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Abstract

The quantization of deep neural networks (QDNNs) has
been actively studied for deployment in edge devices. Re-
cent studies employ the knowledge distillation (KD) method
to improve the performance of quantized networks. In this
study, we propose stochastic precision ensemble training for
QDNNs (SPEQ). SPEQ is a knowledge distillation training
scheme; however, the teacher is formed by sharing the model
parameters of the student network. We obtain the soft la-
bels of the teacher by randomly changing the bit precision of
the activation stochastically at each layer of the forward-pass
computation. The student model is trained with these soft la-
bels to reduce the activation quantization noise. The cosine
similarity loss is employed, instead of the KL-divergence,
for KD training. As the teacher model changes continuously
by random bit-precision assignment, it exploits the effect
of stochastic ensemble KD. SPEQ outperforms the existing
quantization training methods in various tasks, such as im-
age classification, question-answering, and transfer learning
without the need for cumbersome teacher networks.

Introduction
Deep neural networks (DNNs) have achieved remarkable
accuracy for tasks in a wide range of applications, includ-
ing image processing (He et al. 2016a), machine transla-
tion (Gehring et al. 2017), and speech recognition (Zhang
et al. 2017). These state-of-the-art neural networks use very
deep models, consuming hundreds of ExaOps of computa-
tion during training and GBytes of storage for model and
data. This complexity poses a tremendous challenge for
widespread deployment, especially in resource-constrained
edge environments, leading to a plethora of explorations
in model compression that minimize memory footprint and
computational complexity while attempting to preserve the
performance of the model. Among them, research on quan-
tized DNNs (QDNNs) focuses on quantizing key data struc-
tures, namely weights and activations, into low-precision.
Hence, we can save memory access overhead and simplify
the arithmetic unit to perform reduced-precision computa-
tion. There have been extensive studies on QDNNs (Fengfu,
Bo, and Bin 2016; Courbariaux, Bengio, and David 2015;
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Choi et al. 2018; Hou and Kwok 2018), but most of them
suffer from accuracy loss due to quantization.

To enhance the performance of low-capacity models,
knowledge distillation (Hinton, Vinyals, and Dean 2015;
Bucilu, Caruana, and Niculescu-Mizil 2006) (KD) has been
widely adopted. KD employs a more accurate model as a
teacher network to guide the training of the student model.
For the same input, the teacher network provides its pre-
diction as a soft label, which can be further considered in
the loss function to guide the training of the student net-
work. In the case of QDNNs, the quantized student network
can compensate for its accuracy loss via supervision of the
teacher model (Mishra and Marr 2018; Polino, Pascanu, and
Alistarh 2018; Shin, Boo, and Sung 2019; Kim et al. 2019).
However, the need for large and high-performance teacher
models introduces significant overhead when applying KD.
In particular, KD has not been successfully employed in the
emerging study of on-device training for model adaptation
and transfer learning, since the memory-intensive teacher
models may not be available once the quantized models are
deployed.

In this work, we propose a new practical approach to KD
for QDNNs, called stochastic precision ensemble training
for QDNNs (SPEQ). SPEQ is motivated by an inspiring ob-
servation about activation quantization. Table 1 shows that
the accuracy of the WFA2 (float weight and 2-bit activation)
model improves as the activation precision increases. How-
ever, the W2AF (2-bit weight and float activation) model
shows the opposite characteristic. The accuracy drops as the
weight precision increases for inference. This simple exper-
iment reveals interesting insights: the activation quantiza-
tion mostly adds noise to the decision boundary (Boo, Shin,
and Sung 2020). Therefore, inference with various activation
precision results in selective removal of such noise, leading
to diverse guidance that can be exploited for self knowledge
distillation.

In SPEQ, we form a teacher network that shares the quan-
tized weights with the student but employs different bit pre-
cision for activation. The clipping levels of activation are
also shared. In fact, the activation precision for the teacher is
randomly selected between the low and high precision, such
as 2 and 8-bit. Since the teacher stochastically applies the
target low-bit activation quantization for its soft label com-
putation, it can experience the impact of quantization for the
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Trained precision Test accuracy (%) / Inference precision

2-bit W, float A (W2AF) 65.74 / W2AF 58.01 / W4AF 55.85 / W8AF 54.70 / WFAF
Float W, 2-bit A (WFA2) 66.93 / WFA2 68.48 / WFA4 68.77 / WFA8 68.71 / WFAF

Table 1: CIFAR100 test accuracy (%) in higher precision on the quantized model. ResNet20 is trained with 2-bit weight / float
activation and float weight / 2-bit activation. (Details in Appendix A.)

guidance. Furthermore, we reveal that the cosine similarity
loss is essential for distilling the knowledge of the teacher of
stochastic quantization to the low-precision student.

Although this form of guidance resembles KD, there is
a significant difference in that the same model is shared
and any other auxiliary models, such as large teacher net-
works, are unnecessary. The forward-pass computation of
the teacher and student in SPEQ can be performed eco-
nomically as the same weight parameters can be loaded
only once. Therefore, the SPEQ can improve the perfor-
mance much without the overhead of teacher-model search
or hyper-parameter tuning needed for conventional KD. Fur-
thermore, since the stochastic precision ensemble provides
distinctive knowledge, SPEQ can be combined with the con-
ventional KD method to further improve the performance of
the target QDNNs.

We demonstrate the superior performance and effi-
ciency of our SPEQ on various applications, including CI-
FAR10/CIFAR100/ImageNet image classification and also
transfer learning scenarios such as BERT-based question-
answering and flower classification.

The contributions of our work are summarized as follows:

• We propose a new practical KD method called SPEQ that
can enhance the accuracy of QDNNs QDNNs employing
low-precision bit-widths for weights and activation sig-
nals. This method can yield better results compared to
conventional KD-based QDNN optimization that utilizes
large teacher models.

• We suggest cosine similarity as an essential loss function
to effectively distill the knowledge of activation quantiza-
tion in SPEQ training.

• We demonstrate that the proposed method outperforms
the existing KD methods for training QDNNs with lower
training overhead. We confirm this on various models and
tasks including image classifications, question answering,
and transfer learning.

• We show that the proposed method can be combined to
the conventional KD method with a large teacher to fur-
ther improve the performance of the target model.

Related Works
Quantization of Deep Neural Networks
QDNNs have been studied for a long time. Early works sug-
gested stochastic gradient descent (SGD)-based training for
QDNNs to restore the performance reduced by the quanti-
zation error (Courbariaux, Bengio, and David 2015; Hwang
and Sung 2014; Zhu et al. 2017). The quantized SGD train-
ing maintains both full-precision and quantized weights.

Full-precision weights are exploited to accumulate the gra-
dients, and the quantized weights are used for computing
forward and backward propagation. Several techniques have
been combined with the quantized SGD algorithm, which in-
clude data distribution (Zhou et al. 2017), stochastic round-
ing (Gupta et al. 2015), weight cluster (Park, Ahn, and Yoo
2017), trainable quantization (Zhang et al. 2018), fittable
quantization scale (Cai et al. 2017), pow2-ternaization (Ott
et al. 2016), stochastic weight averaging (Shin, Boo, and
Sung 2020), increasing the size of the neural network (Ka-
pur, Mishra, and Marr 2017), and quantization interval learn-
ing (Jung et al. 2019). A recent study suggested that quanti-
zation errors for weight and activation are different (Boo,
Shin, and Sung 2020). Activation quantized models are
known to be more vulnerable to the adversarial noise (Lin,
Gan, and Han 2019). Architectural modifications of increas-
ing the width or moving the location of activation and batch
normalization have also been studied (Zagoruyko and Ko-
modakis 2016; He et al. 2016b). In particular, increasing
the number of parameters in CNNs reduces the quantiza-
tion sensitivity (Mishra et al. 2017). However, considering
the purpose of model compression, the number of parame-
ters needs to be constrained.

Knowledge Distillation for Quantization
KD is a method to improve the accuracy of a target model
(called a student) by transferring better representation power
(i.e., ”knowledge”) of a larger or more complex model
(called a teacher) (Hinton, Vinyals, and Dean 2015; Bucilu,
Caruana, and Niculescu-Mizil 2006). Recently, several pa-
pers have adopted KD to restore the accuracy loss due to the
quantization error of reduced-precision inference (Zhuang
et al. 2018; Polino, Pascanu, and Alistarh 2018; Mishra and
Marr 2018; Shin, Boo, and Sung 2019; Kim et al. 2019).
Apprentice (Mishra and Marr 2018) proposed several ap-
proaches to apply KD for enhancing the accuracy of the
quantized models. The importance of the hyperparameters
of KD was studied in (Shin, Boo, and Sung 2019). More re-
cently, quantization aware KD (Kim et al. 2019) (QKD) has
been suggested, wherein the three training phases are coordi-
nated as self-studying, co-studying, and tutoring. They train
the full-precision larger teacher model using the soft labels
of quantized student network to make the teacher understand
the quantization errors of the student model. SP-Net (Guerra
et al. 2020) also adopted self distillation but it focused on
training models to robustly operate at various precisions.
They employed only the full-precision pass as the teacher
to improve accuracy for the other precision settings. Several
studies have adopted deterministic self-distillation (Zhang
et al. 2019a; Li et al. 2019; Phuong and Lampert 2019; Yu
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Figure 1: Structure of the proposed SPEQ training scheme for QDNNs. The QDNNs are trained for the target precision nA
through the ‘target precision path’. The ‘stochastic precision path’ produces the teacher logits, zSPP using the same model but
with randomly assigned quantization precision for activation at every iteration. Note that the weights in the model are quantized
to nW bits.

and Huang 2019; Zhang et al. 2019b).
The difference between the proposed method and the pre-

vious works is that the teacher is formed by sharing the
student model and assigning stochastic bit precision to ac-
tivation. There are two main advantages of this method: the
teacher information contains the quantization noise induced
in the target QDNN by model sharing (better performance)
and pretrained teacher models or auxiliary training parame-
ters are unnecessary (lower training cost).

Stochastic Precision Ensemble Training for
QDNNs

Stochastic Precision Self-Distillation with Model
Sharing
Changing the activation quantization precision in the same
model affects the amount of noise injected into the model,
as shown in Table 1. That is, the outputs obtained through
high-precision activation have information when the model
operates without noise.

The training procedure of the SPEQ is illustrated in Fig-
ure 1. Two outputs are computed through different paths
using the same parameters. Note that the initial quantized
weights and clipping levels for activation are determined us-
ing conventional QDNN optimization methods (Jung et al.
2019; Choi et al. 2018). The details of the employed quan-
tization method are shown in Appendix B. The first output
logits, zTPP, are obtained through the target precision path
by quantizing the activation outputs to nA bits. The goal of
the SPEQ is to increase the performance of the QDNN with
this target precision path. The second output logits, zSPP,
are computed by quantizing the activation outputs using the
stochastic bit precision, nSPP which is defined as follows:

nlSPP =

{
nA with probability u
nH with probability 1− u, (1)

where l denotes the layer index, nA is the target precision,
nH is a precision higher than the target precision, and u is a
quantization probability for the stochastic quantization path.

We set the high precision, nH , to 8 bits. The impact of u is
discussed in the next section. For readability, we denote the
set of nlSPP as nSPP, that is, nSPP = {n1SPP, ...n

L
SPP}.

The output probability, p((z), T ), is computed using the
softmax operation with temperature, T . The temperature
softens the distribution of the softmax outputs by dividing
the output logits (Hinton, Vinyals, and Dean 2015). Note
that the soft labels, p(zSPP, T ), are produced while shar-
ing the parameters. Thus, they contain information of the
quantization noise of the target model. We train the QDNN
using these soft labels to reduce the activation quantization
noise. The loss for the SPEQ training is the sum of the cross-
entropy loss, LCE , and the cosine similarity loss, LCS , as
follows.

LSPEQ = LCE(y,p(zTPP, 1))

+ LCS(p(zSPP, T ),p(zTPP, T ))× T 2. (2)
The effects of the cosine similarity loss function are dis-
cussed in Section . Note that the zSPP is only used to pro-
duce the soft label for the LCS , thus, the back-propagation
error only flows through the target precision path, as shown
in Figure 1. Therefore, the only computational overhead for
a training step is the computation of zSPP by forward prop-
agation. The SPEQ is based on the KD training but has the
advantage that no other auxiliary model is required.

The proposed method can also adopt a larger teacher
model to further improve the performance. In this case, the
outputs through the SPP can be seen as the outputs of the
teacher-assistant (Mirzadeh et al. 2019). The training loss
with a larger teacher is computed as follows:

LT = LKL(p(zT, T ),p(zTPP, T ))× T 2 (3)
LSPEQ+KD = λLSPEQ + (1− λ)LT . (4)

zT is the logit from a large teacher model and thus LT repre-
sents the distllation loss from the larger teacher to the shared
model with the target precision.

Stochastic Ensemble Learning
Intuitively, using a good teacher when training QDNN with
KD will improve the performance (Tang et al. 2020). In
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Figure 2: (a): The ratio of selected 8-bit precision when
trained with the greedy strategy. (b) Softmax distributions
generated by the stochastic precision path with the same im-
ages.

the proposed method, the activation quantization precision,
nSPP, for each layer was determined stochastically. In this
case, the total number of combinations for nSPP is 2L, and
among them there will be the solution, n∗SPP, which shows
the best performance. However, finding this solution is not
practical for DNNs because 2L inferences are needed for the
exhaustive search. To investigate the performance of the best
solution, we design a shallow CNN that consists of five con-
volutional layers and train the model by selecting the nSPP
according to the true label, y, for each step as follows:

n∗SPP = argmin
n
LCE(y, zSPP|n). (5)

Since the experiment is performed on a five-layer CNN,
L = 5, we employ the greedy strategy that finds the n∗SPP by
inferencing the model 25 times with different combinations
of the quantization precision. Note that n∗SPP can change for
each training step. The target model is trained using the soft
label obtained with n∗SPP. Figure 2 (a) shows how the ratio
of 8-bit selection changes during training for each layer. The
model is pretrained to the 2-bit weights and activations and
the target precision is also 2 bits. The floating-point and 2-bit
models show accuracies of 89.9% and 87.8%, respectively.

The solution of Eq. (5) is not always 8-bit even at the be-
ginning of the training. Note that the results in Table 1 show
that using higher precision for the activation can achieve
higher average accuracy. For each iteration, however, choos-
ing 8-bit activation may not show the lowest loss. More im-
portantly, the ratio of 8-bit selection decreases to 0.6 as the
training progresses. This indicates that the best-performing

(a) KL-Loss (b) CS-Loss

Figure 3: The gradients of the ground-truth logit according
to the loss type. The x- and y-axes are the probabilities of
the student and teacher for the logit, respectively.

solution, n∗SPP, selects 2- and 8-bit almost uniformly. As a
result, the test accuracy of the 2-bit model with greedy train-
ing is 88.4%, which is better than the performance of always
choosing 8-bit, 88.1%.

Another advantage of the SPEQ is that it has the effect of
ensemble learning. By the stochastic selection of bit preci-
sion, soft labels with different distributions can be created
for one training sample. In this case, the diversity of soft
labels should be large enough to obtain the effect of the en-
semble well (Chen et al. 2020). Figure 2 (b) shows the com-
puted soft labels by quantizing the activation outputs of the
ResNet20 with different bit precisions for a single training
sample in the CIFAR10 dataset. Although we extract soft la-
bels from the same parameters, the distribution of the soft
labels varies according to the activation precision.

Based on our analysis, we apply the SPEQ training
method with uniform nA-bit and 8-bit selection probabilities
to increase diversity. The sensitivity of bit-precision candi-
date or the quantization probability, u, is also examined.

Cosine Similarity Learning

In many KD approaches, KL-divergence is commonly used
as a loss function to reflect the guidance of the teacher. In
the setting of SPEQ, however, we claim that the cosine sim-
ilarity loss (CS-Loss) functions better than KL-divergence
loss (KL-Loss). The main difference is that the teacher in
SPEQ may not be more reliable than the student. Note that
activations are randomly quantized in SPEQ, thus the out-
put prediction of the teacher might be significantly affected
by the quantization noise. In this setting, it is important to
reflect the guidance of the teacher selectively, as there is no
guarantee that the teacher’s prediction is more accurate than
the student’s. In this section, we explain that CS-Loss has
such capability whereas KL-Loss does not.

To understand the situation more concretely, we compare
the back-propagation errors (i.e., gradients w.r.t. each logit)
for the two loss functions. Note that the student model is
guided to increase (or decrease) the logit if the correspond-
ing gradient is negative (or positive). When the predictions
of the teacher and the student are p and q, respectively, the
KL-Loss and its back-propagation error for the ith logit, zi,
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Method (2-bit baseline accuracy: 90.73%) KL-Loss CS-Loss

KD w/ full precision ResNet20 as teacher 91.24±0.06 91.22±0.10
SPEQ (u = 0, always choose 8-bit for soft labels) 91.22±0.16 91.18±0.07
SPEQ (u = 0.5, 2-bit or 8-bit for soft labels) 90.83±0.07 91.44±0.04

Table 2: Comparison of the test accuracy of 2-bit ResNet20 on CIFAR10 according to the loss function for KD. The cosine
similarity loss (CS-Loss) suits better than the KL-divergence loss (KL-Loss) for the proposed SPEQ method. The average test
accuracy of 5 repeated experiments is reported with the standard deviation.

u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Mix

Test Acc. 91.22 91.23 91.22 91.29 91.39 91.44 91.43 91.21 91.24 90.96 90.74 91.23

Table 3: 2-bit ResNet20 test accuracy according to the quantization probability for the stochastic precision path, u. The average
test accuracy of 5 repeated experiments is reported. The result of ‘Mix’ is obtained by selecting all precisions from 2 to 8 bits
uniformly.

is represented as follows (Hinton, Vinyals, and Dean 2015):

LKL(p,q) = −
C−1∑
i=0

pi log
qi
pi
, (6)

∂LKL

∂zi
= qi − pi. (7)

Eq. (7) indicates that the LKL produces back-propagation
errors in the direction of decreasing the difference between
the pi and qi. That is, KL-Loss guides the student to al-
ways follow the teacher. Such guidance is regarded as ”re-
weighting” (Tang et al. 2020), but it is helpful under a con-
dition that the teacher’s prediction is more confident than the
student’s. Since the teacher in SPEQ is not as reliable as the
large teacher models in typical KD methods, the gradients
from KL-Loss can be misleading.

In comparison, CS-Loss between predictions of the
teacher and the student after the normalization is given as
follows:

LCS(p,q) = 1− p · q, (8)

∂LCS

∂zi
= −

C−1∑
j=0

pj(qjδij − qjqi). (9)

The gradients of LCS are more cognizant of the confidence
of both the teacher and the student. Assume that the ith label
is the ground-truth and the teacher’s prediction is also confi-
dent about it, i.e. pi >> pj (i 6= j), Eq. (9) is approximated
as follows:

∂LCS

∂zi
≈ −piqi(1− qi). (10)

Eq. (10) indicates that the gradients is proportional to qi(1−
qi). This is particularly helpful when the confidence of the
student’s prediction is not high; when 0 < qi < 1, the stu-
dent is guided to increase the confidence for qi. If the stu-
dent’s prediction has high confidence, the gradients become
zero so that they will be highly penalized by the CE-Loss if
the prediction is wrong.

In addition, as the prediction of the teacher itself is am-
biguous, the back-propagation error decreases. When the
prediction of the teacher goes to a uniform distribution,
Eq. (9) can be approximated as:

∂LCS

∂zi
≈ −piqi(1−

C−1∑
j=0

qi) = 0 (11)

Note that the gradients in this case are almost zero, implying
that the CS-Loss will be neglected when the confidence of
the teacher’s prediction is small. Additional case-studies and
the examples are provided in Appendix C.

The impact of the relationship between the teacher and
the student predictions to the gradients is illustrated in Fig-
ure 3. As can be seen, the gradient of KL-Loss flips its direc-
tion when the student’s confidence is higher than the teacher.
This is detrimental for SPEQ-based knowledge distillation
as the prediction of the teacher is prone to noise. Whereas,
the CS-Loss allows selective adoption of the teacher’s infor-
mation; the gradients guide to follow the teacher more if it
has high confidence. If not, the guidance is neglected.

To distinguish the effects of two loss terms on general and
our KD, we trained the 2-bit ResNet20 using various teach-
ers as shown in Table 2. The baseline model is trained with-
out applying KD. When the output probability of the teacher
is computed using a better teacher model or a deterministic
precision on the shared model, the two loss terms show al-
most the same result. However, when the teacher outputs are
generated while changing the bit precision, only the cosine
loss shows the performance improvement compared to the
baseline model.

Experimental Results
The training procedures in our experiments consist of three
steps: train the floating-point DNN (pretrain), train the
QDNN to the target precision initialized from the floating-
point parameters (retrain (Hwang and Sung 2014; Choi et al.
2018)), and train the QDNN using the SPEQ method initial-
ized with the retrained parameters. The details of the exper-
imental settings for each task explained in Appendix D.
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Methods Precision CIFAR10 CIFAR100
(W / A) VGG16 ResNet20 ResNet32 MobileNetV2

Baseline F / F 93.6 92.1 70.3 76.8

Retrain 2 / 2 92.5 90.7 66.9 73.0
PACT-SWAB-8brc (Choi et al. 2019) 2 / 2 - 90.7 - -
QKD (Kim et al. 2019) 2 / 2 - 90.5 66.4 -
SPEQ 2 / 2 93.1 91.4 69.1 74.4
Retrain F / 2 92.9 91.8 67.9 74.5
SPEQ F / 2 93.5 92.1 69.7 75.2

Table 4: Test accuracy (%) of quantized CNNs on CIFAR10 and CIFAR100 datasets. ‘F’ denotes the floating-point precision.

2-bit weights / 2-bit activations Float weights / 2-bit activations

Method AlexNet
(60.8)

ResNet18
(70.3)

ResNet34
(73.6) Method AlexNet

(60.8)
ResNet18

(70.3)

DoReFa† (Zhou et al. 2016) 46.4 62.6 - BalancedQ (Zhou et al. 2017) 56.5 61.1
QIL (Jung et al. 2019) 58.1 65.7 70.6 QN (Yang et al. 2019) - 65.7
PACT SWAB (Choi et al. 2019) 57.2 67.0 - DoReFa† (Zhou et al. 2016) 54.1 66.9
Retrain 56.9 66.6 70.5 PACT (Choi et al. 2018) 54.9 67.5
SPEQ 59.3 67.4 71.5 SPEQ 60.8 68.4

Table 5: Top-1 validation accuracy (%) on the ImageNet dataset. Values in the parentheses are the accuracy of pretrained
floating-point models. Results with the symbol † are from (Choi et al. 2018).

Results on the CIFAR10 / CIFAR100 Datasets

We first studied how the stochastic quantization probability,
u, affects the performance of the SPEQ method. To this end,
we trained 2-bit quantized ResNet20 models with various
values of u from 0.0 to 1.0 on the CIFAR10 dataset. The
results are reported in Table 3. It should be noted that 0.0
and 1.0 of u indicate that the stochastic precision path se-
lects only 8- and 2-bit precisions, respectively. The best test
accuracy is observed when u is between 0.4 and 0.6. This
result indicates that the SPEQ shows the best performance
when the stochastic precision path is selected to some de-
gree evenly rather than being biased to either precision. For
comparison, we employed SPEQ by uniformly selecting all
precisions from 2 to 8 bits. The result is shown as ‘Mix’ in
Table 3. The result is 0.21% lower than that of the training
using only two precisions, 2 and 8 bits. Note that Quantiza-
tion errors are the largest in 2-bit precision and the lowest in
8-bit precision. Rather than intermediate precision, selecting
precision either the lowest or highest precision increases the
diversity of teacher outputs, which has a great influence on
performance (Chen et al. 2020). The uniform selection be-
tween the lowest and highest precision results in a better en-
semble effect by increasing the diversity of teacher outputs.
For all the rest of the experiments, we set the quantization
probability, u, to 0.5.

We evaluated the proposed SPEQ scheme using the CI-
FAR10 and CIFAR100 datasets. The performance of the
SPEQ and existing methods are shown in Table 4. The test
accuracy of 2-bit ResNet20 before applying SPEQ, denoted

as ‘Retrain’, is 90.7% on the CIFAR10 dataset. The SPEQ
significantly improves the performance of 2-bit ResNet20
and achieves 91.4% test accuracy. This result is better than
the QKD (Kim et al. 2019), which employs a large teacher.
Furthermore, when only activations are quantized to 2 bits,
SPEQ shows almost the same performance as the full-
precision models for CIFAR10. The SPEQ shows consistent
improvements on various CNNs.

Results on the ImageNet Dataset
The performance of the SPEQ on the ImageNet dataset is
shown in Table 5. The retraining scheme shows 56.9%,
66.6%, and 70.5% top-1 accuracy for the 2-bit AlexNet,
ResNet18, and ResNet34, respectively. By SPEQ train-
ing, the top-1 accuracy increases approximately 1% for
ResNet18 and ResNet34. The SPEQ training on 2-bit
AlexNet improves the top-1 accuracy noticeably, showing
59.3% top-1 accuracy. This result is only a 1.5% accuracy
drop compared to the full-precision AlexNet. The results for
2-bit activation-quantized CNNs indicate that the proposed
SPEQ method is very effective for reducing the activation
quantization noise.

We also optimized the 3-bit EfficientNet-b0 with the Im-
ageNet dataset. We obtained the pretrained full-precision
model from the Tensorflow official Github 1 and retrained
the model using the same hyper-parameters and data aug-
mentation methods as those for ResNet. The performance

1https://github.com/tensorflow/tpu/tree/master/models/official/
efficientnet
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Methods Retrain SPEQ AP† QKD†

Top-1 Acc (%) 68.4 69.5 68.4 69.2

Table 6: ImageNet valiation top-1 accuracy on 3-bit weight
and activation quantized EfficientNet-b0. The top-1 accu-
racy of the full-precision model is 76.7%. Results with the
symbol † are from (Kim et al. 2019).

Method ResNet18 ResNet34
Teacher Acc(%) Teacher Acc(%)

Retrain w/o KD 66.6 w/o KD 70.5

AP† ResNet34 66.8 ResNet50 71.1
QKD† ResNet34 67.4 ResNet50 71.6
SPEQ - 67.4 - 71.5
SPEQ+AP ResNet34 67.8 ResNet50 72.1

Table 7: 2-bit ImageNet quantization Top-1 validation accu-
racy (%) compared with other KD applied QDNNs. “Acc”
with the symbol † are from (Kim et al. 2019).

of 3-bit EfficientNEt-b0 is compared in Table 6. Note that
the AP (Mishra and Marr 2018) and QKD (Kim et al. 2019)
employed the full-precision EfficientNet-b1 as a teacher for
KD. SPEQ outperformed the existing KD methods on this
recently developed CNN without a large teacher model.

The key difference in the training procedure between
SPEQ and previous works is that SPEQ shares the same
model for the teacher and the student. This simple choice
leads to the significant savings in the training computation.
Although our approach is based on the self-distillation, the
larger teacher can also be employed to further improve the
performance of the target model. The SPEQ training with the
KD method is also compared with other KD training meth-
ods for QDNNs in Table 7. We applied the KD by combining
the Apprentice (Mishra and Marr 2018) (AP) and the SPEQ
scheme. The combined training improves the top-1 accuracy
of ResNet18 and ResNet34 by 0.4% and 0.6%, respectively.

Results on Transfer Learning
Because SPEQ does not require a teacher model, it is
convenient for transfer learning with only one base-model
available. We optimized the low-precision BERT (Devlin
et al. 2018) using SPEQ training. The pretrained BERT-
Base model is obtained from the Google research 2 and
fine-tuned using the Stanford Question Answering Dataset
(SQuAD1.1) (Rajpurkar et al. 2016). The performance im-
provements of the SPEQ on the quantized BERT are shown
in Table 8. The fine-tuned floating-point BERT shows 81.1
F1 and 88.6 EM scores. When the activation is quantized to
nA bits, the stochastic precision for computing soft labels is
chosen between nA and 8 bits.

We expand the experiment for transfer learning using Ox-
ford Flowers-102 (Nilsback and Zisserman 2008). We em-

2https://github.com/google-research/bert

SQuAD1.1 W3/A3 W4/A4
EM F1 EM F1

FixedBERT 71.5 81.4 74.2 83.1
SPEQ 76.4 85.1 78.0 86.6

Table 8: The performance (EM and F1 scores) of low-
precision BERT on the SQuAD1.1 dev dataset. FixedBERT
results are from (Boo and Sung 2020)

# training Float RN18 2-bit RN18 2-bit RN18
samples (CE Loss) (CE Loss) (SPEQ)

510 (5 / label) 69.18 70.67 71.21
1020 (10 / label) 78.04 77.99 78.36
2040 (20 / label) 84.57 83.91 85.02

Table 9: Validation accuracy (%) on the Flowers-102 dataset
according to the training method and the feature extractor.
RN is an abbreviation for ResNet.

ploy the ResNet18 as a feature extractor, which is frozen
when fine-tuning. The SPEQ is evaluated by changing the
number of training samples and the results are shown in Ta-
ble 9. SPEQ improves the performance significantly com-
pared to the 2-bit model retraining using the cross-entropy
loss. Moreover, the SPEQ-trained 2-bit ResNet18 achieves
better results than the floating-point model. In practice, the
conventional KD method is hard to be applied due to the
need of auxiliary models. Therefore, the SPEQ method is an
invaluable solution to apply KD on transfer learning.

Concluding Remarks
In this work, we proposed a novel KD method for quantized
DNN training. The proposed method, SPEQ, does not re-
quire a cumbersome teacher model; it assigns the same pa-
rameters for the teacher and student networks. The teacher
model is formed by assigning the stochastic precision to the
activation of each layer, by which it can produce the soft
labels of stochastically ensembled models. The cosine simi-
larity loss is used for KD training to render reliable operation
even when the confidence of the teacher is lower than that of
the student. The SPEQ outperforms the existing quantized
training methods in various tasks. Furthermore, the SPEQ
can be easily used for low-precision training even when no
larger teacher model is available.
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