∈ [0.001, 0.01], and stop updating Fi if ∆k ∈ [0, 0.001).

Hardware-driven Matrix Split
Due to the huge number of parameters existed in the deep
neural networks, the computation of the inverse of Kroneck-
er factors matrix is still very costly (O(l · n3), where l is
number of the network layers and n is the typical dimension
of the Kronecker factors ). To achieve better performance,
we need to make a further approximation of FIM. As FIM
can be treated as a covariance matrix over the gradient Dθ

of the loss function, which is defined in Eq. (3). TONGA
[Roux, Manzagol, and Bengio 2008] makes a block-diagonal
approximation to FIM by assuming independence between
the neurons of a neural network. Similarly, KFAC [Martens
and Grosse 2015] treats Dθi is more “important” to itself
than Dθj does, where j 6= i, which implies that the diag-
onal blocks contain more information for the current layer.
Therefore, in KFAC, one can approximate FIM by using a
block-diagonal matrix in a given layer.

In order to compute FIM more efficiently, in our algorithm,

7049



Momentum KFAC THOR THOR stop THOR NT
Best Test Acc 94.31% 94.42% 95.00% 95.09% 94.40%

Time Per Epoch 13.29s 65.01s 17.64s 17.16s 18.09s
Time(93%) 809.51s 1704.261s 656.84s 622.92s 670.95s
Time(94%) 889.154s 4032.43s 1139.11s 1092.24s 1155.28s
Time(95%) NaN NaN 1555.54s 1350.72s NaN

Table 2: The computational result of ResNet-18 on CIFAR-10

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-1

(a)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-2

(b)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 conv-3

(c)

ch
a

n
g

e 
o

f 
tr

a
ce

iteration

 fc

(d)

Figure 3: Change rate vs iterations on ResNet-50. We choose
three different convolution layers and the fully-connected
layer when training the ImageNet dataset using K-FAC. We
record data every 200 iterations.

we further split the input of the i-th layer’s into j groups
vectors, i.e., a(i−1)1, a(i−1)2, ..., a(i−1)j and assume that d-
ifferent groups a(i−1)s and a(i−1)t are independent, where
s 6= t. As a consequence, the outputs of the i-th layer’s block
split, denoted as si1, si2, . . ., sij , are also independent. Under
the independent assumption, we can approximate the Kro-
necker factorsAi−1 andGi for computing the i-th FIM block
Fi by the following block diagonal matrices:

Âi−1 ≈ diag
(
E[a(i−1)1a

T
(i−1)1],E[a(i−1)2a

T
(i−1)2],

. . . ,E[a(i−1)ja
T
(i−1)j ]

)
,

Ĝi ≈ diag
(
E[Dsi1D

T
si1 ],E[Dsi2D

T
si2 ], . . . ,E[DsijD

T
sij ]
)

≈ diag
(
E[gi1g

T
i1],E[gi2g

T
i2], . . . ,E[gijg

T
ij ]
)
.

(10)

In Figure 4, we compare the difference between the K-FAC
block-diagonal approximation F̃ (Figure 4(a)) and the pro-
posed splitting approximation F̂ (Figure 4(b)). We calculate
the errors of two approximations F̃ and F̂ , which are around
5% after 10 iterations. Interestingly, the relative difference
between two approximations F̃ and F̂ reduces to 1% after
50 iterations. One possible reason is that the independence
assumption is more likely to be satisfied when the proportion
of element value on the diagonal block increases. Obviously,

(a) (b) (c)

Figure 4: A comparison between the KFAC block-diagonal
F̃ and Hardware-driven split matrix F̂ . We use the deep
neural network to train MNIST for 10 iterations. The network
architecture is 768-20-20-20-10, in which the middle three
layers trained with FIM matrix. The dashed line indicate the
separation by layers. (a) is the figure of F̃ , (b) is the figure
of F̂ which split dimension is 10, (c) is the absolute error
between (a) and (b).

the smaller the split dimension, the less time cost on com-
putation (better efficiency), but the larger information loss
compared to original matrix. Therefore, the group number j
is a trade-off between the information loss and computation
efficiency.

The processes of calculating the information loss (loss of
matrix) and the computation efficiency (performance) are
given as follows.
Loss of matrix. First, we set the tolerable information loss to
1% which means the split matrix contains 99% information
of the original Kronecker factors. The information loss L is
measured by the spectral norm, which is defined as follows:

L = 1−

√
λmax(ÂÂT )

λmax(AAT )
, (11)

where λmax(·) is the largest eigenvalue of the matrix,A is the
original matrix, and Â is the split matrix. Second, we count
the number of the matrices whose information loss L is below
1% in each predefined split dimension. Finally, these counts
are normalized by dividing the total number of matrices.
Performance. We measure the time it costs to invert the
matrix of each shape in the predefined split dimensions on
the Ascend 910/Tesla V100. And the normalized performance
of a specific split dimension is defined as follows:

normalizedn =
p1
pn
, (12)

where normalizedn is the normalized performance of a spe-
cific split dimension n, p1 is the performance data of the
matrix with split on the fist dimension.

7050



learning rate damping

αwarmup αtarget ewarmup eend pdecay λ0 ρdecay
BS=256 THOR - 0.045 - 70 6 0.03 0.87
BS=256 THOR stop - 0.050 - 70 6 0.03 0.87
BS=256 THOR NT - 0.045 - 72 6 0.03 0.87
BS=4096 THOR 0.005 0.45 5 55 6 0.3 0.2
BS=8192 THOR 0.01 0.8 5 48 6 0.6 0.3

Table 3: Hyper-parameters of our methods on ImageNet

0 500 1000 1500 2000
split dimension

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 p
e
r
fo

r
m

a
n

c
e

(106,0.21) performance

loss of matrix

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 l
o
s
s
 o

f 
m

a
tr

ix

Figure 5: The trade-off between loss of matrix and perfor-
mance of Ascend 910. In this experiment, the matrix is the
Kronecker factor A from ResNet-50 and the split dimension
list is [1, 16, 32, 64, 128, 256, 512, 1024, 2048]. Normalized
performance 1 represents the best performance while 0 rep-
resents the worst one. And for normalized loss of matrices,
1 represents the maximum loss of the original matrix and 0
represents the minimum loss.

For example, on ResNet-50 with Ascend 910, we set s-
plit dimension list as [1, 16, 32, 64, 128, 256, 512, 1024,
2048] and the total number of Kronecker factors A is 54.
The relevant data are reported in Table 1. Figure 5 plots the
normalized data in Table 1. We can find the intersection point
is (106, 0.21), which represents the trade-off between the
computation efficiency and the loss of the matrix. Thus, we
choose the split dimension as 128 which is the closest point
to the intersection point in the split dimension list.

Experiments

To test the performance, we apply THOR to train ResNet-18
for CIFAR-10 and ResNet-50 for ImageNet. In these experi-
ments, we implement our method in three variants: THOR,
THOR stop with early stopping and THOR NT without trace-
based updating rule. We have compared THOR, THOR stop
and THOR NT with KFAC and Momentum on CIFAR-10.
However, we only compared our methods with Momentum
on ImageNet, since KFAC cannot finish the training in a rea-
sonable time on large model. For example, KFAC takes 2s to
calculate the FIM inversion on Tesla V100 while THOR only
takes 200ms. Please note that we didn’t compare to Adam
because Adam fails to obtain the accuracy of Momentum
for ResNet-50, the highest accuracy achieved by Adam is
73.48% [You et al. 2019]

For all our experiments, we average the results of 5 runs
and we use a normal distribution to generalize the starting
points.

0 1000 2000 3000 4000
split dimension

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 p
e
r
fo

r
m

a
n

c
e

(104,0.21) performance

loss of matrix

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 l
o
s
s
 o

f 
m

a
tr

ix

(a)

0 20 40 60 80
epoch

0

50

100

150

200

250

300

350

400

u
p

d
a
te

 i
n

te
r
v
a
l

THOR

THOR_stop

THOR_NT

(b)

Figure 6: The hyper-parameters of training ResNet-18 on
CIFAR-10. (a) The split dimension list is [1, 9, 18, 36,
72, 144, 288, 576, 1152, 2304, 4608], we set split dimen-
sion as 72. (b) The same update interval of FIM on THOR,
THOR stop and THOR NT.

CIFAR-10
Setup. In this experiment, we use pytorch on 1 Tesla v100
and train ResNet-18 on CIFAR-10 with batch-size 128. Split
dimension and the update interval can be found in Figure 6.
And we set the same learning rate for Momentum, KFAC,
THOR, THOR stop and THOR NT and same damping for
KFAC, THOR, THOR stop and THOR NT. The learning rate
αefor e epoch and the damping λ(e) are defined as follows:

α(e) = 0.1× 10−b
e
30
c,

λ(e) = 0.3× 10−b
e
30
c.

(13)

where b·cmeans the floor function. The weight decay for Mo-
mentum, KFAC, THOR, THOR stop and THOR NT is set to
0.0005. The trace thresholds are set to (ω1, ω2) = (0.01, 0)
for THOR, (ω1, ω2) = (0.01, 0.001) for THOR stop and
(ω1, ω2) = (0, 0) for THOR NT. The update interval for
KFAC is set to 20.
Results. Figure 7 (a) shows that THOR, THOR stop,
THOR NT and KFAC converge faster than Momentum in
the first 30 epochs, and all of them are able to reach high
train accuracy. It can be seen from Figure 7 (c) that THOR,
THOR stop, THOR NT and KFAC are faster than Momen-
tum in the first 30 epochs, and second-order algorithms are
able to achieve higher test accuracy than Momentum. In par-
ticular, THOR can reach 95% test accuracy in this experiment.
Figure 7 (b) shows that, our methods outperform KFAC, but
have no advantage compared to Momentum in terms of the
training loss. However, for test accuracy, THOR is 152.67s
faster, THOR NT is 138.56s faster and THOR stop is 186.59s
faster than Momentum with 93% test accuracy and the sum-
mary of computational results can be seen from Table 2. Note

7051



Momentum THOR THOR stop THOR NT
Best Test Acc 76.04% 75.92% 75.92% 76.00%

Time Per Epoch 90.00s 102.15s 100.05s 103.65s
Time(74.9%) 6569.86s 3674.88s 3405.26s 3747.74s
Time(75.9%) 7020.98s 4083.20s 4004.47s 4148.03s

Table 4: The computational result of ResNet-50 on ImageNet

that in this experiment, for the second-order methods, we use
the same learning rate α as that of Momentum. After adjust-
ing the parameters, we can get better results. For instance,
THOR stop is 435s faster than Momentum when reaching
93% test accuracy by tuning learning rate.

In addition, we also did experiments on EKFAC which
needs to obtain the eigenvalues of the second-order ma-
trix. Therefore, its inversion is based on eigendecomposition,
while THOR and KFAC are based on Cholesky factorization
which is faster than eigendecomposition. Thus, compared
with EKFAC, the advantage of THOR is more obvious that
THOR stop is 3809s faster than EKFAC with 93% test accu-
racy.

Furthermore, we did ablation study to see how frequency
updating strategy, trace-based updating rule and matrix split
affect the results on ResNet-18 + CIFAR-10 and respective-
ly named each improved algorithm as THOR tr, THOR fre
and THOR sp. Our study showed that THOR tr which ac-
celerated 65% compared to original KFAC algorithm on 90
epochs, while THOR fre and THOR sp respectively acceler-
ated 48.5% and 40.5% compared to original KFAC algorithm
on 90 epochs. THOR sp gained lower acceleration since
ResNet-18’s fisher information matrix is much smaller than
other models.

0 20 40 60 80
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tr
a
in

 l
o
s
s

Momentum

KFAC

THOR

THOR_stop

THOR_NT

(a)

101 102 103 104

wall-clock time(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t
r
a
in

 l
o
s
s

Momentum

KFAC

THOR

THOR_stop

THOR_NT

(b)

0 20 40 60 80
epoch

0.4

0.5

0.6

0.7

0.8

0.9

te
s
t 

a
c
c
u

r
a
c
y

Momentum

KFAC

THOR

THOR_stop

THOR_NT

(c)

101 102 103 104

wall-clock time(s)

0.4

0.5

0.6

0.7

0.8

0.9

te
s
t 

a
c
c
u

r
a
c
y

Momentum

KFAC

THOR

THOR_stop

THOR_NT

(d)

Figure 7: ResNet-18 on CIFAR-10. (a) The training loss with
epoch. (b) The training loss with wall-clock time. (c) The test
accuracy with epoch. (d) The test accuracy with wall-clock
time.

0 500 1000 1500 2000
split dimension

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 p
e
r
fo

r
m

a
n

c
e

(106,0.21) performance

loss of matrix

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d

 l
o
s
s
 o

f 
m

a
tr

ix

(a)

0 20 40 60 80
epoch

0.00

0.02

0.04

0.06

0.08

0.10

le
a
r
n

in
g

 r
a
te

Momentum

THOR

THOR_stop

THOR_NT

(b)

0 20 40 60 80
epoch

0.010

0.015

0.020

0.025

0.030

d
a
m
p
in
g

THOR

THOR_stop

THOR_NT

(c)

0 20 40 60 80
epoch

0

1000

2000

3000

4000

5000

u
p

d
a
te

 i
n

te
r
v
a
l

THOR

THOR_stop

THOR_NT

(d)

Figure 8: The hyper-parameters of training ResNet-50 on Im-
ageNet. (a) The split dimension list is [1, 16, 32, 64, 128, 256,
512, 1024, 2048], we set split dimension as 128. (b) Learning
rate on Momentum, THOR, THOR stop and THOR NT. (c)
Damping on THOR, THOR stop and THOR NT. (d) Same
update interval on THOR, THOR stop and THOR NT.

ImageNet
Setup. In this experiment, we implement THOR on Mind-
Spore with 8 Ascend 910 and train ResNet-50 on Ima-
geNet with batch-size 256. The weight decay for these
methods is set to 0.0005 and the label smoothing is set to
0.1. The trace thresholds are set to (ω1, ω2) = (0.01, 0)
for THOR, (ω1, ω2) = (0.01, 0.001) for THOR stop and
(ω1, ω2) = (0, 0) for THOR NT. Split dimension, learning
rate, damping and update interval can be found in Figure 8.
The learning rate α(e) for e epoch is determined as follows:

α
(e)

= αtarget · (1−
e

eend

)
pdecay , (14)

where αtarget is the target learning rate, eend is the end of
decay epoch, pdecay is the decay rate. Figure 9 shows the
impact of target learning rate and decay rate on reaching the
test accuracy after 40 epochs with batch-size 256. For the
larger batch size, the warmup strategy makes the training
result better. The specific strategy is given as follows:

α
(e)

= αwarmup +
αtarget − αwarmup

ewarmup

· e, if e ≤ ewarmup

α
(e)

= αtarget · (1−
e− ewarmup

eend

)
pdecay , if e > ewarmup

(15)

where αwarmup is the initial learning rate, ewarmup is the
end of the warm-up.

7052



Hardware Software Batch size Optimizer Time Accuracy
[He et al. 2016] Tesla P100 × 8 Caffe 256 SGD 29 hr 75.3%

[Goyal et al. 2017] Tesla P100 × 256 Caffe2 8192 SGD 60 min 76.3%
Google 0.7-2 [https://mlperf.org] NVIDIA V100 × 8 TensorFlow 2496 LARS 88.56 min 75.9%

[Osawa et al. 2020] Tesla V100 × 128 Chainer 4096 SP-NGD 32.5min 74.8%
[Osawa et al. 2020] Tesla V100 × 256 Chainer 8192 SP-NGD 16.9min 75.3%

our work Ascend 910 × 8 MindSpore 256 THOR 66.7min 75.9%
our work Ascend 910 × 128 MindSpore 4096 THOR 4.1min 75.9%
our work Ascend 910 × 256 MindSpore 8192 THOR 2.7min 75.9%

Table 5: The result of large batchsize of ResNet-50 on ImageNet

0.000.020.040.060.080.10

target learning rate

4.0

4.5

5.0

5.5

6.0

6.5

7.0

d
e
c
a
y
 r

a
te

 o
f 

le
a
r
n

in
g

 r
a
te

72.5

73.0

73.5

74.0

74.5

75.0

75.5

te
s
t 

a
c
c
u

r
a
c
y

Figure 9: The learning rate of ResNet-50 on ImageNet.

The damping λ adopts the following decreasing rule:

λ
(e)

= λ(0) · ρ
( e
10

)

decay,
(16)

where λ(0) is the initial damping, ρdecay is the decay rate
of the damping.The hyper-parameters for our methods are
shown in Table 3.
Results. Figure 10 (a)(c) show that the convergence speed of
THOR, THOR NT and THOR stop are faster than Momen-
tum. Momentum needs 78 epochs to converge while THOR,
THOR NT, THOR stop only needs 40 epochs; In the Figure
10(b)(d), our methods take less time than Momentum, specif-
ically, THOR needs 68.1min,THOR NT needs 69.1min and
THOR stop only takes 66.7min to converge while Momen-
tum needs 117min, the results show in Table 4. And THOR
is also competitive in the sense of end-to-end training time
with various batch sizes, it takes 4.1min/2.7min to reach test
accuracy 75.9% with batch-size 4096/8192 in Table 5.

Related Work
Second-order optimizer could accelerate convergence but the
computational complexity of the inverse of FIM is O(n3)
(where n is the dimension of FIM). Therefore, various ap-
proximations of the second-order information matrix have
been proposed in recent years. KFAC [Martens and Grosse
2015] approximates the FIM as two much smaller matrices
based on network structure and Kronecker products. How-
ever, it still requires a lot of computing power and does not
have ideal scalability which is crucial for large-scale tasks.
EKFAC [George et al. 2018] tried to solve this problem by
using more accurate eigenvalues to reduce approximate error
than KFAC, but its inversion is based on eigendecomposition
which makes EKFAC slower than KFAC per step. More re-
cently, [Osawa et al. 2019, 2020] implemented an improved
KFAC on ResNet-50 for ImageNet with powerful computa-
tional resources (1024 Tesla V100). In terms of the wall-clock

0 10 20 30 40 50 60 70 80
epoch

2

3

4

5

tr
a
in

 l
o
s
s

Momentum

THOR

THOR_stop

THOR_NT

(a)

1k 2k 3k 4k 5k 6k 7k

wall-clock time(s)

2

3

4

5

t
r
a
in

 l
o
s
s

Momentum

THOR

THOR_stop

THOR_NT

(b)

0 10 20 30 40 50 60 70 80
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
s
t 

a
c
c
u

r
a
c
y

Momentum

THOR

THOR_stop

THOR_NT

(c)

1k 2k 3k 4k 5k 6k 7k

wall-clock time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
s
t 

a
c
c
u

r
a
c
y

Momentum

THOR

THOR_stop

THOR_NT

(d)

Figure 10: ResNet-50 on ImageNet. (a) The training loss with
epoch. (b) The training loss with wall-clock time. (c) The test
accuracy with epoch. (d) The test accuracy with wall-clock
time.

time, the result is quite promising (it takes 5.5min to achieve
a top-1 accuracy of 75.4% on ResNet-50 for ImageNet). In
our work, the proposed methods are more efficient, we train
ResNet-50 on ImageNet to 75.9% in 2.7 minutes with 256
Ascend 910. Moreover, we are able to achieve a top-1 accu-
racy of 75.9% in 66.7 minutes with much less computational
resources (8 Ascend 910) than [Osawa et al. 2019, 2020].

Conclusion
In this paper, we propose the THOR to speed up the con-
vergence. This algorithm assumes FIM will converge to a
stationary distribution and uses the trace of matrix block to in-
crease the update interval of matrix blocks, and makes a more
radical approximation to the matrix block. The experiments
on CIFAR-10 and ImageNet clearly demonstrate that THOR
can converge much faster than Momentum. Especially on
the ImageNet, THOR’s overall time is much less than that of
Momentum. THOR only uses 66.7 minutes to converge with
8 Ascend 910, which only takes half the time of Momentum.
In the future, we will apply THOR to other deep learning
models to speed up their training time, such as BERT [Devlin
et al. 2018] and GPT-2 [Radford et al. 2019].

7053



References
Amari, S.-I. 1998. Natural gradient works efficiently in
learning. Neural Computation 10(2): 251–276.

Berahas, A. S.; Jahani, M.; and Takáč, M. 2019. Quasi-
newton methods for deep learning: Forget the past, just sam-
ple. arXiv preprint arXiv:1901.09997 .

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 .

George, T.; Laurent, C.; Bouthillier, X.; Ballas, N.; and Vin-
cent, P. 2018. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. In Advances in Neural
Information Processing Systems, 9550–9560.

Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski,
L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K. 2017. Accurate,
large minibatch SGD: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677 .

Grosse, R.; and Martens, J. 2016. A kronecker-factored
approximate fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning, 573–582.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.

Keskar, N. S.; and Berahas, A. S. 2016. adaqn: An Adap-
tive Quasi-Newton Algorithm for Training RNNs. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, 1–16. Springer.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 .

Kiros, R. 2013. Training neural networks with stochastic
Hessian-free optimization. arXiv preprint arXiv:1301.3641 .

Le, Q. V.; Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.;
and Ng, A. Y. 2011. On optimization methods for deep
learning. In International Conference on Machine Learning,
265–272.

Martens, J. 2010. Deep learning via Hessian-free optimiza-
tion. In International Conference on Machine Learning,
volume 27, 735–742.

Martens, J. 2020. New Insights and Perspectives on the
Natural Gradient Method. Journal of Machine Learning
Research 21: 1–76.

Martens, J.; Ba, J.; and Johnson, M. 2018. Kronecker-
factored curvature approximations for recurrent neural net-
works. In International Conference on Learning Representa-
tions.

Martens, J.; and Grosse, R. 2015. Optimizing neural net-
works with kronecker-factored approximate curvature. In
International Conference on Machine Learning, 2408–2417.

Nocedal, J.; and Wright, S. 2006. Numerical optimization.
Springer Science & Business Media.

Ollivier, Y.; Arnold, L.; Auger, A.; and Hansen, N. 2017.
Information-geometric optimization algorithms: A unifying

picture via invariance principles. The Journal of Machine
Learning Research 18(1): 564–628.
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Foo, C.; and
Yokota, R. 2020. Scalable and Practical Natural Gradient for
Large-Scale Deep Learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence .
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Yokota, R.; and
Matsuoka, S. 2019. Large-scale distributed second-order
optimization using kronecker-factored approximate curvature
for deep convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 12359–12367.
Pan, W.; Innanen, K. A.; and Liao, W. 2017. Accelerat-
ing Hessian-free Gauss-Newton full-waveform inversion via
L-BFGS preconditioned conjugate-gradient algorithm. Geo-
physics 82(2): R49–R64.
Qian, N. 1999. On the momentum term in gradient descent
learning algorithms. Neural Networks 12(1): 145–151.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multi-
task learners. OpenAI Blog 1(8): 9.
Recht, B.; Fazel, M.; and Parrilo, P. A. 2010. Guaranteed
minimum-rank solutions of linear matrix equations via nucle-
ar norm minimization. SIAM Review 52(3): 471–501.
Robbins, H.; and Monro, S. 1951. A stochastic approximation
method. The Annals of Mathematical Statistics 400–407.
Roux, N. L.; Manzagol, P.-A.; and Bengio, Y. 2008. Top-
moumoute online natural gradient algorithm. In Advances in
Neural Information Processing Systems, 849–856.
Srebro, N.; Rennie, J.; and Jaakkola, T. S. 2005. Maximum-
margin matrix factorization. In Advances in Neural Informa-
tion Processing Systems, 1329–1336.
You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojanapalli,
S.; Song, X.; Demmel, J.; Keutzer, K.; and Hsieh, C.-J. 2019.
Large Batch Optimization for Deep Learning: Training BERT
in 76 minutes. In International Conference on Learning
Representations.
Zeiler, M. D. 2012. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701 .
Zhang, G.; Sun, S.; Duvenaud, D.; and Grosse, R. 2018.
Noisy natural gradient as variational inference. In Interna-
tional Conference on Machine Learning, 5847–5856.
Zhu, C.; Byrd, R. H.; Lu, P.; and Nocedal, J. 1997. Algo-
rithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Transactions on Math-
ematical Software (TOMS) 23(4): 550–560.

7054


