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Abstract

Ensemble-based adversarial training is a principled approach
to achieve robustness against adversarial attacks. An impor-
tant technique of this approach is to control the transferabil-
ity of adversarial examples among ensemble members. We
propose in this work a simple yet effective strategy to collab-
orate among committee models of an ensemble model. This
is achieved via the secure and insecure sets defined for each
model member on a given sample, hence help us to quantify
and regularize the transferability. Consequently, our proposed
framework provides the flexibility to reduce the adversarial
transferability as well as to promote the diversity of ensem-
ble members, which are two crucial factors for better robust-
ness in our ensemble approach. We conduct extensive and
comprehensive experiments to demonstrate that our proposed
method outperforms the state-of-the-art ensemble baselines,
at the same time can detect a wide range of adversarial ex-
amples with a nearly perfect accuracy. Our code is available
at: https://github.com/tuananhbui89/Crossing-Collaborative-
Ensemble.

Introduction
Deep neural networks have experienced great success in
many disciplines (Goodfellow, Bengio, and Courville 2016),
such as computer vision (He et al. 2016), natural language
processing and speech processing (Vaswani et al. 2017).
However, even the state-of-the-art models are reported to be
vulnerable to adversarial attacks (Biggio et al. 2013; Good-
fellow, Shlens, and Szegedy 2015; Szegedy et al. 2014; Car-
lini and Wagner 2017; Madry et al. 2018; Athalye, Carlini,
and Wagner 2018), which is of significant concern given the
large number of applications of deep learning in real-world
scenarios. It is thus urgent to develop deep learning models
that are robust against different types of adversarial attacks.
To this end, several adversarial defense methods have been
developed but typically addressing the robustness within a
single model (e.g., Papernot et al. 2016; Moosavi-Dezfooli,
Fawzi, and Frossard 2016; Madry et al. 2018; Qin et al.
2019; Shafahi et al. 2019). To cater for more diverse types of
attacks, recent work, notably (He et al. 2017; Tramèr et al.
2018; Strauss et al. 2017; Liu et al. 2018; Pang et al. 2019),
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has shown that ensemble learning can strengthen robustness
significantly.

Despite initial success, key principles for ensemble-based
adversarial training (EAT) largely remain open. One crucial
challenge is to achieve minimum ‘transferability’ between
committee members to increase robustness for the over-
all ensemble model (Papernot, McDaniel, and Goodfellow
2016; Liu et al. 2016; Tramèr et al. 2018; Pang et al. 2019;
Kariyappa and Qureshi 2019). In (Kariyappa and Qureshi
2019), robustness was achieved by aligning the gradient of
committee members to be diametrically opposed, hence re-
ducing the shared adversarial spaces (Tramèr et al. 2017),
or the transferability. However, the method in (Kariyappa
and Qureshi 2019) was designed for black-box attacks, thus
still vulnerable to white-box attacks. Furthermore, attempt-
ing to achieve gradient alignment is unreliable for high-
dimensional datasets and it is difficult to extend for en-
semble with more than two committee members. More re-
cently (Pang et al. 2019) proposed to promote the diversity
of non-maximal predictions of the committee members (i.e.,
the diversity among softmax probabilities except the highest
ones) to reduce the adversarial transferability among them.
Nonetheless, the central concept of transferability has not
been systematically addressed.

Our proposed work here will first make the concept of
adversarial transferability concrete via the definitions of se-
cure and insecure sets. To reduce the adversarial transfer-
ability and increase the model diversity, we aim to make the
insecure sets of the committee models as disjoint as pos-
sible (i.e., lessening the overlapping of those regions) and
challenge those committee members with divergent sets of
adversarial examples. In addition, we observe that lessening
the adversarial transferability alone is not sufficient to en-
sure accurate predictions of the ensemble model because the
committee member that offers inaccurate predictions might
dominate the final decisions. With this in mind, we propose
to realize what we call a “transferring flow” by collaborat-
ing robustness promoting and demoting operations. Our key
principle to coordinate the promoting and demoting opera-
tions is to promote the prediction of one model on a given
adversarial example and to demote the prediction of another
model on this example so as to maximally lessen the nega-
tive impact of the wrong predictions and ensure the correct
predictions of the ensemble model. Moreover, different from
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xa ∈ Bse(x,y, f
1, ε) xa ∈ Bin(x,y, f

1, ε)
xa ∈ Bse(x,y, f

2, ε) S11 ⇐ S01

⇑ ⇑
xa ∈ Bin(x,y, f

2, ε) S10 ⇐ S00

Table 1: Four subsets of the ensemble model and the trans-
ferring flow (arrows). Bse/Bin represent for secure/insecure
sets, respectively.

other works (Strauss et al. 2017; Pang et al. 2019; Kariyappa
and Qureshi 2019) which only consider adversarial exam-
ples of the ensemble model, the committee members in our
ensemble model are exposed to various divergent adversarial
example sets, which inspire them to become gradually more
divergent. Interestingly, by strengthening demoting opera-
tions, our method is capable to assist better detection of ad-
versarial examples. In brief, our contributions in this work
include:
• We propose a simple but efficient collaboration strategy

to reduce the transferability among ensemble members.
• We propose two variants of our method: the robust ori-

ented variant, which helps to improve the adversarial ro-
bustness and the detection oriented variant, which can
detect adversarial examples with high predictive perfor-
mance.

• We conduct extensive and comprehensive experiments to
demonstrate the improvement of our proposed method
over the state-of-the-art defense methods.

• We provide a further understanding of the relationship be-
tween the transferability and the overall robustness in en-
semble learning context.

Our Proposed Method
In this section, we present our ensemble collaboration strat-
egy, which allows us to collaborate many committee models
for improving the ensemble robustness. We start with the
definitions and some key properties of secure and insecure
sets which later support us in devising promoting and de-
moting operations for collaborating the committee models to
achieve the ensemble robustness. It is worth noting that our
ensemble strategy is applicable for ensembling an arbitrary
number of committee models; here we focus on presenting
the key theories, principles, and operations for the canonical
case of ensembling two models for better readability.

Secure and Insecure Sets
Consider a classification problem on a dataset D with M
classes and a pair (x,y) that represents a data example x
and its true label y which is sampled from the dataset D.
Given a model f , the crucial aim of defense is to make f ro-
bust by giving consistently accurate predictions over a ball,
B (x, ε) := {x′ : ‖x′ − x‖ ≤ ε} around a benign data exam-
ple x, for every possible x in the datasetD and the distortion
boundary ε. To further clarify and motivate our theory, we
define
Bsecure (x,y, f, ε) := {x′ ∈ B (x, ε) : argmaxifi (x

′) = y} ,
Binsecure (x,y, f, ε) := {x′ ∈ B (x, ε) : argmaxifi (x

′) 6= y} .

Intuitively, we define a secure set Bsecure (x,y, f, ε) as
the set of elements in the ball B (x, ε) for which the clas-
sifier f makes the correct prediction. In addition, we de-
fine the insecure set Binsecure (x,y, f, ε) as the set of el-
ements in the ball B (x, ε) for which f predicts differ-
ently from the true label y. By definition, the secure set
is the complement of the insecure set, and B (x, ε) =
Bsecure (x,y, f, ε)

⋃
Binsecure (x,y, f, ε). It is clear that the

aim of improving adversarial robustness is to train the clas-
sifier f in such the way that Binsecure (x,y, f, ε) is either as
small as possible (ideally, Binsecure (x,y, f, ε) = ∅, ∀x ∈ D)
or makes an adversary hard to generate adversarial examples
in it. The following simple lemma (see the proof in the sup-
plementary material) shows the connection between those
two kinds of sets and the robustness of the ensemble model
and facilitates the development of our proposed method.

Lemma 1. Let us define fen (·) = 1
2f

1 (·)+ 1
2f

2 (·) for two
given models f1 and f2. If f1 and f2 predict an example x
accurately, we have the following:

i) Binsecure (x,y, f
en, ε) ⊂ Binsecure

(
x,y, f1, ε

)
∪

Binsecure
(
x,y, f2, ε

)
.

ii) Bsecure
(
x,y, f1, ε

)
∩ Bsecure

(
x,y, f2, ε

)
⊂

Bsecure (x,y, f
en, ε) .

Dual Collaborative Ensemble
Transferring Flow. Consider the canonical case of an
ensemble consisting of two models: fen (·) = 1

2f
1 (·) +

1
2f

2 (·), where fen is the ensemble model and {f1, f2} is
the set of ensemble committee (or the committee). Based
on the definitions of secure and insecure sets, an arbitrary
adversarial example xa must lie in one of four subsets as
shown in Table 1. Let us further clarify these subsets. In the
first subset S11 = Bsecure(x,y, f

1, ε)
⋂
Bsecure(x,y, f

2, ε),
the example xa is predicted correctly by both models, hence
also by the ensemble model fen (Lemma 1 (ii)). The sub-
sets S10, S01 are the intersection of a secure set of one
model and an insecure set of another model, hence an
example of two sets is predicted correctly by one model
and incorrectly by the other. Lastly, in the subset S00 =
Binsecure(x,y, f

1, ε)
⋂
Binsecure(x,y, f

2, ε), both models of-
fer predictions other than the true label, but there is also
no guarantee that their incorrect predictions are in the same
class. There is still a chance that the incorrect prediction in
subset S10, S01 dominates the correct ones, which leads to
the incorrect prediction on average. Therefore, the insecure
region of the overall ensemble should be related to the union
S10∪S01∪S00 or the total volume (i.e., |S10|+|S01|+|S00|)
of the subsets S10, S01, S00.

As the result, to obtain a robust ensemble model, we need
to maintain the subset S00 as small as possible, which is in
turn equivalent to making the insecure regions of the two
models as disjoint as much as possible (i.e., concurred with
Lemma 1 (i)). For the data points in either S10 or S01, we
need to increase the chance that the correct predictions dom-
inate the incorrect ones. Our approach is to encourage adver-
sarial examples inside S00 to move to the subsets S10, S01

during the course of training, and those of S10, S01 to move
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to the subset S11. We term this movement as the transfer-
ring flow, which is described in Table 1. In what follows,
we present how to implement the transferring flow for our
ensemble model.

Promoting Adversarial Robustness (PO). We refer to
promoting adversarial robustness as an operation to lever-
age the information of an example xi

a (adversarial exam-
ple of model f i) for improving the robustness of a model
f j (i, j can be different). There are several adversarial de-
fense methods that can be applied to promote adversarial
robustness, notably (Madry et al. 2018; Zhang et al. 2019;
Qin et al. 2019). In this work, to promote the adversar-
ial robustness of a given adversarial example xi

a w.r.t the
model f j , we use adversarial training (Madry et al. 2018)
by minimizing the cross-entropy loss w.r.t the true label as
min C

(
f j(xi

a),y
)
. After undertaking this PO, xi

a is ex-
pected to move to the secure set Bsecure

(
x,y, f j , ε

)
. We in-

troduce two types of PO: direct PO (dPO) when i = j and
crossing PO (cPO) when i 6= j.

Demoting Adversarial Robustness (DO). In contrast to
promoting adversarial robustness, we refer to demoting ad-
versarial robustness as an operation to sacrifice the robust-
ness of a model for an example xi

a (adversarial example
of model f i). Here, we demote the adversarial robustness
of a given adversarial example xi

a w.r.t the model f j by
max H

(
f j(xi

a)
)

where H is the entropy. Without any
further knowledge, the prediction is likely uniformly dis-
tributed, hence the example xi

a likely falls into the in-
secure set Binsecure

(
x,y, f j , ε

)
instead of the secure set

Bsecure
(
x,y, f j , ε

)
.

Collaboration of the Promoting and Demoting Opera-
tions. We now present how to coordinate PO/DO to en-
force the transferring flow for enhancing the adversarial ro-
bustness of the ensemble model in the canonical case of a
committee of two members {f1, f2}, parameterized by θ1
and θ2. Let x1

a and x2
a be white-box adversarial examples

of f1 and f2 respectively. With a strong adversary, we can
assume that x1

a ∈ Binsecure(x,y, f
1, ε) (i.e., x1

a ∈ S01 ∪S00)
and x2

a ∈ Binsecure(x,y, f
2, ε) (i.e., x2

a ∈ S10 ∪ S00). For
ease of comprehensibility, we present the treatment for x1

a
and the same treatment is applied to x2

a. To strengthen model
f1, we always use x1

a to promote the robustness of model
f1 by minimizing the cross-entropy loss C

(
f1(x1

a),y
)

(i.e.,
flow S01 ⇒ S11 or S00 ⇒ S10). Meanwhile, we consider
two cases of x1

a w.r.t model f2: i) being correctly predicted
by f2 (i.e., x1

a ∈ S01) and ii) being incorrectly predicted by
f2 (i.e., x1

a ∈ S00). For the first case, we use x1
a to promote

model f2 to make sure x1
a stays in the secure set of model

f2 (i.e., S11 ∪S01). For the second case, we demote x1
a w.r.t

f2 by maximizing the entropy H
(
f2(x1

a)
)

in order to keep
x1
a in the insecure set of model f2 (i.e., S10 ∪ S00).
Therefore, with the collaboration of two models f1 and f2

on the same example x1
a, we deploy either flow S01 ⇒ S11

or S00 ⇒ S10 depending on the scenario of x1
a. It is worth

noting that DO encourages f2(x1
a) to be close to the uni-

form prediction, hence causing a minimal effect on the en-
semble prediction fen

(
x1
a

)
. As a consequence, fen

(
x1
a

)
=

Scenario f1 f2

x1
a ∈ S01 min C

(
f1(x1

a),y
)

min C
(
f2(x1

a),y
)

x1
a ∈ S00 min C

(
f1(x1

a),y
)

max H
(
f2(x1

a)
)

x2
a ∈ S10 min C

(
f1(x2

a),y
)

min C
(
f2(x2

a),y
)

x2
a ∈ S00 max H

(
f1(x2

a)
)

min C
(
f2(x2

a),y
)

Table 2: Promoting and demoting operations for the trans-
ferring flow

1
2

(
f1
(
x1
a

)
+ f2

(
x1
a

))
is dominated by f1

(
x1
a

)
, which

likely offers a correct prediction via the corresponding PO:
min C

(
f1(x1

a),y
)
. We summarize the PO/DO to deploy the

transferring flow in Table 2.
The objective functions for model f1 and f2 to deploy the

transferring flow are:

L(x,y, θ1) = C
(
f1(x),y

)
+ C

(
f1(x1

a),y
)

+ λpmI
(
f1(x2

a),y
)
C(f1(x2

a),y)

− λdm

(
1− I

(
f1(x2

a),y
))
H
(
f1(x2

a)
)
, (1)

L(x,y, θ2) = C
(
f2(x),y

)
+ C

(
f2(x2

a),y
)

+ λpmI
(
f2(x1

a),y
)
C(f2(x1

a),y)

− λdm

(
1− I

(
f2(x1

a),y
))
H
(
f2(x1

a)
)
. (2)

where λpm and λdm are the hyper-parameters for promot-
ing and demoting effects, respectively, and I

(
f1(x2

a),y
)

is
the indicator to indicate whether x2

a is predicted correctly
(i.e., I = 1, hence x2

a ∈ S10) or incorrectly (i.e., I = 0,
hence x2

a ∈ S00) by f1, which helps to switch on/off the
cPO/DO for model f1.

For the final objective function, we approximate the
hard indicator I

(
f1(x2

a),y
)

by the soft version f1y(x
2
a) =

p
(
y | x2

a, f
1
)
, which represents the probability the model

f1 assigning x2
a to the label y. We hence arrive at the fol-

lowing objective functions for both f1 and f2, respectively.

L(x,y, θ1) = C
(
f1(x),y

)
+ C

(
f1(x1

a),y
)

+ λpmf
1
y (x

2
a)C(f1(x2

a),y)

− λdm

(
1− f1

y (x
2
a)
)
H
(
f1(x2

a)
)
, (3)

L(x,y, θ2) = C
(
f2(x),y

)
+ C

(
f2(x2

a),y
)

+ λpmf
2
y (x

1
a)C(f2(x1

a),y)

− λdm

(
1− f2

y (x
1
a)
)
H
(
f2(x1

a)
)
. (4)

We note that in our implementation, the soft indicators
f1y (x

2
a) and f2y (x

1
a) are used as values by performing a stop-

ping gradient to prevent the back-propagation process to go
inside them for further updating f1 and f2.

Crossing Collaborative Ensemble
We now extend our collaboration strategy to enable us to
ensemble many individual members, which we term as a
Crossing Collaborative Ensemble (CCE). Specifically, given
an ensemble of N members fen (·) = 1

N

∑N
n=1 f

n (·) pa-
rameterized by θn, the loss function for a model fn, n ∈
[1, N ] as follow:
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Ln(x,y, θn) = C (fn(x),y) + C (fn(xn
a),y)

+
1

N − 1

∑
i 6=n

(
λpmf

n
y (x

i
a)C(fn(xi

a),y)

− λdm

(
1− fn

y (x
i
a)
)
H
(
fn(xi

a)
))

. (5)

It appears from the above loss that we encourage each
individual model to (i) minimize the loss of the adversarial
example itself for improving its robustness (dPO) and (ii)
promoting or demoting its robustness (cPO/DO) with other
adversarial examples depending on the soft indicator.

Connections to Traditional Ensemble Learning. Firstly,
in our method, N members {fn} are reinforced with the
joint of N + 1 data sources: clean data {x} and N adver-
sarial examples {xn

a}Nn=1. However, depending on different
scenarios, they have the same task (PO-PO) or opposite tasks
(PO-DO) on the same adversarial set {xn

a}. Our approach
can be linked to the bagging technique in the literature, in
which each classifier was trained on different sets of data.
Secondly, by assigning opposite tasks for ensemble mem-
bers, our method produces a negative correlation which was
described in (Liu and Yao 1999; Kuncheva and Whitaker
2003; Bagnall, Bunescu, and Stewart 2017). It has been
claimed that negative relationship among ensemble mem-
bers can further improve the ensemble accuracy better than
the independent correlation.

Experiments
In this section, we first introduce the experimental setting for
adversarial defenses and attackers followed by an extensive
evaluation to compare our method with state-of-the-art ad-
versarial defenses. We show that our method surpasses these
methods for common benchmark datasets. Next, we provide
an ablation study to understand the transferability among en-
semble members of adversarial examples. Finally, we show
that our method not only detects adversarial examples ac-
curately and consistently but also predicts benign examples
with a significant improvement.

Experimental Setting
General Setting. We use CIFAR10 and CIFAR100 as the
benchmark datasets in our experiment.1 Both datasets have
50,000 training images and 10,000 test images. The inputs
were normalized to [0, 1]. We apply random horizontal flips
and random shifts with scale 10% for data augmentation as
used in (Pang et al. 2019). We use both standard CNN ar-
chitecture and ResNet architecture (He et al. 2016) in our
experiment. The architecture and training setting for each
dataset are provided in our supplementary material.

1Recently, (Tsipras et al. 2020) found the labeling issue in the
ImageNet dataset, which highly affects the fairness of robustness
evaluation on this dataset.

Crafting Adversarial Examples for Defenders. In our
experiments, we use PGD {k, ε, η, l∞} as the common ad-
versary to generate adversarial examples for the adversar-
ial training of all defenders where k is the iteration steps, ε
is the distortion bound and η is the step size. Specifically,
the configuration for the CIFAR10 dataset is k = 10, ε =
8/255, η = 2/255 and that for the CIFAR100 dataset is
k = 10, ε = 0.01, η = 0.001. For the CIFAR10 dataset
with ResNet architecture, we use the same setting in (Pang
et al. 2019) which is k = 10, ε ∼ U(0.01, 0.05), η = ε/10.

Baseline Methods. Because the model capacity has sig-
nificant impact on the inference performance, therefore, for
a fair comparison, we compare our method with the start-of-
the-art ensemble-based method, i.e., ADV-EN (Madry et al.
2018) and ADP (Pang et al. 2019), which have the same
number of committee members and also the member’s ar-
chitecture. More specifically, ADV-EN is the variant of PGD
adversarial training method (ADV) in the context of ensem-
ble learning, in which the entire ensemble model is treated as
one unified model applied with adversarial training. We also
compare with the ADV method which is adversarial train-
ing on a single model. For ADP, we choose the best setting
ADP2,0.5 with adversarial version, which was reported in
the paper (Pang et al. 2019), and use the official code.2

Throughout our experiments, we use two variants of our
method: (i) Robustness Mode (i.e., CCE-RM) for which we
set λpm = λdm = 1 and (ii) Detection Mode (i.e., CCE-
DM) for which we disable cPO (λpm = 0) and strengthen
DO (i.e., λdm = 5).

Attack Setting. We use different state-of-the-art attacks to
evaluate the defense methods including:

(i) Gradient based attacks (with cleverhans3 lib). We
use PGD (Madry et al. 2018), the Basic Iterative Method
(BIM) (Kurakin, Goodfellow, and Bengio 2017) and the
Momentum Iterative Method (MIM) (Dong et al. 2018).
They share the same hyper-parameters configuration, i.e.,
{k, ε, η}, which is described in each individual experiment.

(ii) B&B attack (Brendel et al. 2019) (with foolbox4 lib)
which is a decision based attack. We argue that the B&B
attack setting in the paper of (Tramer et al. 2020) may not
be appropriate to evaluate the ADP method. It is because
the ADP method used PGD (ε ∼ U(0.01, 0.05), k = 10)
for its adversarial training, while B&B attack used PGD
(ε = 0.15, k = 20) as an initialized attack which is much
stronger than the defense capacity. More specifically, the ini-
tialized PGD attack alone can reduce the accuracy to 0.1%.
Therefore, B&B attack contributes very little to the final at-
tack performance. To have a fair evaluation, we use two ini-
tialized attacks with lower strength: PGD1 (ε = 8/255, η =
2/255, k = 20) and PGD2 (ε = 16/255, η = 2/255, k =
20) then apply B&B attack with 100 steps and repeat for
three times. It is worth noting that, PGD2 is still much
stronger than the defense capacity, however, we use this set-
ting to mimic the evaluation in the paper of (Tramer et al.

2https://github.com/P2333/Adaptive-Diversity-Promoting
3https://github.com/tensorflow/cleverhans
4https://foolbox.readthedocs.io/en/stable/
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Attack ADV1 ADV2 ADP2 CCE2 ADV3 ADP3 CCE3

Nat. acc. 83.9 85.3 85.3 84.5 86.1 86.2 84.9
PGD 41.4 42.8 44.2 45.8 43.8 45.1 48.6
BIM 41.5 42.9 44.1 45.8 44.0 45.2 48.8
MIM 41.9 43.3 44.8 46.3 44.5 45.7 49.1

B&B (PGD1) 37.0 38.3 37.3 42.2 39.3 38.3 44.2
B&B (PGD2)* 4.9 2.9 3.9 6.0 4.2 4.3 7.1

SPSA 50.0 53.5 52.8 56.2 53.8 53.9 56.6
Auto-Attack 16.1 18.5 17.3 18.8 18.4 17.6 20.8

Table 3: Robustness evaluation on the CIFAR10 dataset with
ResNet architecture. For the gradient based attacks, we use
ε = 8/255, η = 2/255, k = 250. (*) The low robust ac-
curacies (even with standard method ADV) because the at-
tack strength of PGD2 is double of the defense capacity,
which makes the adversarial examples to be recognizable.
CCE represents for CCE-RM version.

2020).
(iii) Auto-Attack (Croce and Hein 2020) (with the official

implementation5) which is an ensemble based attack. We use
ε = 8/255 for the CIFAR10 dataset and ε = 0.01 for the
CIFAR100 dataset, both with standard version which is an
ensemble of four different attacks.

(iv) SPSA attack (Uesato et al. 2018) (with cleverhans
lib) which is a gradient-free optimization method. We use
ε = 8/255 for the CIFAR10 dataset and ε = 0.01 for the
CIFAR100 dataset, both with 50 steps.

The distortion metric we use in our experiments is l∞ for
all measures. We use the full test set for the attacks (i) and
1000 test samples for the attacks (ii-iv).

Robustness Evaluation
We conduct extensive experiments on the CIFAR10 and CI-
FAR100 datasets to compare our method with the other
methods. We consider the ensemble of both two and three
committee members (denoted by a subscript number in each
method). It can be observed from the experimental results in
Table [3, 4, 5] that:

(i) There is a gap of 2%∼3% when comparing ADV-EN3

with ADV1 showing that increasing model capacity (by in-
creasing number of ensemble member) can improve the ro-
bustness of the model.

(ii) There is a gap of 3%∼4% between ADP3 and ADV1,
and especially, a gap of 7%∼8% when comparing our
CCE-RM3 with ADV1, which shows the potential of the en-
semble learning to tackle with the adversarial attacks.

(iii) With the same model capacity, our CCE-RM is con-
sistently the best with all attacks and in some attacks, ours
surpasses other baselines in a large margin (4%∼5%).

(iv) There is a gap of 3% between CCE-RM3 and
CCE-RM2, which is larger than the gap of 1% between
ADP3 and ADP2 or that of ADV-EN3 and ADV-EN2, show-
ing that our method collaborates members better and gets
more benefit from ensembling more committee members.

The effectiveness of adversarial training method depends
on the diversity (or the hardness) of the adversarial examples
(Madry et al. 2018). Fort et al. (2019) found that differently

5https://github.com/fra31/auto-attack

Attack ADV1 ADV2 ADP2 CCE2 ADV3 ADP3 CCE3

Nat. acc. 75.7 76.0 75.9 76.0 76.7 76.6 75.7
PGD 38.0 39.7 42.2 44.7 40.8 43.9 46.8
BIM 38.2 39.7 42.2 44.9 40.8 43.8 46.8
MIM 38.5 40.5 42.4 45.4 41.3 44.2 47.2

mul-PGD 26.0 27.7 27.8 31.9 28.3 32.4 36.9
mul-BIM 25.9 27.2 27.2 31.6 27.7 29.8 34.1
mul-MIM 26.2 28.1 28.3 32.3 29.0 30.7 34.6

SPSA 40.6 44.3 41.5 45.2 45.1 46.1 47.5
Auto-Attack 25.1 25.0 24.4 29.9 25.5 28.1 31.9

Table 4: Robustness evaluation on the CIFAR10 dataset
with standard CNN architecture. We use ε = 8/255, η =
2/255, k = 100 for gradient based attacks. Note that mulA
represents for multiple-targeted attack by adversary A with
k = 20. CCE represents for CCE-RM version.

Attack ADV1 ADV2 ADP2 CCE2 ADV3 ADP3 CCE3

Nat. acc. 40.8 41.4 48.0 53.4 40.8 52.6 54.4
PGD 26.8 29.7 30.9 35.3 32.8 36.2 39.5
BIM 26.9 29.1 31.0 35.2 32.8 36.2 39.4
MIM 27.0 29.0 30.8 35.3 32.9 36.1 39.6

mul-PGD 16.4 15.8 20.1 24.2 16.6 24.8 28.4
mul-BIM 15.9 15.5 19.4 23.7 16.3 24.5 28.1
mul-MIM 16.7 16.1 20.3 24.1 16.8 25.1 28.6

SPSA 25.6 25.5 24.1 31.8 26.0 32.5 35.0
Auto-Attack 15.3 15.1 14.8 21.9 15.8 23.0 25.9

Table 5: Robustness evaluation on the CIFAR100 dataset
with standard CNN architecture. We use ε = 0.01, η =
0.001, k = 100 for gradient based attacks. Note that mulA
represents for multiple-targeted attack by adversary A with
k = 20. CCE represents for CCE-RM version.

initializing members’ parameters, even with the same train-
ing data, can end up with different local optimal in the so-
lution space. Therefore, the potential of ensemble learning
(in the remark ii) can be explained by the fact that the adver-
sarial space of an ensemble model Binsecure (x,y, f

en, ε) is
more diverse than that of a single model Binsecure (x,y, f, ε).

Our advantages over others (in the remark iii, iv) can be
explained by the fact that our proposed method encourages
the diversity of its committee members. Specifically it can
be elaborated on with the following three key points. Firstly,
while other ensemble-based defenses use the adversarial ex-
amples of the entire ensemble xen

a ∼ Binsecure (x,y, f
en, ε),

our method makes use of the broader joint adversarial space
xi
a ∼ Binsecure

(
x,y, f i, ε

)
(Lemma 1 (i)). Secondly, each

member has different loss landscape (Fort, Hu, and Laksh-
minarayanan 2019), in addition with the randomness of an
adversary (e.g., random starting points in PGD), each mem-
ber has its individual adversarial set (partly collapsed as
shown in the next experiment). Therefore, similar with the
bagging technique, by promoting each member with its ad-
versarial examples independently, we can increase the diver-
sity of the joint adversarial space. Last but not least, inspired
from traditional ensemble learning (Liu and Yao 1999), by
elegantly collaborating PO and DO, we encourage the nega-
tive correlation among ensemble members, therefore, further
improve the diversity of the joint adversarial space.
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Transferability Among Ensemble Members
The transferability is a phenomenon when adversarial exam-
ples generated to attack a specific model also mislead other
models trained for the same task. In the ensemble learn-
ing context, adversarial examples which are transferred well
among members will likely fool the entire ensemble. There-
fore, reducing the transferability among members is a princi-
pled approach to achieve better robustness as claimed in the
previous works (Pang et al. 2019; Kariyappa and Qureshi
2019). In this sub-section, we provide a further understand-
ing of the transferability to the overall robustness and show
the impact of the transferring flow.

We first summarize the experiments setting. The experi-
ments are conducted on the CIFAR10 dataset with an en-
semble of two members under PGD attack with k = 20, ε =
8/255, η = 2/255. The results are reported in Table 6. CCE-
Base is our model which disables the crossing PO and DO
by setting λpm = λdm = 0. a(i,j) represents for the ro-
bust accuracy when adversarial examples {xia} attack model
f j . |S| shows the cardinality of a subset S, i.e., the per-
centage of the images that go into the subset S, which can
be one of {S11, S01, S10, S00}. From the definition of the
transferability as mentioned above, to measure the trans-
ferability of adversarial examples {xi

a}, we can compute
the accuracy difference of model f i and f j , j 6= i against
the same attack {xi

a}. The smaller gap implies that ad-
versarial examples {xi

a} are more transferable. The overall
transferability of an ensemble method can be evaluated by
the sum the accuracy differences over all its members, i.e.,
T = a(1,2) − a(1,1) + a(2,1) − a(2,2).

We would like to emphasize some following important
empirical observations (Table 6):

1) The impact of the transferring flow. It can be ob-
served that the cardinality |S11| in CCE-RM (39.9%) is
larger than that in CCE-Base (36.1%), while the cardinality
|S01| , |S10| , |S00| is smaller than those in CCE-Base which
serves as evidence that the adversarial examples are success-
fully transferred from subsets S10, S01, S00 to subset S11 as
we expect. This helps improve the overall robustness of the
ensemble model from 43.3% for CCE-Base to 45.5% for
CCE-RM.

2) The transferable space is just a subset of the ad-
versarial space. By definition, the subset S00 consists of
adversarial examples which fools both models f1, f2, there-
fore, S00 represents for the transferable space of the ensem-
ble model fen. In fact, the cardinality of |S00| is smaller than
the insecure region of the ensemble model fen (i.e., the total
classification error 100%−a(en,en)) in all methods showing
that the transferable space cannot represent for the insecure
region of the ensemble model fen, and the former is just the
subset of the latter.

3) Reducing transferability among ensemble members
is not enough to improve adversarial robustness. In fact,
the transferability metric T for CCE-RM is 33.7% which is
much smaller than those for ADP and ADV-EN (59.3% and
65.5%, respectively). The smaller value of T shows that the
adversarial examples {x1

a}, {x2
a} in our method are more

transferable than those in ADV-EN and ADP. However, the

fact that the overall robustness of our method is significantly
better evidently shows that transferability is not the only fac-
tor for improving the robustness. This is because the robust-
ness of each individual member under a direct attack (i.e.,
a(1,1) or a(2,2)) is much lower than our method. In addition,
the cardinality |S11| in our method is 39.9% which is much
bigger than those in ADV-EN (24.0%) and ADP (25.7%).

We provide two additional metrics which are (i) nT =
100%−a(en,en)−|S00| to measure the cardinality of adver-
sarial examples set which successful attack model fen but
non transferable among f1, f2 and (ii) asingle = a(en,en)−
|S11| to measure the cardinality of adversarial examples set
which are correctly predicted by only one model either f1
or f2 but still being correctly predicted by model fen. The
comparison on the metric nT in Table 6 shows that most
of successful adversarial examples in our method are pre-
dicted incorrectly by both members. While the comparison
on the metric asingle shows that most of unsuccessful ad-
versarial examples in our method are predicted correctly
by both members. The two comparisons demonstrate that
our method have better robustness than other methods be-
cause (i) the adversarial examples have to fool both ensem-
ble members for a successful attack and (ii) our ensemble
model can predict correctly by both members which ex-
plains the higher performance.

The remarks (2, 3) further imply that:
An ensemble model cannot be secure against white-box

attacks unless its members are robust against direct attacks
(even they are secure against transferred attacks).

This hypothesis provides more understanding of the cor-
relation between the transferability and the overall robust-
ness of an ensemble model.

Improving Natural Accuracy and Adversarial
Detectability
The parameter λpm(λdm) controls the level of the agree-
ment (disagreement) of models {f i}, i ∈ [1, N ] and model
f j , j 6= i on the same adversarial example xja. By dis-
abling the crossing PO (λpm = 0) and strengthening DO
(i.e., λdm = 5), our method encourages the disagreement
among members on the same data example, therefore, in-
creases the negative correlation among them. This setting of
CCE-DM leads to two important properties, which are em-
pirically proved by the experiments below.

Improving Natural Accuracy. We compare natural accu-
racies of two variants: CCE-RM and CCE-DM against the
baselines. Table 7 shows that CCE-DM significantly im-
proves natural accuracy of the ensemble model by a large
margin. In traditional ensemble learning, the key ingredient
to improve natural performance is making ensemble mem-
bers more diverse (Kuncheva and Whitaker 2003). By dis-
abling the crossing PO and strengthening DO, CCE-DM
variant enforces the diversity more strictly, which explains
the improvement of the natural performance. This result
demonstrates the promising usage of adversarial examples
to improve the traditional ensemble learning.
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Model a(en,en) a(1,1) a(2,2) |S11| |S01| |S10| |S00| T nT asingle
ADV-EN 40.7 31.1 33.2 24.0 17.0 13.0 46.0 65.5 13.3 16.7

ADP 42.9 31.0 33.1 25.7 13.1 11.7 49.5 59.3 7.6 17.2
CCE-RM 45.5 41.7 41.4 39.9 5.2 5.5 49.5 33.7 5.0 5.6
CCE-Base 43.3 40.3 40.5 36.1 6.5 7.2 50.3 36.1 6.4 7.2

Table 6: Evaluation on the transferability among ensemble members on the CIFAR10 dataset. {T, nT, asingle} are the metrics
of interest.

Model ADV-EN ADP CCE-RM CCE-DM
CNN2 76.0 75.9 76.0 86.0
CNN3 76.7 76.6 75.7 87.2

ResNet2 85.3 85.3 84.5 91.0
ResNet3 86.1 86.2 84.9 91.6

Table 7: Comparison of the natural performance on the CI-
FAR10 dataset (the subscript number denotes the number
members).

Figure 1: Histogram of prediction entropy in CCE-RM

Adversarial Detectability. CCE-DM can distinguish be-
tween benign and adversarial examples more easily. It is be-
cause the committee members produce a uniform prediction
for adversarial examples, while yielding a very high confi-
dent prediction for benign examples. The histogram for all
images in the test set and their adversarial examples in Fig-
ure 1 demonstrate the consistency of this observation over
the data distribution.

These results further inspire us to develop a simple yet
effective method to detect adversarial examples based on
the entropy of the model prediction. Following the eval-
uation in (Pang et al. 2018, 2019), we try with different
thresholds to distinguish the benign and adversarial exam-
ples and report the AUC score of each adversarial attack.
It is worth noting that, we do not intend to compete with
other adversarial detectors but just to show the advantage
and flexibility of our CCE. The experiment is on the CI-
FAR10 dataset with an ensemble of two members. We con-
duct two evaluations to justify our understanding. First, we
study our detection method against three different attacks:
PGD, BIM and MIM with the same hyper-parameter set-
ting k = 20, ε = 8/255, η = 1/255. The result in Fig-
ure 2a shows that our method can accurately and consis-
tently detect all three kind of attacks. Secondly, we study
our detection method on different attack strengths. We use

(a) multiple types of attack (b) multiple attack strengths

Figure 2: ROC of CCE-RM under different attack scenarios

the PGD attack k = 20, η = 1/255 and vary the distor-
tion bound ε from 1/255 to 24/255. The result in Figure 2b
shows that our method can perform well on a wide range of
attack strengths. The adversary is obviously less distinguish-
able when decreasing its strength. However, our method still
obtains a very high AUC score (93.4/100) even under a very
weak attack (ε = 1/255), in which adversarial images look
nearly identical to the original ones.

Conclusion

In this paper, we explore the use of ensemble-based learning
to improve adversarial robustness. In particular, we propose
a cross-collaborative strategy by means of enforcing the
transferring flow of adversarial examples, thereby implic-
itly increasing the diversity of adversarial space and improv-
ing the robustness of the ensemble. Moreover, our proposed
method can be performed in both detection and robustness
modes. We conduct extensive and comprehensive experi-
ments to show the improvement of our proposed method on
state-of-the-art baselines. We also provide the detailed un-
derstanding of the relationship between the transferability
and the overall robustness in the ensemble learning context.
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