
Addressing Action Oscillations through Learning Policy Inertia

Chen Chen1∗, Hongyao Tang2,1∗, Jianye Hao1,2†, Wulong Liu1, Zhaopeng Meng2

1Noah’s Ark Lab, Huawei
2College of Intelligence and Computing, Tianjin University

chenchen9@huawei.com, bluecontra@tju.edu.cn, {haojianye,liuwulong}@huawei.com, mengzp@tju.edu.cn

Abstract

Deep reinforcement learning (DRL) algorithms have been
demonstrated to be effective in a wide range of challenging
decision making and control tasks. However, these methods
typically suffer from severe action oscillations in particular in
discrete action setting, which means that agents select differ-
ent actions within consecutive steps even though states only
slightly differ. This issue is often neglected since the policy
is usually evaluated by its cumulative rewards only. Action
oscillation strongly affects the user experience and can even
cause serious potential security menace especially in real-
world domains with the main concern of safety, such as au-
tonomous driving. To this end, we introduce Policy Inertia
Controller (PIC) which serves as a generic plug-in framework
to off-the-shelf DRL algorithms, to enables adaptive trade-off
between the optimality and smoothness of the learned policy
in a formal way. We propose Nested Policy Iteration as a gen-
eral training algorithm for PIC-augmented policy which en-
sures monotonically non-decreasing updates under some mild
conditions. Further, we derive a practical DRL algorithm,
namely Nested Soft Actor-Critic. Experiments on a collection
of autonomous driving tasks and several Atari games suggest
that our approach demonstrates substantial oscillation reduc-
tion in comparison to a range of commonly adopted baselines
with almost no performance degradation.

Introduction
Deep reinforcement learning (DRL) has been widely con-
sidered to be a promising way to learn optimal policies
in a wide range of practical decision making and control
domains, such as Game Playing (Mnih et al. 2015; Silver
et al. 2016), Robotics Manipulation (Hafner et al. 2020; Lil-
licrap et al. 2015; Smith et al. 2019), Medicine Discovery
(Popova et al. 2019; Schreck, Coley, and Bishop 2019; You
et al. 2018) and so on. One of the most appealing charac-
teristics of DRL is that optimal policies can be learned in
a model-free fashion, even in complex environments with
high-dimensional state and action space and stochastic tran-
sition dynamics.

∗Equal contributions. This work is done when Hongyao Tang is
an intern at Noah’s Ark Lab, Huawei.
†Corresponding author.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, one important problematic phenomenon of
DRL agent is action oscillation, which means that a well-
trained agent selects different actions within consecutive
steps during online execution though the states only differ
slightly, which leads to shaky behaviors and jerky trajec-
tories. Albeit the agent can achieve good task-specific re-
wards in simulation, the action oscillation may strongly af-
fect the user experience in many practical interactive appli-
cations and exacerbate the wear and tear of a real physical
agent. More crucially, the induced abnormal behavior can
cause potential security menace in such as autonomous driv-
ing scenarios, where safety is the very first requirement. In a
nutshell, action oscillation inhibits the deployment of DRL
agents in many real-world domains.

Action oscillation can be widely observed for both deter-
ministic policies and stochastic policies. For deterministic
policies like Deep Q-Network (DQN) (Mnih et al. 2015), the
underlying causes may come from the complexity of deep
function approximation with high-dimensional inputs and
stochastic noises due to partial observation and random sam-
pling. This issue can be more inevitable for stochastic poli-
cies. For example, an entropy regularizer is often adopted
in policy-based approaches; moreover, maximum entropy
approaches, e.g., Soft Actor-Critic (SAC) (Haarnoja et al.
2018b), take policy entropy as part of optimization objec-
tive. Such approaches encourage diverse behaviors of policy
for better exploration and generalization, thus aggravate the
oscillation in actions in turn. Figure 1 shows two exemplary
scenarios in which ‘unnatural’ and unnecessary oscillations
in actions are often observed for learned policies. It deserves
to note that the action oscillation issue we study in this pa-
per is different from the inefficient shaky or unstructured ex-
ploration behaviors studied in previous works (Sutton and
Barto 2018; Haarnoja et al. 2018b; Korenkevych et al. 2019;
Haarnoja et al. 2018a; Kendall et al. 2019). On the contrary
to exploration, we care about how to address action oscilla-
tion during online execution (i.e., exploitation).

As previously explained, action oscillation is often ne-
glected since mainstream evaluations of DRL algorithms
are based on expected returns, which might be sufficient
for games yet ignores some realistic factors in practical
applications. We are aware that the idea of action repeti-
tion (Durugkar et al. 2016; Lakshminarayanan, Sharma, and
Ravindran 2016; Sharma, Lakshminarayanan, and Ravin-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7020

(a) Atari-Pong (b) Highway-Overtaking

Figure 1: Examples of action oscillation of DRL policies. (a)
In Atari-Pong, a well-performing DQN agent often shows
unnecessary up-down shakes in actions when controlling the
bat; (b) In Highway-Overtaking, a car agent learned by SAC
can have frequent shifts between lane-change (i.e., left and
right) and speed control (i.e., accelerate and decelerate) ac-
tions when driving on the lane.

dran 2017; Metelli et al. 2020) that repeatedly executes a
chosen action for a number of timesteps to improve policy
performance, can potentially be used to alleviate action os-
cillation. To be specific, beyond the usual static frame skip
mechanism, Lakshminarayanan et al. (2016) propose dy-
namic frame skip to jointly learn dynamic repetition num-
bers through extending the action space with different rep-
etition configurations. Similarly in (Durugkar et al. 2016),
an action repetition policy is learned from the perspective
of macro-actions that constitutes the same action repeated a
number of times. Further, Sharma et al. (2017) introduces
FiGAR structure to address the scalability issue of above
works by learning factored policies for actions and action
repetitions separately. Recently, Metelli et al. (2020) analyze
how the optimal policy can be affected by different fixed ac-
tion repetition configurations, and present an algorithm to
learn the optimal value function under given configurations.

In general, action repetition utilizes temporal abstraction,
which offers potential advantage in obtaining smooth poli-
cies. However, temporal abstraction can decrease the sample
efficiency since more simulation steps are needed to meet
the same number of transition experiences when compared
to a flat policy. Besides, it is unclear whether the dynamic
changes in underlying model (i.e., Semi-Markov Decision
Process) will hamper the learning process. From another an-
gle, Shen et al. (Shen et al. 2020) propose to enforce smooth-
ness in the learned policy with smoothness-inducing regu-
larization which can relieve the action oscillation problem
in some degree. However, such constrains cannot guaran-
tee the smoothness of one action sequence during execution,
due to the essential difference of policy smoothness and ac-
tion sequence smoothness.

In this paper, we propose Policy Inertia Controller (PIC)
to address the action oscillation of DRL algorithms in dis-
crete action space setting. PIC serves as a general accessory
to conventional DRL policies (called policy core in the fol-
lowing) that adaptively controls the persistence of last action
(i.e., Inertia) according to the current state and the last ac-
tion selected. A PIC-augmented policy is built in a form of
the linear combination between the distribution of the policy
core and a Dirac distribution putting all mass on the last ac-
tion. Rather than introducing extra regularization and reward
shaping in learning process, such a structure provides a more

direct and fine-grained way of regulating the smoothness of
the policy core at each time step. We also theoretically prove
the existence of a family of smoother policies among PIC-
augmented policies with equivalent or better performance
than the policy core.

Further, we introduce Nested Policy Iteration (NPI) as a
general training algorithm for PIC-augmented policy, con-
sisting of an outer policy iteration process for the PIC mod-
ule and an inner one for policy core that nested in the former.
We show that NPI can achieve monotonically non-decrease
policy updates under some conditions. Finally, we derive a
practical DRL algorithm, namely Nested Soft Actor-Critic
(NSAC), as a representative implementation of PIC frame-
work with Soft Actor-Critic (SAC) algorithm (Haarnoja
et al. 2018b). We demonstrate the effectiveness and superi-
ority of our approach in addressing action oscillation among
a variety of autonomous driving environments in Highway
simulator and several Atari games in OpenAI Gym.

Our main contributions are summarized as follows:

• We propose Policy Inertia Controller (PIC) as a generic
framework to address action oscillation issue, which is of
significance to practical applications of DRL algorithms.

• We propose a novel Nested Policy Iteration as a general
training algorithm for the family of PIC-augmented pol-
icy, as well as analyze the conditions when non-decrease
policy improvement can be achieved.

• Our extensive empirical results in a range of autonomous
driving tasks and Atari game tasks show that our proposed
approach can achieve substantial oscillation reduction at
almost no performance degradation.

Background
Markov Decision Process
We consider a Markov Decision Process (MDP) M :=
〈S ,A, r,P , ρ0, γ, T 〉 where S is the state space, A is the
finite action space, r : S × A → R the bounded reward
function, P : S × A × S → R∈[0,1] is the transition
probability distribution, ρ0 : S → R∈[0,1] is the initial
state distribution, γ is the discount factor that we assume
γ ∈ [0, 1) and T is the episode horizon. The agent interacts
with the MDP at discrete timesteps by performing its policy
π : S × A → R∈[0,1], generating a trajectory of states and
actions, τ = (s0, a0, s1, a1, . . . sT , aT), where s0 ∼ ρ0(s),
at ∼ π(·|st) and st+1 ∼ P(·|st, at). The objective of a re-
inforcement learning agent is to find a policy that maximize
the expected cumulative discounted reward:

J (π) = Est,at∼ρπ

[
T∑
t=0

γtr(st, at)

]
, (1)

where ρπ is the state-action marginals of the trajectory dis-
tribution induced by policy π. Thus, the optimal policy is
π∗ = arg maxπ J (π).

In reinforcement learning, the state-action value func-
tion Q : S × A → R is defined as the expected cu-
mulative discounted reward for selecting action a in state
s, then following a policy π afterwards: Qπ(s, a) =

7021

Eπ
[∑T

t=0 γ
tr(st, at)|s0 = s, a0 = a

]
. Similarly, the state

value function V denotes value under a certain state s, i.e.,
V π(s) = Eπ

[∑T
t=0 γ

tr(st, at)|s0 = s
]
.

Soft Actor-Critic
Soft Actor-Critic (SAC) (Haarnoja et al. 2018b) is an off-
policy reinforcement learning algorithm that optimizes a
stochastic policy that maximizes the maximum entropy ob-
jective:

JEnt(π) = Est,at∼ρπ

[
T∑
t=0

γt
(
r(st, at) + αH(π(·|st))

)]
(2)

where the temperature parameter α determines the relative
importance of the reward versus the policy entropy term at
state st,H(π(·|st)) = −Eat∼π log π(·|st).

SAC uses soft policy iteration which alternates between
policy evaluation and policy improvement within the max-
imum entropy framework. The policy evaluation step in-
volves computing the values of policy π through repeatedly
applying the modified Bellman backup operator Tπ as:

T πQ(st, at) = r(st, at) + γEst+1∼P [V (st+1)], (3)

where V (st) = Eat∼π
[
Q(st, at)− α log(π(at|st))

]
,

where Q(st, at) and V (st) here denote the soft variants of
value functions. The policy improvement step then involves
updating the policy towards the exponential of the soft Q-
function, with the overall policy improvement step given by:

πnew = arg min
π∈Π

DKL

(
π(·|st)‖

exp
(

1
αQ

πold(st, ·)
)

Zπold(st)

)
, (4)

where Π denotes the policy space and the partition function
Zπold(st) is intractable but does not contribute to the gradi-
ent with respect to the new policy thus can be ignored.

With continuous states, the soft Q-function Qθ(st, at) is
approximated with parameters θ via minimizing the soft
Bellman residual according to (3). The policy πφ(at|st) that
parameterized with parameters φ is learned by minimizing
the expected KL-divergence (4). In the original paper, the
authors propose the practical algorithm in continuous action
setting by applying the reparameterization trick to Gaussian
policy π and utilize an additional V -network to stable the
training. Two separate Q-networks are adopted and the min-
imum of them is used as Q estimates to reduce the overes-
timation issue (v. Hasselt 2010). The temperature parameter
α can also be learned to automatically adapt through intro-
ducing a target entropy hyperparameter and optimizing the
dual problem (Haarnoja et al. 2018c).

The discrete action version of SAC is derived in
(Christodoulou 2019), where the policy network outputs a
multinomial over finite actions rather than a Gaussian distri-
bution so that V -function can be estimated directly and no
long need Monte-Carlo estimates. In this paper, we focus on
discrete action setting and consider the discrete SAC as pol-
icy core by default. For continuous action case, our approach
can also be applied with a few modification which is beyond
the scope of this paper and we leave it for future work.

Inner policy iteration

𝜋0
𝑐𝑜𝑟𝑒

𝜋0

𝜇0
𝑝𝑖𝑐

𝜋1
𝑐𝑜𝑟𝑒

𝜋0.5

𝜇1
𝑝𝑖𝑐

𝜋1

𝜋2
𝑐𝑜𝑟𝑒

𝜋1.5 𝜋2

𝜇2
𝑝𝑖𝑐

𝜋3
𝑐𝑜𝑟𝑒

𝜋2.5 𝜋3

𝜇3
𝑝𝑖𝑐

Outer policy iteration

Component of intermediate policy

Component of mixed policy

⋯

Figure 2: Sketch map of Nested Policy Iteration, πt and
πcore
t denote the mixed policy and policy core at t respec-

tively, and πt.5 denotes the intermediate status of πt when
policy core πcore

t has been updated in the inner policy itera-
tion yet µpic has not.

Approaches
In this section, we first introduce the Policy Inertia Con-
troller (PIC) framework, then we propose Nested Policy Iter-
ation (NPI) to train PIC and the policy core in a general way.
Finally, we propose a practical algorithm, Nested Soft Actor-
Critic with Policy Inertia Controller (PIC-NSAC), that com-
bines PIC framework and SAC algorithm.

Policy Inertia Controller Framework
Before introducing Policy Inertia Controller (PIC), we first
introduce a practical metric that measures the degree of ac-
tion oscillation of a policy π formally. We define action os-
cillation ratio ξ(π) below:

ξ(π) = Eτ∼ρτπ

[
1

T

T∑
t=1

(
1− I{at−1}(at)

)]
, (5)

where ρτπ is the distribution of state-action trajectory in-
duced by policy π and IA(x) denotes the indicator function
with set A. Intuitively, ξ(π) indicates how smooth the ac-
tions selected by policy π are when acting in the environ-
ment. The lower of ξ(π) means the smoother of π. A high
ξ(π) means that the policy tends to select different actions
within consecutive timesteps, i.e., more severe action oscil-
lation.

One straightforward way to address action oscillation is
to introduce reward shaping of adding action inconsistency
penalty or use similar regularization according to Equation
(5). However, the drawbacks of such mechanisms are ap-
parent: they alter the original learning objective and the hy-
perarameters involved need to be tuned for different tasks.
Moreover, such approaches have no guarantee on how the
smoothness of policy learned will be. To this end, we pro-
pose Policy Inertia Controller (PIC) that regulates a DRL
policy distribution directly as follows:

π(·|st, at−1) = µpic(st, at−1)δ(at−1)

+
(
1− µpic(st, at−1)

)
πcore(·|st),

(6)

where δ(at−1) : A → R|A|∈[0,1] denotes a discrete Dirac
function that puts all probability mass on the action ex-
ecuted at timestep t − 1, and πcore denotes the policy

7022

Algorithm 1 Nested Policy Iteration (NPI) for PIC-
augmented Policy
Input: Policy evaluation and policy improvement processes
Ein, Iin for mixed policy πcore, and Eout, Iout for mixed
policy π (Equation (6))

1: Initialize policy core πcore and its corresponding mixed
policy π

2: for Outer policy iteration number tout do
3: for Inner policy iteration number tin do
4: Evaluate the values of πcore until convergence with

Ein
5: Improve πcore according to Iin

6: end for
7: Evaluate the values of π until convergence with Eout

8: Improve π (i.e., update µpic) according to Iout while
keep πcore fixed

9: end for

core that is trained as usual. The policy inertia controller
µpic(st, at−1) : S × A → R∈[0,1] outputs a scalar weight
and the final policy π(·|st, at−1) is a linear combination
of the Dirac and the policy core. We also call the PIC-
augmented policy π(·|st, at−1) as mixed policy in the fol-
lowing of this paper for distinction to policy core. In another
view, µpic(st, at−1) can be viewed as a 1-dimensional con-
tinuous policy that regulates the inertia of policy core (i.e.,
the persistence of last action) depending on current state and
the last action.

Next, we show that the structure of the mixed policy has
the appealing property to ensure the existence of a family
of smoother policies with equivalent or better performance
than the policy core (Theorem 0.1) as below:
Theorem 0.1 Given any policy core πcore(·|s), there ex-
ists some µpic such that ξ(π) ≤ ξ(πcore) and J(π) ≥
J(πcore), where π is the corresponding mixed policy coun-
terpart (Equation 6).
Detailed proof is provided in Supplementary Material A.1.
Theorem 0.1 implies that we can obtain a better policy in
terms of both action oscillation rate and expected return
through optimizing µpic(st, at−1).

The mixed policy π defined in Equation (6) is a nested
policy in which the policy core πcore is nested. In next sec-
tion we introduce a general algorithm to train the nested
policies, i.e., πcore and µpic, together.

Nested Policy Iteration for PIC-augmented Policy
In this section, we propose Nested Policy Iteration (NPI), a
general training algorithm for the family of mixed policy de-
fined in Equation (6). As in Algorithm 1, NPI consists of an
outer policy iteration and an inner policy iteration which is
nested in the former one. The policy core πcore is trained as
usual according to inner policy iteration. The outer policy it-
eration is in the scope of the mixed policy π yet only the PIC
module µpic is updated during outer policy improvement.
The sketch map of NPI is shown in Figure 2. In the follow-
ing, we show that our proposed NPI can achieve monotoni-
cally non-decreasing updates for the mixed policy π.

First, we show that an improvement for policy core πcore

during the inner policy iteration can induce an improve-
ment for the mixed policy π as well (Lemma 0.1). We use
Qcore(st, at), Q(st, at−1, at) to denote the Q-functions of
πcore(·|st) and π(·|st, at−1) respectively, and also adopt
subscripts old and new to indicate Q-functions and policies
before and after one policy improvement iteration. Specially,
we further use subscript mid to denote the intermediate sta-
tus of the mixed policy π when πcore has been updated in
the inner iteration yet µpic has not, i.e., πmid(·|st, at−1) =

µpic
oldδ(at−1)+πcore

new (·|st). Now we formalize above result in
the following lemma.
Lemma 0.1 (Intermediate Policy Improvement). Given an
inner policy iteration with policy improvement (i.e., πcore

old →
πcore

new or πold → πmid) that ensures Qcore
new(st, at) ≥

Qcore
old (st, at) for all (st, at), and assume µpic

old(st, at−1) sat-
isfies the following inequality,

µpic
old(st, at−1) ≤

min(st,at)(Q
core
new(st, at)−Qcore

old (st, at))

N · C0(
∑T
t tγ

t)

for all (st, at, at−1), where N ≥ 4 and C0 is the upper
bound of both Aπ

core
new and Aπold , then we have

Qmid(st, at−1, at)−Qold(st, at−1, at)

≥ (1− 4

N
) min

(st,at)
(Qcore

new(st, at)−Qcore
old (st, at))

for all (st, at−1, at) tuples.
Detailed proof is provided in Supplementary Material A.2.
Remark 0.1 Lemma 0.1 implies that the improvement of
policy core by inner policy iteration can also bring an im-
provement to the mixed policy given that µpic

old is appropri-
ately small. Besides, the upper bound of tolerated µpic

old to
guarantee such improvement and the increment fromQold to
Qmid are both linearly dependent on the increment of policy
core, which means that bigger increment in the inner iter-
ation can tolerate bigger policy inertia µpic

old, and the incre-
ment for the intermediate mixed policy is proportional to the
increment of policy core.

Next, the full NPI algorithm alternates between the in-
ner policy iteration and the outer policy iteration steps, and
it provably leads to a nested policy improvement (Lemma
0.2) and then monotonically non-decreasing updates for the
mixed policy π during overall NPI process (Theorem 0.2).
Lemma 0.2 (Nested Policy Improvement). Based on
Lemma 0.1, given an outer policy iteration with policy
improvement (i.e., µpic

old → µpic
new or πmid → πnew)

that ensures Qnew(st, at−1, at) ≥ Qmid(st, at−1, at)
for all (st, at−1, at) ∈ S × A × A, then we have
Qnew(st, at−1, at) ≥ Qold(st, at−1, at).

Proof for Lemma 0.2 can be easily obtained by chaining
the inequalities between Qnew, Qmid and Qold, which can
be viewed as a two-step improvement obtained by inner and
outer policy iteration respectively.
Theorem 0.2 (Nested Policy Iteration). By repeatedly ap-
plying Lemma 0.2, the mixed policy π achieves monotoni-
cally non-decreasing updates.

7023

0 20 40 60 80 100
Time Steps (5e3)

10

20

30

40

50

Av
g_

re
tu

rn

DQN
SAC
Ours

0 20 40 60 80 100
Time Steps (5e3)

0.2

0.3

0.4

0.5

0.6
Os

c_
ra

te

(a) Lane Change

0 20 40 60 80 100
Time Steps (5e3)

8

10

12

14

16

18

20

Av
g_

re
tu

rn

DQN
SAC
Ours

0 20 40 60 80 100
Time Steps (5e3)

0.3

0.4

0.5

0.6

0.7

Os
c_

ra
te

(b) Merge

0 20 40 60 80 100
Time Steps (5e3)

0

1

2

3

4

Av
g_

re
tu

rn

DQN
SAC
Ours

0 20 40 60 80 100
Time Steps (5e3)

0.2

0.3

0.4

0.5

0.6

Os
c_

ra
te

(c) Intersection

0 20 40 60 80 100
Time Steps (5e3)

4
6
8

10
12
14
16
18

Av
g_

re
tu

rn

DQN
SAC
Ours

0 20 40 60 80 100
Time Steps (5e3)

0.3

0.4

0.5

0.6

0.7

0.8

Os
c_

ra
te

(d) Two-way

0 20 40 60 80 100
Time Steps (5e3)

0

50

100

150

200

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Os
c_

ra
te

DQN
SAC
Ours

(e) SpaceInvaders

0 20 40 60 80 100
Time Steps (5e3)

0

250

500

750

1000

1250

1500

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Os
c_

ra
te

DQN
SAC
Ours

(f) MsPacman

0 20 40 60 80 100
Time Steps (5e3)

0

100

200

300

400

500

600

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.0

0.1

0.2

0.3

0.4

Os
c_

ra
te

DQN
SAC
Ours

(g) Qbert

0 20 40 60 80 100
Time Steps (5e3)

−20

0

20

40

60

80

100

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.0

0.1

0.2

0.3

0.4

0.5

Os
c_

ra
te

DQN
SAC
Ours

(h) JamesBond

Figure 3: Training curves of algorithms on (a)-(d) four Highway tasks and (e)-(h) four Atari games w.r.t. action oscillation
ratio (left) and returns (right). Our approach (red) consistently achieves lower action oscillation rate while retaining comparable
performance across all tasks. The horizontal axis denotes time step. Results are means and one stds over 5 random seeds.

Proof for Theorem 0.2 is a straightforward extension of
Lemma 0.2 in an iterative fashion under mild conditions.

According to Generalized Policy Iteration (GPI) (Sutton
and Barto 2018), almost any RL algorithm can be interpreted
in a policy iteration fashion. Therefore, NPI can be viewed
as a special case of GPI that combines any two RL algo-
rithms for µpic and πcore respectively, since no assumption
is made on the choice of both the outer and the inner policy
iteration. To make above theoretical results hold, the inner
and the outer policy iteration should have the same learning
objective, e.g., both common RL objective (Equation (1)) or
maximum entropy objective (Equation (2)).

Remark 0.2 The outer policy iteration of NPI algorithm
is in the scope of the mixed policy π that consists of µpic

and πcore. Since the PIC module µpic(st, at−1) can also be
viewed as a continuous policy, one may conduct the outer
policy iteration (i.e., an RL algorithm) in the scope of µpic

solely (instead of the mixed policy π). However, such ap-
proach can be flawed in two aspects: first, the update signal
can be very weak and stochastic since µpic only indirectly in-
fluences the action selected; moreover, the time-variant up-
dates of the policy core are not considered explicitly during
the evaluation process, thus resulting in a non-stationary en-
vironment for the learning of µpic.

Nested Soft Actor-Critic
Based on the general NPI algorithm presented in previous
section, we further derive a practical implementation with
function approximation for continuous state space domains.
To be specific, we propose Nested Soft Actor-Critic with
Policy Inertia Controller (PIC-NSAC) to train the PIC mod-
ule µpic and the policy core πcore simultaneously.

For the inner policy iteration, we resort to SAC algorithm
because it is a representative of maximum entropy RL ap-
proaches that may typically suffer from action oscillation
issue as we mentioned before. We parameterize the policy
core πcore

φ (·|st) with parameter φ and update parameters φ
and θ by SAC algorithm as usual. As to the outer policy iter-
ation, we also use SAC algorithm in the scope of the mixed

policy to optimize the same objective as the inner one. We
approximate PIC module as µpic

ϕ (st, at−1) with parameter
ϕ, thus obtain parameterized mixed policy πφ,ϕ. The value
networks of πφ,ϕ is approximated during soft policy evalua-
tion (Equation (3)) and only parameter ϕ is updated during
soft policy improvement (Equation (4)). All data used above
comes from a replay buffer of past experiences collected us-
ing the mixed policy πφ,ϕ.

The overall algorithm (Algorithm 2) and complete formu-
lations are provided in Supplementary Material B.

Experiments
This section presents the experimental results of our ap-
proach. We first provide the setups and the benchmark ap-
proaches in Section Setups, and then followed by evaluation
results and an analysis study in Section Results and Section
Analysis Study. Finally, we analyze the learned regulariza-
tion of smoothness for further insights of PIC frameworks.

Setups
Environments and Benchmark Approaches. We use the
Highway simulator1 which includes a collection of au-
tonomous driving scenarios, as well as several Atari games
in OpenAI-Gym in our experiments. Highway simulator
have been used in previous works (Leurent and Maillard
2019; Leurent and Mercat 2019; Li et al. 2019; Carrara
et al. 2019) and four typical tasks, i.e., Lane Change, Merge,
Intersection and Two-Way are picked to conduct experi-
ments. The state of these tasks are mainly about locomo-
tion and kinematics of vehicles. The action space are dis-
crete, consisting of vehicle controls, e.g., left/right lane
change, accelerate/decelerate. Detailed configuration of the
tasks are provided in Supplementary Material C. For Ope-
nAI Atari, we use MsPacman-v4, SpaceInvaders-v4, Qbert-
v4 and JamesBond-v4 with pixel-input states. We compare
against benchmark approaches algorithms, including DQN
(Mnih et al. 2015), discrete SAC (Christodoulou 2019) and

1Highway environments are originally provided at https://
github.com/eleurent/highway-env.

7024

0 20 40 60 80 100
Time Steps (5e3)

0

1

2

3

4

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.0

0.1

0.2

0.3

0.4

0.5
Os

c_
ra

te

DQN_repeat
SAC_repeat
Ours

(a) Intersection

0 20 40 60 80 100
Time Steps (5e3)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
g_

re
tu

rn

0 20 40 60 80 100
Time Steps (5e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Os
c_

ra
te

DQN_repeat
SAC_repeat
Ours

(b) Two-Way

0 20 40 60 80 100
Time Steps (5e3)

0

1

2

3

4

Av
g_

re
tu

rn

DQN_ip
SAC_ip
Ours
Ours_ip

0 20 40 60 80 100
Time Steps (5e3)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Os
c_

ra
te

(c) Intersection

0 20 40 60 80 100
Time Steps (5e3)

5.0

7.5

10.0

12.5

15.0

17.5

Av
g_

re
tu

rn

DQN_ip
SAC_ip
Ours
Ours_ip

0 20 40 60 80 100
Time Steps (5e3)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Os
c_

ra
te

(d) Two-Way

0 20 40 60 80 100
Time Steps (5e3)

4
6
8

10
12
14
16
18

Av
g_

re
tu

rn

DQN
SAC
Ours

0 20 40 60 80 100
Time Steps (5e3)

0.3

0.4

0.5

0.6

0.7

0.8

Os
c_

ra
te

(e) Complex Scenario

0 20 40 60 80 100
Time Steps (5e3)

10

12

14

16

18

20

22

24

Av
g_

re
tu

rn

0.01
0.03
0.05

0 20 40 60 80 100
Time Steps (5e3)

0.2

0.3

0.4

0.5

0.6

0.7

Os
c_

ra
te

(f) Simple Scenario

Figure 4: Comparisons results for (a)-(b) Action Repetition, (c)-(d) Reward Shaping, and (e)-(f) Complex v.s. Simple scenarios.

their variants with dynamic action repetition and reward
shaping tricks (see Section). All experimental details are
provided Supplementary material C.1.

Training and Evaluation. We train five different in-
stances of each algorithm with different random seeds, with
each performing 20 evaluation rollouts with some other
seed every 5000 environment steps. For each task we report
undiscounted return and the action oscillation ratio (Equa-
tion (5)) which is calculated from the evaluation trajectories.
Concretely, for each episode i, we record the count of action
switch within consecutive steps, denoted by ci, and the to-
tal steps of the episode, denoted by ni, then oscillation ratio
is computed as (

∑20
i=1 ci/ni)/20. The solid curves corre-

sponds to the mean and the shaded region to half a standard
deviation over the five trials.

Results
Evaluations. We first compare NSAC (ours) with DQN and
SAC across all 4 Highway tasks and 4 Atari games. The
results are shown in Figure 3. We see that our approach
achieves substantial reduction with respect to the action os-
cillation rate than benchmark approaches, especially when
compared with SAC, while retaining comparable perfor-
mance across all tasks. We credit the results to the smooth-
ness property (Theorem 0.1) of mixed policy and the effec-
tiveness of NPI (Theorem 0.2).

Comparison with Action Repetition. Further, we absorb
the core idea of action repetition works (Durugkar et al.
2016; Lakshminarayanan, Sharma, and Ravindran 2016;
Sharma, Lakshminarayanan, and Ravindran 2017) into an-
other two variants of DQN and SAC, that learn both ac-
tions and action repetitions from extended action space.
Concretely, we set the repetition set as Re = {1, 2, 4, 8} ,
which means that the action is repeated for 1, 2, 4, 8 times,
then the augmented action space A′ is the Cartesian prod-
uct A × Re . DQN-repeat baseline and SAC-repeat baseline
mean that DQN and SAC are trained on the augmented ac-
tion space A′, respectively. We present representative com-

parison results in Intersection and Two-Way as shown in Fig-
ure 4(a) -4(b). The results show that the action repetition ap-
proaches can achieve certain reduction in action oscillation
yet sacrificing performance when comparing with our ap-
proach within the same environment steps. This is because
action repetition hampers sample efficiency due to temporal
abstraction as we discuss before.

Comparison with Reward Shaping. Moreover, we also
consider the setting where the reward is shaped with action
inconsistent penalty, to some degree, this can be viewed to
be equivalent to inject a regularizer based on negative ac-
tion oscillation ration defined in Equation 5. DQN-ip, SAC-
ip and Ours-ip are DQN, SAC, NSAC algorithms trained
on the environments with action inconsistency penalty -0.05
within consecutive steps yet evaluated without it. The results
in Figure 4(c)-4(d) show such reward shaping is effective in
reducing oscillation in Two-Way for all DQN, SAC and our
approach, while cause a counterproductive result in Intersec-
tion. We conjecture it is because action inconsistent penalty
violates the original reward structure (sparse reward in Inter-
section) then the learned policies tend to fall into the unex-
pected local minimum, revealing the poor scalability of such
reward shaping treatment. Additionally, reward shaping can
be exhaustive and even impossible in complex problems.

Analysis Study
In this section, we conduct several analysis studies to further
examine our approach from three aspects: the performance
in complex scenario against simple scenario, the influence of
an extra lower bound on the output of PIC module µpic and
the effect of temperature parameter α of the mixed policy π.

Simple v.s. Complex Scenarios. To compare how the
complexity of the environments affects the performance, we
conduct experiments on both the complex scenarios and sim-
ple scenarios on Two-way task, where the vehicles number
in complex scenarios doubles that in simple scenarios. Fig-
ure 4(e)-4(f) indicates that the oscillation reduction is more
significant in complex cases with a large margin. This is as

7025

PIC decision: follow last action PIC decision: do not follow last action Core decision

T=12 T=24 T=30

Figure 5: Visualization of several consecutive frames in Two-Way. Green denotes the vehicle controlled by the mixed policy
learned with NSAC and blue denotes other vehicles to overtake. Red and yellow arrows illustrates the decisions of the PIC
module and policy core. The solid arrow denote a high value or probability (≥ 0.5) and the dashed is for a low one. We see that
the PIC module gives good regulation when improper oscillations happen (t = 12 and t = 14) while impose few regulation to
follow the previous action for necessary change (t = 24).

0 20 40 60 80 100
Time Steps (5e3)

8

10

12

14

16

18

Av
g_

re
tu

rn

0.0
0.03
0.05
0.1

0 20 40 60 80 100
Time Steps (5e3)

0.3

0.4

0.5

0.6

Os
c_

ra
te

Figure 6: Training curves of our algorithm on the complex
scenario of Two-Way with different lower bound values µ0

of the policy inertia controller µpic.

expected that the policy learned is likely to be more bumpy
since the solution policy space become more complex, and
thus there exists a larger space for our approach to reduce
the oscillation in actions.

Lower bound of Policy Inertia Controller. We also con-
sider to impose an extra lower bound µ0 on the PIC module
µpic to further encourage smoothness of learned policies. We
find in Figure 6 that a smaller µ0 performs better regarding
both oscillation rate and average return, while a large µ0 in-
duces too much regulation which causes substantial oscilla-
tion reduction but performance degradation as well.

Temperature Parameter of the Mixed Policy. We addi-
tionally examine the influence of the temperature parameter
α of the mixed policy π. The results in Figure 7 show that
a smaller α induces better regularization of µpic (which is
computed as the average µpic in an episode), lower action
oscillation rate as well as a higher performance. A relatively
large α hampers the regularization of µpic since it encour-
ages the stochasticity of the mixed policy.

A Close Look at Learned PIC Regularization
To better understand how the regulation on policy core πcore

is given by a learned PIC module µpic, we visualize the ex-
ecution of the vehicle (green) in Two-Way controlled by the
mixed policy learned with NSAC, as in Figure 5. We find an
oscillation occurs at timestep t = 12 when πcore tend to pick
the right lane change action, and µpic outputs a high value
to keep the vehicle forward. At timestep t = 24, when πcore

chooses the left lane change action, µpic outputs a low value
that does not regulate πcore to keep forward any more. At
timestep t = 30, another improper oscillation happens when

0 50 100
Time Steps (5e3)

7.5

10.0

12.5

15.0

Av
g_

re
tu

rn

0.01
0.03
0.05
0.1

0 50 100
Time Steps (5e3)

0.3

0.4

0.5

0.6

0.7

Os
c_

ra
te

0 50 100
Time Steps (5e3)

0.2

0.4

Av
e_

pr
ob

Figure 7: Training curves of our algorithm on Two-Way
with different temperature parameter α of the mixed pol-
icy π. The results are with respect to action oscillation ratio
(left), average inertia controller’s outputs (middle) and re-
turns (right). A smaller α induces better regularization (mid-
dle), lower action oscillation rate (left) as well as a higher
performance (right).

the decelerate action is encouraged by πcore, µpic regulates
it to keep accelerating instead. This shows the PIC module
has learned a good strategy to remedy improper oscillations
(t = 12 and t = 14) by strongly regulate policy core to
follow the previous action, while to impose few regulation
when necessary change (t = 24) is offered by policy core.

Conclusion
In this paper, we propose a generic framework Policy Iner-
tia Controller (PIC) to address the action oscillation issue of
DRL algorithms through directly regulating the policy dis-
tribution. Moreover, we propose Nested Policy Iteration to
train the PIC-augmented policies with monotonically non-
decreasing updates in a general way. Our empirical results
in a range of autonomous driving tasks and several Atari
games show that our derived Nested Soft Actor-Critic algo-
rithm achieves substantial action oscillation reduction with-
out sacrificing policy performance at the same time, which
is of much significance to real-world scenarios. The future
work is to apply and develop our approaches in practical ap-
plications like real-world autonomous driving cars, and to
investigate the extension for continuous policies.

Acknowledgments
The work is supported by the National Natural Science
Foundation of China (Grant Nos.: 61702362, U1836214,
U1813204), Special Program of Artificial Intelligence
and Special Program of Artificial Intelligence of Tian-

7026

jin Municipal Science and Technology Commission (No.:
56917ZXRGGX00150), Tianjin Natural Science Fund (No.:
19JCYBJC16300), Research on Data Platform Technology
Based on Automotive Electronic Identification System. We
would like to thank Haitham Ammar and Xueshuang Xiang
for their valuable feedback on the paper and insightful dis-
cussions.

References
Carrara, N.; Leurent, E.; Laroche, R.; Urvoy, T.; Maillard,
O.; and Pietquin, O. 2019. Budgeted Reinforcement Learn-
ing in Continuous State Space. In NeurIPS, 9295–9305.

Christodoulou, P. 2019. Soft Actor-Critic for Discrete Ac-
tion Settings. CoRR abs/1910.07207.

Durugkar, I. P.; Rosenbaum, C.; Dernbach, S.; and Mahade-
van, S. 2016. Deep Reinforcement Learning With Macro-
Actions. CoRR abs/1606.04615.

Haarnoja, T.; Ha, S.; Zhou, A.; Tan, J.; Tucker, G.; and
Levine, S. 2018a. Learning to walk via deep reinforcement
learning. arXiv preprint arXiv:1812.11103 .

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018b.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In ICML,
1856–1865.

Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha,
S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; and
Levine, S. 2018c. Soft Actor-Critic Algorithms and Appli-
cations. CoRR abs/1812.05905.

Hafner, D.; Lillicrap, T. P.; Ba, J.; and Norouzi, M. 2020.
Dream to Control: Learning Behaviors by Latent Imagina-
tion. In ICLR.

Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen,
J.-M.; Lam, V.-D.; Bewley, A.; and Shah, A. 2019. Learn-
ing to drive in a day. In 2019 International Conference on
Robotics and Automation (ICRA), 8248–8254. IEEE.

Korenkevych, D.; Mahmood, A. R.; Vasan, G.; and Bergstra,
J. 2019. Autoregressive policies for continuous control deep
reinforcement learning. arXiv preprint arXiv:1903.11524 .

Lakshminarayanan, A. S.; Sharma, S.; and Ravindran, B.
2016. Dynamic Frame skip Deep Q Network. CoRR
abs/1605.05365.

Leurent, E.; and Maillard, O. 2019. Practical Open-Loop
Optimistic Planning. In ECML PKDD, 69–85.

Leurent, E.; and Mercat, J. 2019. Social Attention for
Autonomous Decision-Making in Dense Traffic. CoRR
abs/1911.12250.

Li, M.; Wu, L.; Wang, J.; and Bou-Ammar, H. 2019. Multi-
View Reinforcement Learning. In NeurIPS, 1418–1429.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. In ICLR.

Metelli, A. M.; Mazzolini, F.; Bisi, L.; Sabbioni, L.; and
Restelli, M. 2020. Control frequency adaptation via action

persistence in batch reinforcement learning. In International
Conference on Machine Learning, 6862–6873. PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540): 529–533.
Popova, M.; Shvets, M.; Oliva, J.; and Isayev, O. 2019.
MolecularRNN: Generating realistic molecular graphs with
optimized properties. CoRR abs/1905.13372.
Schreck, J. S.; Coley, C. W.; and Bishop, K. J. 2019. Learn-
ing retrosynthetic planning through simulated experience.
ACS central science 5(6): 970–981.
Sharma, S.; Lakshminarayanan, A. S.; and Ravindran, B.
2017. Learning to Repeat: Fine Grained Action Repetition
for Deep Reinforcement Learning. In ICLR.
Shen, Q.; Li, Y.; Jiang, H.; Wang, Z.; and Zhao, T. 2020.
Deep Reinforcement Learning with Smooth Policy. CoRR
abs/2003.09534.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529(7587): 484–489.
Smith, L.; Dhawan, N.; Zhang, M.; Abbeel, P.; and Levine,
S. 2019. AVID: Learning Multi-Stage Tasks via Pixel-Level
Translation of Human Videos. CoRR abs/1912.04443.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
v. Hasselt, H. 2010. Double Q-learning. In Lafferty, J. D.;
Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R. S.; and Cu-
lotta, A., eds., NeurIPS, 2613–2621.
You, J.; Liu, B.; Ying, Z.; Pande, V. S.; and Leskovec,
J. 2018. Graph Convolutional Policy Network for Goal-
Directed Molecular Graph Generation. In NeurIPS 2018,
6412–6422.

7027

