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Abstract

Non-negative matrix factorization (NMF) is a highly cele-
brated algorithm for matrix decomposition that guarantees
non-negative factors. The underlying optimization problem is
computationally intractable, yet in practice, gradient-descent-
based methods often find good solutions. In this paper, we
revisit the NMF optimization problem and analyze its loss
landscape in non-worst-case settings. We specifically study
star-convexity, which implies that the gradients point towards
the final minimizer. We show that such a property holds with
high probability for NMF, provably in a non-worst case model
with a planted solution, and empirically across an extensive
suite of real-world NMF problems spanning collaborative fil-
tering, scientific analysis, and image analysis. Our analysis
predicts that this property becomes more likely with a growing
number of parameters, and experiments suggest that a similar
trend might also hold for deep neural networks—turning in-
creasing dataset sizes and model sizes into a blessing from an
optimization perspective.

Introduction

Non-negative matrix factorization (NMF) is a ubiquitous
technique for data analysis, where one attempts to factorize
a measurement matrix X into the product of non-negative
matrices U,V (Lee and Seung 1999). This simple problem
has applications in recommender systems (Luo et al. 2014),
scientific analysis (Berne et al. 2007; Trindade, Abel, and
Watts 2017), computer vision (Gillis 2012), internet distance
prediction (Mao, Saul, and Smith 2006), audio processing
(Schmidt, Larsen, and Hsiao 2007), and many more domains.
The non-negativity is often crucial for interpretability; in the
context of crystallography for example, the light sources—
represented as matrix factors—have non-negative intensity
(Suram et al. 2016).

Like many other non-convex optimization problems, e.g.
optimizing neural networks (Blum and Rivest 1989), finding
the exact solution to NMF is NP-hard (Pardalos and Vavasis
1991; Vavasis 2009). NMF’s tremendous practical success
is at odds with such worst-case analysis, and simple algo-
rithms based on gradient descent are known to find good
solutions in real-world settings (Lee and Seung 2001). At

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

6768

the time when NMF was proposed, most analyses of opti-
mization problems in machine learning focused on convex
formulations such as SVMs (Cortes and Vapnik 1995). How-
ever, owing to the success of neural networks, non-convex
optimization has experienced a resurgence in interest. While
non-convex problems that can be optimized efficiently via
saddle point characterization have been studied extensively
(Ge et al. 2015), NMF has seen less theoretical progress.
While the NMF problem is NP-hard, its empirical experience
and widespread usage suggests that the problem might be
tractable in the average case, albeit not in the worst case.

In this paper, we prove theoretically and empirically that
a benign convexity property called star-convexity typically
holds in NMF. From a theoretical perspective, we consider
NMF instances with planted randomized solutions, inspired
by the stochastic block model for social networks (Holland,
Laskey, and Leinhardt 1983; Decelle et al. 2011) and the
planted clique problem studied in sum-of-squares literature
(Barak et al. 2016). We prove that between two random points,
the loss is convex with high probability, and conclude that
the loss surface is star-convex in the typical case—even if
the loss is computed over unobserved data. From an empir-
ical perspective, we verify that our theoretical results hold
for an extensive collection of real-world datasets spanning
collaborative filtering (Zhou et al. 2008; Kula 2017; Harper
and Konstan 2016), signal decomposition (Zhu 2016; Li and
Ngom 2013; Li et al. 2001; Erichson et al. 2018), and audio
processing (Flenner and Hunter 2017). Finally, we show that
star-convex behavior becomes more likely with a growing
number of parameters, suggesting that a similar result may
hold in neural networks as they become wider. We provide
supporting empirical evidence for this hypothesis on modern
network architectures. We summarize the contributions of
this paper as follows:

* We prove that the NMF loss surface has benign convexity
properties in the average case, which might explain why
NMF typically performs well despite being NP-hard in the
worst case.

* We verify that our theoretical predictions hold in an exten-
sive suite of real-world datasets.

* Based on our theoretical results, we hypothesize that in-
creasing width in neural networks should improve convex-
ity. We also provide supporting experimental evidence.
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Figure 1: A non-convex loss surface is illustrated in a). In general, the loss will be non-convex on straight paths connecting
random points X, x; and the global minimizer x*. We consider a model of NMF with a randomized planted solution; as shown
in b), the loss is typically convex on straight paths between points X, and a planted solution x*. Additionally, as illustrated in c),
the loss is typically convex on straight paths between points x, and xy.

NMF and Star-Convexity

NMF aims to decompose some large measurement matrix
X e R™ ™ into two non-negative matrices U € R’,*" and

Ve R:_X’” such that X ~ UV. The canonical formulation
of NMF is

min

1 2
Jn (U, V), where ((U,V) = §HUV—XHF. €))

Practitioners commonly use NMF in recommender systems,
where an entry (7, j) of X, for example, corresponds to the
rating user ¢ gave to movie j (Luo et al. 2014). In such
settings, data might be missing if all users did not rate all
movies. In those cases, it is common to only consider the loss
over observed data (Zhang et al. 2006; Candes and Recht
2009). We let i(i, ;) be an indicator variable that is 1 if entry
(i,7) is “observed” and 0 otherwise. The loss function is then

. [ 2
Juin - ((UV) = 530G ([UV]”, - Xij) )
i,

NMF’s non-negative constraints prevent practitioners from
applying spectral strategies, which can be otherwise used
in, e.g., PCA. This restriction results in NMF’s NP-hardness
(Vavasis 2009). Even so, previous work on the computational
complexity of NMF has shown that the problem is tractable
for small constant dimensions 7 via algebraic methods (Arora
et al. 2012). However, practitioners use simple variants of
gradient descent, which are known to work reliably, rather
than these algorithms (Koren, Bell, and Volinsky 2009; Lee
and Seung 2001). This gap between theoretical hardness and
practical performance is also found in deep learning. Op-
timizing neural networks is generally NP-hard (Blum and
Rivest 1989), but in practice, they can be optimized with
simple stochastic gradient descent algorithms to outperform
humans in tasks such as verifying faces (Lu and Tang 2015)
and playing Atari-games (Mnih et al. 2015). Recent work on
understanding the geometry of neural network loss surfaces
has promoted the idea of convexity properties. [zmailov et al.
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(2018) show that the network’s loss surface is convex around
the local optimum, while Zhou et al. (2019) and Kleinberg,
Li, and Yuan (2018) empirically show that the gradients dur-
ing optimization typically point towards the local minima
to which the network eventually converges. Of central im-
portance in this line of work is star-convexity, which is a
property of a function f that guarantees that f is convex
along straight paths towards its optima x*. See Figure 2 for
an example. Formally, it is defined as

Definition 1. A function f : R™ — R is star-convex
towards x* if for all A € [0,1] and x € R"™, we have
FOx+ 1 =XNx*) <Af(x)+ (1 —XN)f(x*).

Star-convex functions can be optimized in polynomial time
(Lee and Valiant 2016). Moreover, the function only needs
to be star-convex under a natural noise model (Kleinberg, Li,
and Yuan 2018). Since NMF is NP-hard, it is not star-convex
in general; however, it is natural to conjecture that NMF is
star-convex in the typical case. Such a property could explain
the practical success of NMF on real-world datasets, which
are far from worst-case. This is the working hypothesis of this
paper, where the typical case is formalized probabilistically in
Theorem 1. Indeed, one can verify numerically that NMF is
typically star-convex for natural distributions and realistically
sized matrices: see Figure 1 where we consider a rank 10
decomposition of (100, 100)-matrices with iid half-normal
entries and a planted solution, sampled as per Assumption 1
stated in the next section. We dedicate the following sections
to prove that NMF is star-convex with high probability in
a planted model, and to confirm that this phenomenon gen-
eralizes to datasets from the real world, which are far from
worst-case.

Proving Typical-Case Star-Convexity

Our aim now is to prove that the NMF loss-function is star-
convex in the typical case for natural non-worst-case distri-
butions of NMF instances. We consider a slightly weaker
notation of star-convexity, where f (Ax + (1 — \)x*) <
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Figure 2: The function (|z[P + |y|?)"/? is an example of a
star-convex function for 0 < p < 1. It is non-convex in
general, but convex towards (0, 0).

Af(x) + (1 — A) f(x*) holds not for all x, but for random x
with high probability. This is in fact the best achievable—an
adversarial example of an NMF instance that isn’t star-convex
is simply vy = 1,u* = 0 and v; = 0,v* = 1. Our results
show that NMF is convex on straight lines with high probabil-
ity as the dimensionality of the problem increases, suggesting
that the measure of such adversarial instances is small.

Inspired by the stochastic block model of social networks
(Holland, Laskey, and Leinhardt 1983; Decelle et al. 2011)
and the planted clique problem (Barak et al. 2016), we focus
on a setting with a planted random solution. In the following
section, we verify that the conclusions drawn from this model
transfer to real-world datasets.

We assume that there is a planted optimal solution
(U*,V*) such that X = U*V*, where entries of these
matrices are sampled iid. This assumption follows from ex-
isting research on random input in neural networks (Li and
Yuan 2017). Furthermore, we require matrices to be sam-
pled from a class of distributions with good concentration
properties, e.g., the half-normal distribution and bounded dis-
tributions. As is standard in random matrix theory (Vershynin
2010), we develop non-asymptotic results, which hold with
a probability that grows as the matrices of shapes (n, ) and
(r,m) increase in size. Consequently, we specify how r and
m depend on n.

Assumption 1. For (U, V) € R™*" x R"™™, we assume
that the entries of the matrices U,V are sampled iid from a
continuous distribution with non-negative support that either
(i) is bounded or (ii) can be expressed as a 1-Lipschitz
function of a Gaussian distribution. As n — 0, we assume
that v grows as nY up to a constant factor for v € [1/2,1],
and m grows as n up to a constant factor.

We are now ready to state our main result: the loss function
in Equation 1 is convex on straight lines between points sam-
pled as per Assumption 1, where one point can be the planted
solution, with high probability. Thus, the loss satisfies our
slightly weaker notion of star-convexity, and is convex on
“most” straight lines. The probability increases as the size
of the problem increases, suggesting a surprising benefit of
high dimensionality. We also show similar results for the
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loss function in Equation 2 with unobserved data, under the
assumption that the event of observing an entry occurs inde-
pendently with constant probability p. The formal proof is
given in the Appendix; we provide a proof sketch here.

Theorem 1. (Main) Let matrices Uy, V1, Uy, Vo, U* V*
be sampled according to Assumption 1. Then there exists
positive constants cy, ca, such that with probability > 1 —
c1 exp(—con'/?), the loss function £(U, V) in Equation I is
convex on the straight line (U1, V1) — (U, V). The same
holds along the line (U1, V1) — (U* V*). It also holds
if any entry (i, j) is observed independently with constant

probability p, but with probability > 1 — c1 exp(—cor!/3).

Proof Strategy Let us parameterize the NMF solution
along the line (Uy, Vi) — (U, V) as

X(\) = [AU;p + (1 = A)Us] [A\Vy + (1 =\ V3].

For proving Theorem 1, it suffices to show that the loss

function 4(\) = %HX(/\) — X% is convex in A with high
probability on [0, 1]. Our strategy is to employ a sum-of-
squares lower bound on the second derivative, and then use
concentration of measure from random matrix theory. For
fixed matrices Uy, Us, U*, V1, Vo, V* the function £(\)
is a fourth-degree polynomial in A, so its second derivative
w.r.t. A is a second-degree polynomial in A. For a general

second-degree polynomial p(z) = ax? + bz + ¢, we have
p(x) %[(az+g)2+ acfﬁ)].lfa > 0, as is the
case here (see the Appendix), proving that p(x) is positive

4

for all « can be done by showing ac > %. £"(X) > 0 would
imply that () is convex for all A\. Thus, we need to show
that

2| Wl (IWi 7 + 2(Wo, Wa)) = 3((Wi, Wa))?
3)

where the matrices Wy, W1, Wy are given as Wy =
UyVy — U*V* W, = (U — Uy) Vo + U (V; — V),
Wy = (U; — Uy) (V1 — V2). With slight abuse of nota-
tion, we have used (A, B) to denote Tr(AB”) for matrices
A, B of the same shape. By replacing terms in Equation 3

with their means, we get

2(4rmno?) (67‘an4 + drmnplo® + 27‘mn04) A
“)

>3 (—4rmna4)2 .

Here, o2 is the variance of the distribution of the entries in
the matrices, and y is the mean. By just counting terms of
order (rmno?)2, we see that the LHS has 64 such terms
while the RHS has only 48. Thus, if all matrices Wy, W1
and W5 would exactly be equal to their means, the inequality
in Equation 3 would hold. In proving that it holds in general,
we use concentration of measure results from random matrix
theory to show that the terms are concentrated around their
means and that large deviations are exponentially unlikely.

Concentration of Measure Consider the matrix
W, (Ul —Ug) (Vl —VQ). Given that all ma-
trices are iid, we can center the variables so that



W, = (U; —Uy) (Vi = V) = (U; = Uy) (V1 = V),
where the bar denotes the centered matri-
ces. The term |W3|% can then be written as
Tr [(Vl - V2)T (Ul - UQ)T (U1 - UQ) (V1 - VQ)] .
Given that all matrix entries are independent as per Assump-
tion 1, we would expect some concentration of measure
to hold. Although Bernstein-type inequalities turn out to
be too weak for our purposes, the field of random matrix
theory offers stronger results for matrices with independent
sub-Gaussian entries (Ahlswede and Winter 2002; Tropp
2012; Meckes and Szarek 2012). Using concentration of
measure for traces of random matrices, we achieve the
following inequality (see the Appendix).

P ([Iwaly B [[Waf} ]| > trn?) )

< c3exp (—04 min(#?, tl/Q)n)

where c3, c4 are positive constants. In expressions for some
terms in Equation 3, however, we are not able to center all
variables. For such expressions, we get similar but slightly
weaker concentration results, where the exponent in the RHS
of Equation 5 scales as n'/? instead of n (see the Appendix).

Proof Sketch Given that E [HWQHQF] = 4rmno*, Equa-

tion 5 says that the probability of HWngT deviating from
its mean by a relative factor e is less than ¢z exp (—c5€°n)
for some small e. By applying similar arguments to terms
(Wy, Ws) and (W1, Wy), we show that the probabil-
ity of them deviating by a relative factor € is less than

cg exp (—cre?n'/3). [Wy |3 is a problematic term, contain-
ing a term of type Tr (\71 - VQ)T ¥y (\71 - Vg), which

has weak concentration properties. Even so, since matrices
of type AT A are p.s.d. due to non-negative traces, this term
is non-negative. Moreover, we can simply omit W H% to
lower bound the convexity because the term appears on the
LHS of Equation 3. Using union bound, we bound the prob-
ability of at least one term deviating with a relative factor
€ by ¢y exp (—0862TL1/3) for positive constants cj, cg. Now,
we set € = 0.01. If no term deviates by a factor of more than
0.01, then Equation 4 still holds as 0.992 - 64 > 1.012 - 48.
Thus, the inequality is violated with probability at most
crexp (— cznl/g) for positive ¢y, cp. [ |

Proof Sketch for Unobserved Data If the entries in Equa-
tion 2 are “observed” independently with probability p, for
fixed matrices Uy, Uy, U*, V1, Vo, V* such that Theorem
1 holds, we have

E["(\)] = E lE gy (X5 +X735(Xs5 - Xij))l
iJ
—p > (X5 + XXy — X))
ij
> 0.

Thus, the expectation of /() is convex. To show that it is
convex with high probability, we first observes that with
high probability, no entry (7, j) in £”()) is particularly large.
Assuming this holds via union bound, for fixed matrices
Uy, U,, U* V1, Vo, V* with elements that are “observed”
independently with probability p, we get that ¢”()\) is con-
centrated around its convex mean via Hoeffding bounds. M
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Figure 3: The NMF loss surface along the straight line from a random point wjq to a local optima w™* found via gradient descent
(from independent starting points). We overlap five independent lines; zoom in for detail. As our theoretical results predict, the
loss surface is convex on these straight lines for all real-world datasets.
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name description

shape (n,m,r)

sparsity  reference

birdsong bird call time series

ORL faces black and white facial images

5120, 1246, 88)

400, 10304, 49)

(Flenner and Hunter 2017)

(Li et al. 2001).

(
extragalactic  spectra of extragalactic sources (2760, 2820, 10) (Zhu 2016)
goodbooks book ratings (10000, 43461,50)  0.0022  (Kula 2017)
metabolic yeast cell metabolic activity (9335, 36, 3) (Li and Ngom 2013)
movielens movie ratings (3953,6041, 20) 0.0419  (Harper and Konstan 2016)
netflix movie/tv-show ratings (47928,8963,20)  0.0121  (Zhou et al. 2008)

(

(

satellite hyperspectral satellite images

162,94249, 4)

(Erichson et al. 2018).

Table 1: Dataset details. References contain suggested rank 7 and previous usage (see the Appendix for details).

Experiments
Verifying Theoretical Predictions

To verify that the conclusions from our theoretical model hold
more broadly, we now empirically study real-world datasets
previously used in NMF literature. A few datasets have ranks
outside the scope of our theoretical model, but they still dis-
play star-convexity properties, indicating that star-convexity
might be a more general phenomenon. We focus on a handful
of representative datasets spanning image analysis, scientific
applications, and collaborative filtering. In Table 1, we list
these datasets together with their sparsity. We use decom-
position ranks as per the values previously reported in the
literature. We perform a non-negative matrix factorization via
gradient descent, starting with randomly initialized data. To
enable comparison between datasets, we scale all data matri-
ces so that the variance of observed entries is one, and divide
the loss function by the number of (observed) entries. We
initialize decomposition matrices using the half-normal distri-
bution, which is scaled so that the mean matches with that of
the dataset. For simplicity, we use the same learning rate of

birdsong extragalactic
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A
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le—5 for all datasets and run gradient descent until the rate
of relative improvement in the loss falls below 1le—7. This
procedure gives good convergence for all datasets (see the
Appendix). As is standard in NMF, we compute the loss only
over observed entries for the collaborative filtering datasets
with unobserved ratings (movielens, netflix, and goodbooks)
(Zhang et al. 2006). In Figure 3, we plot the loss function
from an initialization point to an independent local optima.
In Figure 4, we plot the loss function between two random
points drawn from the initialization distribution—observe
that the loss is convex. These results agree with our theoreti-
cal model, and we conclude that many real-world matrices
can be decomposed as a low-rank matrix U*V* with the con-
vexity properties our theoretical results suggest, plus a “noise
term” that must have a small norm since the loss £(U*, V*)
is small (see the Appendix).

Ablation Experiments

Theorem 1 suggests that, as the matrices become larger, NMF
is increasingly likely to be star-convex. To test if this is the

metabolic

goodbooks

0.0 0.5 1.0 0.0 0.5 1.0

Figure 4: We here illustrate the NMF loss surface on straight paths connecting two random points for 8 real-world datasets.
We overlap five independent lines for each dataset. Note that the curves are always convex, suggesting that the loss surface is

“typically” convex as our theoretical results suggest.
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Figure 5: We illustrate how the relative deviation Z of the

curvature in Equation 6 depends on the dataset’s size. We
normalize by p to avoid uniform scaling. For all datasets, the
relative deviations decrease with more samples, suggesting
that the (positive) curvature becomes increasingly concen-
trated around its mean for larger matrices.

case for our real-world datasets, we perform ablation ex-
periments by varying the dimensions of the matrices. We
decrease the number of data points n by subsampling rows
and columns uniformly randomly. Our measure of curvature
at a point x, given some optimal solution x*, is

in £ (Ax+ (1 - A)x*).
i (Ax + (1 = A)x¥)

a(x) (6)
Note that o > 0 implies star-convexity. In practice, we ob-
tain x* from gradient descent; finding the absolute minima
remains a challenge. For each dataset and subsample rate, we
find 50 optima and evaluate the curvature from 50 random
points, thus obtaining 2500 samples of «. Figure 5 shows
how the relative deviation % of a decreases as the dataset be-
comes larger. Figure 6 that shows the fraction of non-negative
curvature as a function of input dimensionality—we confirm
that the sampled curvatures typically are positive. This can
also be considered as a quantitative depiction of Figure 3.
Figures 5 and 6 together show that the curvature becomes
increasingly concentrated around its positive mean for larger
matrices, suggesting that the star-convexity phenomenon is
valid beyond our simplistic theoretical model. In the Ap-
pendix, we also illustrate the spectrum of singular values
of U* for various datasets, and of random matrices of the
same shapes as U*. The spectra generally share the quality
of having a single large singular value and a tail of smaller
values; however, real-world solutions typically have a tail
with larger values.

Implications for Neural Networks

We have seen how increasing the number of parameters
makes NMF problems more likely to be star-convex, while
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Figure 6: We here show the fraction of sampled curvatures
(as in Equation 6) that are positive as the dimensionality of
the dataset is varied. Note that it is always 1, implying that we
have star-convexity even for smaller problems, even though
the curvature typically fluctuates more for such problems as
per Figure 5.

also making the curvature tend towards its positive mean, as
displayed in Figure 5. Theorem 1 suggests that this is a result
of concentration of measure, and it is natural to believe that
a similar phenomenon would occur in the context of neural
networks. It has previously been observed how neural net-
works are locally convex (Izmailov et al. 2018), and also how
overparameterization is important in deep learning (Arora,
Cohen, and Hazan 2018; Frankle and Carbin 2018). Based
on our observations in NMF, we hypothesize that a major
benefit of overparameterization is in making the loss surface
more convex via concentration of measure w.r.t. the weights.

To verify this hypothesis, we consider image classification
on CIFAR10 with Resnet networks (He et al. 2016) trained
with standard parameters (see the Appendix). Networks are

00
-100 -075 -0.50 -025 000 025 050 075 100 ~-100 -075 -050 -025 000 025 050 075 100

Figure 7: The loss landscape of a 110-layer Resnet architec-
ture at epoch 200 along two random directions, visualized as
in (Li et al. 2018). The network in the bottom image is four
times as wide (i.e. has four times as many channels per layer),
and its loss landscape is increasingly convex. In Table 2, we
generalize this idea and show that the length scale of local
convexity increases with network width.



32-layers 44-layers
epoch k=1 k=2 k=4 k=1 k=2 k=4
0 1.0 +£ 0.0 1.0 +£ 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0
100 0.77 +£0.035 0.8+0.031 0.84 £0.026 0.72+0.041 0.79 £0.037 0.83 £+ 0.028
200 0.61 +£0.036 0.68+0.036 0.8+ 0.031 0.66+ 0.033 0.68 £0.034 0.76 £ 0.033
300 0.55+0.037 0.68 £0.037 0.82 +£0.032 0.57 +£0.036 0.68 +£0.036 0.78 £+ 0.032
56-layers 68-layers
epoch k=1 k=2 k=4 k=1 k=2 k=4
0 1.0 £ 0.0 1.0 £ 0.0 1.0+ 0.0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0
100 0.7+0.036 081+003 0.84+0.03 0.71+£0.032 0.76+0.03 0.87 +0.026
200 0.63 £0.039 0.67+0.034 0.8+0.031 0.6+0.036 0.71+£0.031 0.8 +0.029
300 0.57 +£0.035 0.66 £0.035 0.79 £0.033 0.58 +£0.036 0.67 £ 0.033  0.81 + 0.03
80-layers 110-layers
epoch k=1 k=2 k=4 k=1 k=2 k=4
0 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0 0.94 £ 0.016 0.94+0.018 0.94 +0.016
100 0.72+0.036 0.85+0.03 0.81 £0.027 0.79 +£0.032 0.75 £ 0.04 0.91 £ 0.019
200 0.59+£0.036 0.7+0.038 0.77 £0.031 0.71 £0.037 0.71 £0.036  0.82 + 0.03
300 0.63+0.036 0.71 £0.036 0.79 +0.03 0.63 +0.037 0.68 £0.034 0.82 £ 0.033

Table 2: Typical length scales of local convexity for Resnet networks with various width (indicated by k), depth, and training. We
sample 25 random “lines” of length 1 in parameter space, centered on current parameters, and report mean length of convex
subset of such “lines” and the std of this statistic. Increasing width makes the loss surface increasingly locally convex.

typically only locally convex, a property we quantify as the
length of subsets of random “lines” in parameter space along
which the training loss function is convex. Formally, we sam-
ple a random direction r and then consider an interval of
length one along this direction, centered around the current
parameters w, i.e., w + Ar for A € [—1/2,1/2]. We then
define the “convexity length scale” as the length of the maxi-
mal sub-interval containing w on which £(w + Ar) is convex.
Directions are sampled from Gaussian distributions and then
normalized for each network filter f to have the same norm
as the weights of f. Table 2 shows how this length scale of
local convexity varies with depth, width, and training, where
width is varied by multiplying the number of channels by k.
Indeed, increasing width makes the landscape increasingly
locally convex, supporting our hypothesis.

Related Work

As the success of deep learning has become widespread,
many researchers have empirically investigated its behav-
ior on real-world datasets (Li and Yuan 2017; Zhang et al.
2016). In the context of sharp vs flat local minima (Keskar
et al. 2016), Li et al. (2018) illustrate how increasing the
width improved flatness in a Resnet network, an observation
that Table 2 quantifies. Our work was initially motivated by
studies on local and star-convexity in neural networks due to
Kleinberg, Li, and Yuan (2018), Izmailov et al. (2018) and
Zhou et al. (2019). Whereas such previous work empirically
observes star-convexity and investigates its implications, we
prove that this benign property arises simply from concentra-
tion of measure, albeit in the simpler NMF case. We inten-
tionally focus on dense NMF problems to explain its practical
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success, leaving e.g., sparsity for future work (Richard and
Montanari 2014). A common theme in non-convex optimiza-
tion more generally is that functions with only saddle points
and global minima can be solved via SGD (Ge et al. 2015).
We note that problems with such properties, for example, ten-
sor decomposition, can be efficiently optimized. Our work,
on the other hand, addresses an NP-hard optimization prob-
lem, utilizing statistical assumptions on the input to achieve
positive results. There is extensive work on non-worst-case
analyses of algorithms and machine learning models, and on
what problem distributions can guarantee tractability (Bilu
and Linial 2012; Ackerman and Ben-David 2009; Afshani,
Barbay, and Chan 2017). On the positive side, Arora et al.
(2012) have proposed an exact algorithm for NMF that runs
in polynomial time for small constant r, and there are positive
results for so-called “separable” NMF (Donoho and Stodden
2004). Our work is also related to the analysis of algorithms
where instances have “planted” solutions, for instance, the
planted clique problem (Barak et al. 2016) and the stochastic
block model (Holland, Laskey, and Leinhardt 1983; Decelle
etal. 2011).

Conclusions

This paper revisits NMF, a non-convex optimization problem
in machine learning. We have shown that NMF is typically
star-convex, provably for a natural average-case model and
empirically on an extensive set of real-world datasets. Addi-
tionally, we have shown how network width improves local
convexity of neural networks. Our results support the counter-
intuitive observation that optimization might sometimes be
easier in higher dimensions due to concentration of measure.
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