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Abstract
Mean shift is a simple interactive procedure that gradually
shifts data points towards the mode which denotes the high-
est density of data points in the region. Mean shift algorithms
have been effectively used for data denoising, mode seeking,
and finding the number of clusters in a dataset in an auto-
mated fashion. However, the merits of mean shift quickly
fade away as the data dimensions increase and only a hand-
ful of features contain useful information about the cluster
structure of the data. We propose a simple yet elegant feature-
weighted variant of mean shift to efficiently learn the feature
importance and thus, extending the merits of mean shift to
high-dimensional data. The resulting algorithm not only out-
performs the conventional mean shift clustering procedure
but also preserves its computational simplicity. In addition,
the proposed method comes with rigorous theoretical conver-
gence guarantees and a convergence rate of at least a cubic
order. The efficacy of our proposal is thoroughly assessed
through experimental comparison against baseline and state-
of-the-art clustering methods on synthetic as well as real-
world datasets.

Introduction
Clustering, a cornerstone of unsupervised learning, refers to
the task of partitioning a dataset into more than one exhaus-
tive and mutually exclusive groups, based on some measure
of similarity (Xu and Tian 2015). Some popular paradigms
in clustering include center-based approaches such as k-
means and its variants (Jain 2010), hierarchical clustering
(Carlsson and Mémoli 2010), spectral clustering (Ng, Jor-
dan, and Weiss 2002; Hess et al. 2019), density-based meth-
ods (Ester et al. 1996), convex clustering (Chi and Lange
2015), kernel clustering (Dhillon, Guan, and Kulis 2004),
model-based frequentist approaches (McNicholas 2016) and
Bayesian methods (Archambeau and Verleysen 2007; Kulis
and Jordan 2012).

Most of the aforementioned algorithms inherently use
the number of clusters (k) as an input. However, for real-
world data, k may not be known beforehand. Determining
k from the dataset itself has long been an open problem
and has attracted a lot of attention from the relevant re-
search community (Tibshirani, Walther, and Hastie 2001;
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Hamerly and Elkan 2004; Fischer 2011; Kulis and Jordan
2012; Chakraborty and Das 2018; Gupta, Datta, and Das
2018; Paul and Das 2020).

Moreover, algorithms for solving k-means type non-
convex clustering problems are prone to get stuck at local
minima (Xu and Lange 2019). Recent attempts to mitigate
this issue approach the problem via annealing with a class of
functions approximating the k-means type objective (Xu and
Lange 2019; Chakraborty et al. 2020) or by taking a convex
relaxation of the problem (Chi and Lange 2015; Pelckmans
et al. 2005; Wang et al. 2018). There are also density-based
algorithms like DBSCAN (Ester et al. 1996; Jiang 2017) or
other mode seeking approaches like quick shift (Vedaldi and
Soatto 2008; Jiang 2017) which attempts to speed up mean
shift. However, these methods either require k as an input
or their performance degrade in a high-dimensional setting,
where the signal-to-noise-ratio is quite low.

To find the number of clusters automatically and to learn
various properties of the feature space, researchers have re-
sorted to the mean shift (MS) paradigm (Cheng 1995; Su
and Shang 2017). Mean shift has previously been used for
mode seeking, object tracking, and automated clustering in
the feature space.

Suppose X = {x1, . . . ,xn} ⊂ Rp be n data points to
be clustered. The mean shift initiates n points y(0)

1 , . . . ,y
(0)
n

and updates yi according to the following update rule:

y
(t+1)
i =

∑n
j=1K(‖y(t)

i − xj‖/h)xj∑n
j=1K(‖y(t)

i − xj‖/h)
, (1)

until convergence. Here K(·) is a kernel function (e.g. the
Gaussian kernel, K(x) = exp{−x2}) and h is the band-
width parameter. This version of the mean shift is often used
to detect the mode(s) of the estimated density. Often, instead
of updating based on the original data points xi’s, one uses
y
(t)
i ’s, the points obtained in the t-th step as follows:

y
(t+1)
i =

∑n
j=1K(‖y(t)

i − y
(t)
j ‖/h)y

(t)
j∑n

j=1K(‖y(t)
i − y

(t)
j ‖/h)

. (2)
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As before, y(0)i is initiated at xi. This version of mean shift
is referred to as Blurring Mean Shift (BMS). The updates
in equation (2) can be thought of as putting a low-pass fil-
ter on the data and thus “blurring” out irregularities in the
data. Apart from clustering, BMS has been used for data de-
noising and manifold learning (Wang and Carreira-Perpinán
2010).

Despite their simplicity, both the usual and blurring mean
shift perform poorly for high-dimensional data. This is pri-
marily because of the use of Euclidean distance, which be-
comes less informative as the number of feature increases
due to the curse of dimensionality (Donoho et al. 2000).
High-dimensional datasets often contain only a few relevant/
discriminating features, along with a huge number of irrel-
evant/noisy features, which severely affect the performance
of mean shift and other popular clustering algorithms.

There is a rich literature on clustering high-dimensional
data including subspace clustering (Kriegel, Kröger, and
Zimek 2009; Elhamifar and Vidal 2013), bi-clustering (Chi,
Allen, and Baraniuk 2017), dimensionality reduction based
approaches (Jin, Wang et al. 2016) and data-depth based
approaches (Sarkar and Ghosh 2019). However, most of
these methods are computationally expensive. Towards find-
ing efficient feature representation of high-dimensional data
while clustering, weighted k-means (Huang et al. 2005) and
Sparse k-means (Witten and Tibshirani 2010) have become
benchmark algorithms for learning effective feature repre-
sentations of such data. However, these methods also require
k as input and thus, lose their appeal to the practitioner who
may not have handled the data before and wants to find the
number of clusters in an unsupervised manner as well.

This paper aims to develop a blurring mean shift based
algorithm, which can automatically find an efficient feature
representation of the data as well as the number of clusters
simultaneously. Called the Weighted Blurring Mean Shift
(WBMS), we extend the merits of blurring mean shift to
high-dimensional data, while preserving its computational
cost. To achieve this, we introduce a feature weight vec-
tor to learn the importance of each feature as the data is
smoothed. The resulting iterations lead to an elegant and
simple algorithm with closed-form updates. The weight up-
date scheme follows the philosophy that features with higher
within-cluster variance contribute less in finding the cluster
structure of the data (Huang et al. 2005; Witten and Tibshi-
rani 2010; Chakraborty et al. 2020). The main contributions
of this paper can be summarized as follows:
• We introduce the Weighted Blurring Mean Shift (WBMS)

formulation as an intuitive extension of mean shift to
high-dimensional data clustering. This simple formula-
tion is found to be effective in finding out the number of
clusters and also filter out the unimportant features from
the data simultaneously.

• The obtained feature weights can be interpreted as the out-
come of an entropy regularization on the within-cluster
sum of squares.

• The WBMS algorithm comes with closed-form updates
and its convergence guarantees are discussed.

• We also analyze asymptotic convergence properties of the

data cloud under the WBMS algorithm. We analytically
show that the convergence of the spread of the data cloud
is at least of cubic order.

• Through detailed experimental analysis, we show the ef-
ficacy of our proposed algorithm against state-of-the-art
clustering techniques on a suit of simulated and real-
world data. Our experimental results indicate that WBMS
is especially effective, compared to its competitors, in a
high-dimensional setting despite the low signal-to-noise-
ratio.
Before proceeding to the details of WBMS, let us now

present a motivating example demonstrating its potential.

A Motivating Example We generate a 200 × 32 dimen-
sional data, called data1, which consists of two clusters with
100 points each. The cluster structure of data1 is fully con-
tained in the first two features and the rest of the 30 fea-
tures are independently generated from a standard normal
distribution, that contain no clustering information. We stan-
dardize (z-transform) the data before use and set the band-
width h = 0.1. In Fig. 1, we show the position of the
data cloud, plotted in the first two relevant feature dimen-
sions, for both BMS and WBMS as the number of itera-
tions (t) is increased. It can be easily seen that since BMS
is more influenced by the combination of 30 Gaussian fea-
tures, the data cloud gradually converges to the origin. On
the other hand, the WBMS correctly identifies the two im-
portant and informative features. Thereby using this infor-
mation, the data cloud converges to the two cluster cen-
troids. The estimated density of the original data cloud X ,
f̂(x) ∝

∑n
i=1 exp{−‖x−xi‖2w/h}, withw being the fea-

ture weights found out by WBMS (see the following section
for the definition of ‖·‖w), also closely resembles the density
of the data without the presence of the 30 non-informative
features.

Weighted Blurring Means Shift
In this section, we formulate the Weighted Blurring Mean
Shift (WBMS) algorithm and discuss some of its intriguing
properties. Throughout this paper, Np(µ,Σ) denotes the p-
variate normal distribution with mean µ and dispersion ma-
trix Σ. Unif(A) denotes the uniform distribution over the
set A.

Motivation
Let x1, . . . ,xn ∈ Rp be n data points to be clustered. We
note that the blurring mean shift updates (equation (2)) uses
the Euclidean distance ‖x − y‖2 =

√∑p
l=1(xl − yl)2.

The Euclidean distance puts equal weight on each of the
components (xl − yl)

2 and thus, not suitable when there
are many noisy features, which are irrelevant to the clus-
tering of the data. Recent research (Witten and Tibshirani
2010; Chakraborty et al. 2020) has been focused in replac-
ing the usual Euclidean distance with the weighted distance
‖x − y‖w =

√∑p
l=1 wl(xl − yl)2. Here wl ≥ 0 denotes

the feature weight of the l-th feature. It can be easily checked
that ‖ · ‖w defines a norm on Rp. A large feature weight, wl
on the l-th feature gives more importance to the difference
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Figure 1: Performance of BMS (first row) and WBMS (second row) along with the contour plots of the estimated kernel density
for the motivating example as the number of iterations (t) is increased. WBMS correctly identifies the two true cluster centroids
and efficiently selects the relevant features, while the BMS fails to do so.

|xl − yl|, the discrimination between x and y along the l-th
coordinate vector. w is called the feature weight vector and
is usually normalized, i.e. 1>w = 1. The feature weights
are typically learned from the data and are updated every
passing iteration. Normally, the feature weights are taken
as some decreasing function of the within cluster sum of
squares for that feature.

Formulation
We will use a similar update rule as in BMS (equation (2)).
However, instead of the usual Euclidean distance, we will
use the weighted distance ‖ · ‖w. The update rule for the
data points is given by,

y
(t+1)
i =

∑n
j=1K(‖y(t)

i − y
(t)
j ‖w(t)/h)y

(t)
j∑n

j=1K(‖y(t)
i − y

(t)
j ‖w(t)/h)

. (3)

The feature weights are updated as follows:

w
(t)
l =

exp{− 1
nλ

∑n
i=1(xil − y(t)il )2}∑p

l′=1 exp{− 1
nλ

∑n
i=1(xil′ − y(t)il′ )2}

. (4)

Algorithm 1 gives a formal description of the weighted blur-
ring mean shift algorithm.

Detecting the Clusters
We observe that Algorithm 1 outputs y1, . . . ,yn, which are
proxies for the cluster centroids. One should note that if xi
and xj were originally in the same cluster, then yi and yj
should be close to each other in the Euclidean sense, i.e.
‖yi − yj‖2 should be small enough. We construct an undi-
rected graph with the adjacency matrix A = ((aij)). For a
prefixed tolerance ε (in our experiments, we take ε = 10−5),
we will take,

aij =

{
1, if ‖yi − yj‖2 < ε

0, Otherwise.

Algorithm 1 Weighted Blurring Mean Shift (WBMS) Algo-
rithm

Input: x1, . . . ,xn ∈ Rp, h, λ > 0
Output: y1, . . . ,yn and w.
Initialize y(0)

i ← xi for all i = 1, . . . , n.
Initialize w(0)

l = 1
p , for all l = 1, . . . , p.

repeat
Step 1: Update yi’s by,

y
(t+1)
i ←

∑n
j=1K(‖y(t)

i − y
(t)
j ‖w(t)/h)y

(t)
j∑n

j=1K(‖y(t)
i − y

(t)
j ‖w(t)/h)

.

Step 2: Update w by,

w
(t)
l =

exp{− 1
nλ

∑n
i=1(xil − y(t)il )2}∑p

l′=1 exp{− 1
nλ

∑n
i=1(xil′ − y(t)il′ )2}

.

until
∣∣maxi,j ‖y(t+1)

i −y(t+1)
j ‖2−maxi,j ‖y(t)i −y

(t)
j ‖2

∣∣
converges

Let G be a graph based on the adjacency matrix A and ver-
tices x1, . . . ,xn. The clusters in X should ideally corre-
spond to the connected components of G. The number of
clusters, k, corresponds to the number of connected compo-
nents of G. The connected components of G can easily be
found by a Depth First Search or a Breadth First Search.

Implicit Entropy Regularization
We now show that the weight update scheme presented in
equation (4) can be thought of as the outcome of an en-
tropy regularization. At convergence y(t)i can be treated as
the cluster centroid corresponding to xi. Thus, the within
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cluster sum of squares is given by, 1
n

∑n
i=1 ‖xi − y

(t)
i ‖2w.

Since we are imposing the constraint
∑p
l=1 wl = 1, mini-

mization of this within cluster sum of squares will result in a
trivial coordinate vector of Rp. As observed by (Chakraborty
et al. 2020), this problem can be successfully avoided by
adding an entropy incentive term as:

1

n

n∑
i=1

‖xi − y(t)
i ‖

2
w + λ

p∑
l=1

wl logwl, (5)

where λ > 0. Note that the second term in the above expres-
sion is the negative of Shannon’s entropy of w. Minimizing
(5) subject to w>1 = 1, results in the weight update for-
mula, given in equation (4). This is assured by the following
theorem.
Theorem 1. Let w∗ be the minimizer of (5), subject to
w>1 = 1. Then,

w∗l =
exp{− 1

nλ

∑n
i=1(xil − y(t)il )2}∑p

l′=1 exp{− 1
nλ

∑n
i=1(xil′ − y(t)il′ )2}

.

Theoretical Properties and Convergence
Guarantees

We will now discuss some of the interesting properties of
WBMS. In particular, we prove that WBMS converges af-
ter a finite number of iterations for any fixed tolerance. We
also find the asymptotic rate of convergence of the cluster
variance as the number of points. Some related theoretical
work in this area can be found in (Carreira-Perpiñán 2006;
Chen 2015; Huang, Fu, and Sidiropoulos 2018; Rocha et al.
2020). All the proofs pertaining to this section can be found
in the supplement.

Convergence Guarantee
In this section, we will discuss some of the theoretical prop-
erties of the WBMS algorithm. For any setA ⊆ Rp, let C(A)
denote the convex hull of A. We begin our analysis by prov-
ing that the convex hulls of {y(t)

1 , . . . ,y
(t)
n } for a decreasing

sequence of sets in Theorem 2.

Theorem 2. Let Ct = C({y(t)
1 , . . . ,y

(t)
n }). Then {Ct}∞t=0

constitutes a decreasing sequence of sets, i.e.

C0 ⊇ C1 ⊇ . . . Ct ⊇ Ct+1 ⊇ . . .
Since {Ct}∞t=0 forms a decreasing sequence of sets, we

immediately get that Ct converges in the following corol-
lary.
Corollary 1. limt→∞ Ct exists and is given by,
limt→∞ Ct = ∩∞t=1Ct.

In Theorem 3, we derive that for any fixed tolerance, the
convergence criterion of Algorithm 1 is satisfied after a num-
ber of finite iterations.
Theorem 3. For any pre-fixed tolerance level δ, there exists
T ∈ N such that∣∣max

i,j
‖y(t+1)
i − y(t+1)

j ‖2 −max
i,j
‖y(t)i − y

(t)
j ‖2

∣∣ < δ,

for all t ≥ T .

Convergence Rate
Let us now discuss the behavior of a Gaussian cluster un-
der WBMS. We will show that the Gaussian cluster shrinks
towards its mean with at least a cubic convergence rate. Let
φ(x;µ,Σ) denote the Gaussian probability density function
with meanµ and dispersion matrix Σ. In order to remove the
dependency on the random process, we take an infinite sam-
ple, distributed in the whole of Rp according to the density
q(x). For simplicity, we consider the Gaussian kernel. The
kernel density estimate at z, based on the data y(t)

1 , . . . ,y
(t)
n

is given by,

p̂t(z) =
c(h,w(t))

n

n∑
j=1

exp
{
− ‖z − y(t)

j ‖
2
w(t)/h

}
.

Here c(h,w(t)) is a constant depending only on h andw(t).
From equation (3), we get,

y
(t+1)
i =

∑n
j=1 exp{−‖y(t)

i − y
(t)
j ‖2w(t)/h}y

(t)
j∑n

j=1 exp{−‖y(t)
i − y

(t)
j ‖2w(t)/h}

=
c(h,w(t))

n

n∑
j=1

e−
1
h‖y

(t)
i −y

(t)
j ‖

2

w(t)y
(t)
j

c(h,w(t))
n

n∑
j=1

e
− 1

h‖y
(t)
i −y

(t)
j ‖2w(t)

=
c(h,w(t))

n

n∑
j=1

exp{−‖y(t)
i − y

(t)
j ‖2w(t)/h}y

(t)
j

p̂t(y
(t)
i )

≈ c(h,w(t))

∫
y

exp{−‖y(t)
i − y‖2w(t)/h}
pt(y

(t)
i )

qt(y)dy

=

∫
y(pt(y

(t)
i ))−1φ(y

(t)
i − y; 0,

h

2
diag(

1

w(t)
))qt(y)dy.

Thus, if the number of samples is large, each data
point z is replaced by the conditional expectation
E(y|z) =

∫
ypt(y|z)dy, where, pt(y|z) = φ(z −

y; 0, h2diag(1/w(t)))qt(y)/pt(z). For simplicity of exposi-
tion, we begin with x, which follows a Gaussian distribution
with mean 0 and dispersion matrix Σ = diag(σ2

1 , . . . , σ
2
p).

From the above analysis, it is clear that at a population level,
the WBMS can be thought of as taking consecutive condi-
tional expectations w.r.t pt(y|xt). Here xt denote the popu-
lation at the t-th step of the algorithm with x0 = x. The fol-
lowing theorem asserts that xt is also normally distributed.

Theorem 4. Let x0 ∼ Np(0,Σ) and xt+1 =∫
ypt(y|xt)dy. Here pt(·) denotes the distribution of xt

and pt(y|z) = φ(z − y; 0, h2diag(1/w(t)))qt(y)/pt(z).
Then, xt ∼ Np(0, diag((s

(t)
1 )2, . . . , (s

(t)
p )2)), with

s
(t+1)
l = (1 + h(s

(t)
l )2/2w

(t)
l )−1s

(t)
l .

Thus, the sequence of standard deviations {s(t)l } form a
decreasing sequence, which is bounded below. Hence, by
monotone convergence theorem of real sequences (Rudin
1964), {s(t)l } also converges. Let this limit be sl. Hence
{xtl}, the l-th coordinate of xt, converges in distribution to
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Figure 2: Performances of peer algorithms in terms of NMI (left), ARI (middle) and the estimated number of clusters (right)
as the number of clusters increases in simulation 1. It is easily observed that WBMS consistently resembles the ground truth,
while the other algorithms fail.

either N (0, s2l ) (if sl > 0) or the degenerate distribution at
0 (if sl = 0). We also observe that at a population level,

w
(t)
l =

exp{−E(x
(0)
l − x

(t)
l )2/λ}∑p

l′=1 exp{−E(x
(0)
l′ − x

(t)
l′ )2/λ}

.

Since w(t) is a continuous function of vt, where vt =

(E(x
(0)
1 − x

(t)
1 )2, . . . , E(x

(0)
p − x(t)p )2). Since xt converges

in distribution, vt also converges, which in turn implies that
w(t) converges. Let the limit be w. The following theorem
asserts that s(t)l → 0, as t → ∞, which in turn implies that
xt converges to 0, in distribution.

Theorem 5. Let xt, s
(t)
l be as in Theorem 4. Then, sl =

limt→∞ s
(t)
l = 0 and the order of convergence of {s(t)l }∞t=1

is at least cubic. Moreover, the asymptotic rate of conver-
gence of {s(t)l } is 2wl

h .

Thus, the asymptotic convergence rate is smaller if wl is
smaller, meaning that if a feature is deemed to have smaller
feature weight, i.e. little relevance in containing the cluster
structure, the convergence along that feature is faster.

Also note that since xt converges in distribution to 0,
w

(t)
l , being a bounded continuous function of xt also con-

verge in distribution to

wl =
exp{−E(x

(0)
l − 0)2/λ}∑p

l′=1 exp{−E(x
(0)
l′ − 0)2/λ}

∝ exp{−σ2
l /λ}.

Thus, in limit, features with larger variances receive smaller
feature weights compared to features with smaller variances.

Experimental Results
In this section, we compare WBMS with classical base-
lines and state-of-the-art automated clustering algorithms.
To evaluate the performances, we use Normalized Mutual
Information (NMI) (Vinh, Epps, and Bailey 2010) and Ad-
justed Rand Index (ARI) (Hubert and Arabie 1985) be-
tween the ground truth and the obtained partition. For
both the indices, a value of 1 indicates perfect clustering
while a value of 0 indicates completely random class la-
bels. Since our algorithm is developed for automated clus-
tering, apart from the baseline k-means (MacQueen 1967),

we compare our method with Blurring Mean Shift (BMS)
(Wang and Carreira-Perpinán 2010), Gaussian means (G-
means) (Hamerly and Elkan 2004), Dirichlet Process means
(DP -means) (Kulis and Jordan 2012), Entropy Weighted
DP -means (EWDP) (Paul and Das 2020), and the Robust
Continuous Clustering (RCC) (Shah and Koltun 2017) al-
gorithm. For fair comparison against the other automated
clustering methods, the number of clusters in k-means
is supplied through the Gap statistics method (Tibshirani,
Walther, and Hastie 2001). It should be noted WG-means
and RCC already entails higher computational complexity
and we do not consider other alternative clustering tech-
niques, which require k as an input. Since k-means and
G-means depend on the random seeding, we run each al-
gorithm 20 times independently on each data and the re-
port the average performance. All the datasets are normal-
ized (z-transform) before use. In our experiments, we use
the Gaussian kernel. We observed that for the proposed al-
gorithm, h ∈ (0.1, 1) and λ ∈ [1, 20] preserves a consis-
tently good level of performance. All the other algorithms
are tuned using their standard protocols. A pertinent ab-
lation study is provided in the supplementary document.
Additional experiments and runtime comparisons also ap-
pear therein. For the sake of reproducibility, all the codes,
datasets, and supplementary information are available at
https://github.com/SaptarshiC98/WBMS.

Simulation Studies
We now discuss the behavior of the peer algorithms through
a set of simulation studies.

Simulation 1: Effect of increasing k We now examine the
behavior of the WBMS algorithm as the number of cluster
k increases. In this simulation study, we take n = 20 × k,
p = 20, while k varies from 2 to 50. Let Θ be the k × p
real matrix, whose rows represent the k cluster centroids.
We generate Θ as follows.
• Generate θjl ∼ Unif(0, 1) independently for j =

1, . . . , k and l = 1, . . . , 5.
• Set θjl = 0 for j = 1, . . . , k and l = 6, . . . , 20.
After generating Θ, we generate the n×p data matrixX as:

ci ∼ Unif({1, . . . , k});xil ∼ N1(θci,l, 0.022)
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Figure 3: Performances of peer algorithms in terms of NMI (left), ARI (middle) and the estimated number of clusters (right)
as the number of features increases in simulation 2. It is easily observed that WBMS consistently resembles the ground truth,
while the other algorithms fail as the dimensionality of the data increases.
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Figure 4: Boxplot shows that WBMS consistently identifies true features while WG-means and EWDP-means fail to do so.

if l ∈ {1, . . . , 5};xil ∼ N1(0, 1) if l ∈ {6, . . . , 20}.
From the data generation procedure, it is easy to observe
that only the first five features contain the cluster structure
of the data. We run all the peer algorithms on each of the
datasets. Fig. 2 shows the average NMI and ARI values be-
tween the ground truth and the obtained partition. We also
plot the average estimated number of clusters (k̂) against the
true number of clusters (k). It can be easily observed that
WBMS consistently outperforms the other peer algorithms
not only in terms of clustering performance but also in find-
ing the true number of clusters.

Simulation 2: Effect of increasing p This experiment as-
sesses the performance of WBMS as the number of features
grows. We generate n = 100 observations with k = 4 clus-
ters. We increase the dimension from p = 20 to p = 200 at
differences of 20 to observe the effect of growing features. In
each case, the number of informative features is fixed at 5%
of p with an exception for p = 20, where we take 2 informa-
tive features. The clusters are spherical without any overlaps
and are generated from Normal distributions with variance
0.3 and means generated from Unif(0, 1) distribution. The
non-informative features are generated fromN1(0, 1). Fig. 3
compares the NMI, ARI and estimated number of clusters
for all the peer algorithms. From Fig. 3, we can easily ob-
serve that among all peer algorithms, not only the WBMS
algorithm performs best in terms of NMI and ARI values, it
also estimates the number of clusters perfectly.

Simulation 3: Feature Selection We now examine the
feature weighting properties of WBMS. Here, we take n =
100, p = 10, k = 4 and follow the data generation proce-
dure described in Simulation 2. We take the first two features
to be informative that actually contain the cluster structure.
We compare the feature weights obtained by WBMS against
those obtained by WG-means and EWDP. We record the
feature weights obtained by these two algorithms along with
proposed WBMS over 100 replicates of the data. The box
plots for these 100 optimal feature weights are shown in
Fig. 4 for all the three algorithms. The proposed WBMS suc-
cessfully assigns almost all weights to informative features 1
and 2, even in this low signal-to-noise-ratio situation. Mean-
while, its peers WG-means and EWDP fail to do so.

Case Study on Glioma Data

We now evaluate the performance of our algorithm with a
specific case study on the microarray dataset, Glioma (Nutt
et al. 2003). The dataset comprises of 4434 gene expres-
sion levels, collected over 50 samples. There are four natu-
ral classes in the data viz. Glioblastomas (CG), Non-cancer
Glioblastomas (NG), Cancer Oligodendrogliomas (CO), and
Non-cancer Oligodendrogliomas (NO). In our experimental
study, we compare our proposed WBMS algorithm to all the
algorithms described in beginning of this section. To visual-
ize the clustering results, we perform a t-SNE (Maaten and
Hinton 2008) and show the resulting embedding in Fig. 5,
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Figure 5: t-SNE plots for the GLIOMA dataset, color-coded by the partitions obtained by each peer algorithm.

Datasets Method k-Means G-Means WG-Means DP-Means EWDP RCC MS BMS WBMS
GLIOMA NMI 0.499 0.522 0.517 0.576 0.675 0.113 0.580 0.546 0.706

ARI 0.328 0.367 0.373 0.416 0.598 0.004 0.429 0.398 0.618

Appendicitis NMI 0.157 0.165 0.185 0.158 0.189 0.193 0.008 0.195 0.249
ARI 0.230 0.169 0.188 0.231 0.188 0.000 0.014 0.223 0.434

Zoo NMI 0.741 0.801 0.749 0.611 0.859 0.557 0.706 0.841 0.925
ARI 0.459 0.646 0.559 0.452 0.872 0.039 0.436 0.867 0.953

Mammogra- NMI 0.231 0.181 0.240 0.191 0.273 0.181 0.181 0.008 0.348
phic ARI 0.292 0.209 0.293 0.257 0.247 0.001 0.150 0.001 0.351

Yale NMI 0.539 0.417 0.521 0.324 0.334 0.268 0.548 0.222 0.693
ARI 0.271 0.173 0.227 0.040 0.061 0.031 0.069 0.027 0.485

nci9 NMI 0.458 0.394 0.394 0.181 0.211 0.143 0.346 0.394 0.686
ARI 0.187 0.100 0.100 0.005 0.018 0.005 0.011 0.086 0.419

Lymphoma NMI 0.441 0.592 0.690 0.518 0.648 0.243 0.241 0.595 0.778
ARI 0.269 0.340 0.463 0.088 0.431 0.001 0.000 0.458 0.604

Movement NMI 0.591 0.231 0.328 0.333 0.465 0.639 0.245 0.503 0.663
Libras ARI 0.309 0.068 0.123 0.113 0.217 0.014 0.090 0.185 0.532

GCM NMI 0.532 0.484 0.497 0.025 0.497 0.637 0.456 0.649 0.833
ARI 0.288 0.248 0.266 0.002 0.266 0.361 0.413 0.536 0.714

Table 1: Performance Analysis on Real Life Datasets in terms of NMI & ARI values.

color-coded with the partitions obtained from the peer al-
gorithms. WBMS closely represents the ground truth com-
pared to its competitors. This is also be seen from Table 1.

Performance on Real Data Benchmarks

To further demonstrate the efficacy of our proposal, we com-
pare WBMS with the peer algorithms on eight benchmark
real datasets. The datasets are taken from the UCI machine
learning repository (Dua and Graff 2017) , Keel repository
(Alcalá-Fdez et al. 2011)1 and ASU feature selection repos-
itory (Li et al. 2018). The microarray GCM data is collected
from (Ramaswamy et al. 2001). The data dimensions are re-
ported in the supplement. We follow the same computational
protocols as stated at the beginning of Section . The perfor-
mance of each algorithm, in terms of NMI and ARI, is re-
ported in Table 1, which clearly indicate the superior perfor-
mance of WBMS on each of the nine real data benchmarks.

Discussions
Despite decades of advancement, there is no proper solu-
tion for finding the number of clusters and feature weights
simultaneously in the clustering problem. For high dimen-
sional datasets, which contain a significant number of non-
informative features, most of the existing automated clus-
tering methods fail to identify the discriminating features
as well as the number of clusters, resulting in poor perfor-
mance. To circumvent such difficulties, in this paper, we put
forth a novel clustering algorithm known as the Weighted
Blurring Mean Shift (WBMS), which not only provides an
efficient feature representation of the data but also detects
the number of clusters simultaneously. WBMS comes with
closed-form updates and rigorous convergence guarantees.
We have also mathematically proved that under the nominal
assumption of normality of the clusters, WBMS has at least a
cubic convergence rate. Through detailed experimental anal-
ysis on simulated and real data, WBMS is particularly shown
to be useful for high-dimesnional data with many clusters.
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Ethics Statement
To the best of our knowledge, the authors abide by the
AAAI Publications Ethics and Malpractice Statement and
the AAAI Code of Professional Conduct. This paper focuses
on algorithmic and theoretical contributions to unsupervised
learning of high-dimensional datasets in an automated man-
ner. There are no immediate privacy or ethical concerns, but
by addressing a well-known problem of finding the number
of clusters and informative features simultaneously in the
paradigm of unsupervised learning, broader impacts extend
beyond methodological contributions and may have wider
impacts on the learning community.

Clustering problems have been addressed for decades and
still, in this era of constantly growing data dimensions, there
are only a few contributions in finding the number of clus-
ters and informative features simultaneously. Clustering has
been used for countless applications, including community
detection, drug discovery, and gene identification for cancers
and other diseases. In such settings where the interpretations
and decisions based on clustering solutions have a signifi-
cant scientific and societal bearing, unknown datasets must
identify the groups correctly without any previous knowl-
edge whatsoever. By ameliorating the widely popular blur-
ring mean shift clustering methods which provide equal im-
portance to all the features, our contributions, in turn, miti-
gate the ’curse of dimensionality’ by providing appropriate
feature weights to the relevant attributes. Being said that, it
is always important for the practitioner to look deeply into
the results produced by our or any other statistical learning
algorithm and should consider all unforeseen repercussions
before jumping to any conclusion.
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