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Abstract
Barycentric spanners have been used as an efficient explo-
ration basis in online linear optimization problems in a ban-
dit framework. We characterise the barycentric spanner for
decision problems in which the cost (or reward) is a polyno-
mial in a single decision variable. Our characterisation of the
barycentric spanner is two-fold: we show that the barycentric
spanner under a polynomial cost function is the unique solu-
tion to a set of nonlinear algebraic equations, as well as the so-
lution to a convex optimization problem. We provide numeri-
cal results to show that our method computes the barycentric
spanner for the polynomial case significantly faster than the
only other known algorithm for the purpose. As an applica-
tion, we consider a dynamic pricing problem in which the
revenue is an unknown polynomial function of the price. We
then empirically show that the use of a barycentric spanner to
initialise the prior distribution in a Thompson sampling set-
ting leads to lower cumulative regret as compared to standard
initialisations. We also illustrate the importance of barycen-
tric spanners in adversarial settings by showing, both theoret-
ically and empirically, that a barycentric spanner achieves the
minimax value in a static adversarial linear regression prob-
lem where the learner selects the training points while an ad-
versary selects the testing points and controls the variance of
the noise corrupting the training samples.

Introduction
Background
Many sequential decision-making problems can be cast as
an online optimization problem, where a decision-maker, or
learner, chooses an action from a decision space D at each
round, and receives feedback in the form of a cost from the
environment. Well known examples include online routing
(Awerbuch and Kleinberg 2008) and dynamic pricing (Ke-
skin and Zeevi 2014). The goal of the decision-maker, or
learner, is to learn the best decision over multiple rounds,
where “best” is defined in terms of a suitable notion of re-
gret. In the stochastic version of such a problem, the costs
are assumed to be generated by a stochastic model, while in
the adversarial version, one allows for the possibility that the
cost functions may be chosen by an adversary.

∗The second author was with TCS Research when this work
was performed.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Online linear optimization problems form a special class
of online optimization problems where the decision set D
is a subset (usually compact and convex) of a d-dimensional
real vector space, and the costs are linear functions on Rd. In
the case of full-information or transparent feedback, the en-
tire cost function is revealed to the learner after each round.
In contrast, only the cost of the last decision made by the
learner is revealed after each round in case of the bandit ver-
sion of the problem.

While the well known strategy Follow-the-Perturbed-
Leader (FPL) yields a simple and efficient low-regret algo-
rithm for adversarial online linear optimization under full
information (Hannan 1957; Kalai and Vempala 2005), the
harder bandit version requires more elaborate algorithms
that strike a delicate balance between 1) exploration aimed at
learning the unknown cost functions, and 2) exploitation that
uses a full-information algorithm like FPL on the cost func-
tion estimates obtained during exploration (Awerbuch and
Kleinberg 2008; McMahan and Blum 2004; Dani and Hayes
2006; Bubeck, Cesa-Bianchi, and Kakade 2012; Abernethy,
Hazan, and Rakhlin 2012; Hazan and Karnin 2016).

Exploration Basis
The exploration in many of the algorithms cited above is
based on the intuitive idea that the value of a linear function
at any point can be predicted if the values of the function are
known at a set of basis elements. The exploration steps in all
these algorithms therefore involve sampling decisions from
a carefully chosen subset of the decision set called an explo-
ration basis. The choice of the exploration basis is crucial,
as a wrong choice can “amplify” the effect of errors or noise
that might be present in the function values observed at the
basis elements.

To understand this, suppose we wish to estimate a lin-
ear function x 7→ µTx based on noisy measurements yi =
µTxi + εi, i = 1, . . . , d, of the linear function on elements
of an exploration basis {x1, . . . , xd} ⊂ Rd, with εi being
the noise sample at the ith measurement. Assuming the ba-
sis elements to be linearly independent, a simple estimate of
µ is given by µ̂ = (X−1)Ty, where X is the matrix having
x1, . . . , xd as its columns. The error that results if we use
our estimate µ̂ to predict the value of the function at a “test”
point z ∈ Rd is easily seen to be µ̂Tz − µTz = εTc(z),
where c(z) = X−1z is the vector of coefficients required
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to write z as a linear combination of the basis elements. It
is evident that the error in predicting the function at a gen-
eral point z depends on the “size” of the coefficients needed
to express z in terms of the basis elements. For a geometric
explanation of the same point, see Awerbuch and Kleinberg
(2008). The preceding discussion suggests that the explo-
ration basis must be chosen such that all elements in the de-
cision space can be written as a linear combination of the
basis elements using coefficients that are, in some suitable
sense, small.

Hazan and Karnin (2016) use the l2 norm of the coeffi-
cient vector as a measure of smallness for defining an ef-
ficient, low-variance exploration basis. They define a volu-
metric spanner as a set of elements of the decision set such
that every decision vector can be written as a linear combina-
tion of the basis elements with coefficients whose Euclidean
norm does not exceed 1. The algorithm for the adversarial
setting given by Hazan and Karnin (2016) uses a volumet-
ric spanner for a low-variance exploration basis. Alternative
mechanisms for exploration based on convex analysis were
used by Abernethy, Hazan, and Rakhlin (2012) and Bubeck,
Cesa-Bianchi, and Kakade (2012). However, the first no-
tion of an exploration basis in the context of online bandit
linear optimization was that of a barycentric spanner, and
appeared in the seminal work of Awerbuch and Kleinberg
(2008).

Barycentric Spanner
A barycentric spanner for a given D ⊂ Rd is a finite subset
of D such that every element in D can be expressed as a lin-
ear combination of elements of the subset using coefficients
in [−1, 1]. If the coefficients are allowed to lie in [−C,C] for
some C > 1, the corresponding set of elements is called a
C-approximate barycentric spanner. Barycentric spanners or
C-approximate barycentric spanners have been used in ban-
dit linear optimization algorithms for the adversarial setting
in Awerbuch and Kleinberg (2008); Bartlett et al. (2008);
Dani and Hayes (2006); McMahan and Blum (2004); Dani,
Kakade, and Hayes (2008), and for the stochastic setting in
Dani, Hayes, and Kakade (2008). In a different application,
Chen and Moitra (2019) used barycentric spanners to esti-
mate a mixture of binary product distributions from a sample
drawn from the mixture.

Awerbuch and Kleinberg (2008) show that a compact de-
cision set D ⊂ Rd always has a barycentric spanner with
at most d elements. Furthermore, given C > 1, Awerbuch
and Kleinberg (2008) give an algorithm that computes a C-
approximate barycentric spanner for a general compact set
D ⊂ Rd with O(d2 logC d) calls to an optimization ora-
cle for performing linear optimization over D. While it is
preferable for C to be closer to 1, the complexity bound for
the algorithm given by Awerbuch and Kleinberg (2008) di-
verges as C approaches 1. Moreover, the optimization step
in the algorithm has to be implemented afresh for different
instances of the decision set D.

Present Work
In this paper, we consider the problem of computing a
barycentric spanner for the special case where the decision

set D is the set Dn defined by Dn = {[1, p, p2, . . . , pn]T ∈
Rn+1 : p ∈ [pmin, pmax]} for some integer n. In the con-
text of online optimization problems, it is natural to con-
sider a decision set of the form Dn in the case where the
cost functions are polynomials of degree n in a single de-
cision variable p. Formulating the decision set in this man-
ner permits one to cast an online optimization problem with
polynomial costs as an online linear optimization problem.
Furthermore, having a barycentric spanner for the set Dn

enables the application of adversarial bandit linear optimiza-
tion algorithms to the case of polynomial cost functions.

The case of a polynomial objective function is of interest
in an application such as dynamic pricing of retail products,
where the seller of a product would like to sequentially learn
the price that elicits the maximum revenue for that product
in the case where the market demand curve for the product
is unknown, but modeled as a polynomial in the price. We
illustrate the role of barycentric spanners in an online set-
ting with the help of a dynamic pricing problem. We cast
the problem as a stochastic bandit linear optimization prob-
lem, and apply the Thompson sampling algorithm (Den Boer
2015).

To clarify the role of barycentric spanners in adversarial
settings, we consider a static adversarial linear regression
problem in which a learner first selects training points for
fitting a linear function from noisy measurements. Based on
the learner’s choice, an adversary selects points for testing
the learner’s fit, and chooses the variance of the noise cor-
rupting each training sample subject to a constraint on the
total variance. The learner’s goal is to choose training points
to minimize the worst-case expected mean square testing er-
ror forced by the adversary’s choices.

The main contributions of the paper are as follows.

1. We show that the barycentric spanner of the decision set
Dn introduced above can be characterized through the
unique optimizer of a convex optimization problem or,
equivalently, the unique solution of a set of nonlinear
equations. Our characterization makes it possible to com-
pute the barycentric spanner of the set Dn efficiently in
polynomial time, using either interior point methods for
convex optimization (Nesterov and Nemirovskii 1994), or
trust region methods for solving nonlinear algebraic equa-
tions. We provide empirical run-times of the resulting al-
gorithms which turn out to be significantly faster than the
algorithm of Awerbuch and Kleinberg (2008).

2. We show that the barycentric spanner of Dn can be easily
constructed from the barycentric spanner for the standard
case where the domain of the polynomials is the unit in-
terval. Effectively, this means that the computation of the
barycentric spanner is required only once for a given poly-
nomial degree. We also indicate how symmetry properties
can be exploited to further reduce the computations.

3. We empirically show that initialising the mean and covari-
ance of the prior distribution based on a barycentric span-
ner leads to improved regret performance when compared
with standard choices in Thompson sampling applied to
an online linear bandit formulation of dynamic pricing.
We also present empirical evidence to show that the per-
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formance improvement is robust with respect to some fea-
tures of the unknown demand curve.

4. We show theoretically and empirically, that the learner in
the adversarial linear regression setting described above
can achieve the lowest worst-case expected mean square
error by choosing elements of the barycentric spanner as
training points, where the worst case is over the adver-
sary’s choices.

We start by introducing the required definitions and nota-
tion in the next section.

Barycentric Spanners
Notations and Definitions
Let D ⊂ Rd, and C > 0. A finite-subset {x1, . . . , xk} ⊆ D
is a C-approximate barycentric spanner for D if, for ev-
ery z ∈ D, there exist c1, . . . , ck ∈ [−C,C] such that
z = c1x1 + · · ·+ ckxk. A barycentric spanner for D is a 1-
approximate barycentric spanner forD. Thus, every element
of D may be written as a linear combination of elements of
a barycentric spanner using coefficients in [−1, 1]. If D is
compact, then D has a barycentric spanner with at most d
elements (Awerbuch and Kleinberg 2008).

For each positive integer n, define fn : R → Rn+1 by
fn(p) = [1, p, p2, . . . , pn]T. Given w = [w1, . . . , wn+1]T ∈
Rn+1, V (w)

def
= [fn(w1), . . . , fn(wn+1)] is the (n + 1) ×

(n + 1) Vandermonde matrix formed from the elements of
w.

Let [pmin, pmax] be a closed interval of R. In the sequel,
we will be concerned with the set Dn

def
= {fn(p) : p ∈

[pmin, pmax]} ⊂ Rn+1 for some n ≥ 1. The motivation for
considering this particular set follows from the discussion
given in the introduction.

Main Results
Our main result below gives two characterizations for the
barycentric spanner of the set Dn. The proofs of all results
in this section are given in the supplementary material (see
Amballa, Gupta, and Bhat (2020)).

Theorem 1. Suppose p = [p1, . . . , pn+1]T ∈ Rn+1 is such
that pmin ≤ p1 ≤ · · · ≤ pn+1 ≤ pmax. Then the following
three statements are equivalent.

1. The set {fn(p1), . . . , fn(pn+1)} ⊂ Dn is a barycentric
spanner for Dn.

2. The vector p satisfies pmin = p1 < p2 · · · < pn+1 =
pmax and ∑

1≤j≤n+1,j 6=i

1

pi − pj
= 0, i = 2, . . . , n. (1)

3. The vector p is the unique global solution of the optimiza-
tion problem

max
w∈Rn+1

pmin=w1<···<wn+1=pmax

ln|detV (w)|. (2)

The proof of Theorem 1 depends on the following propo-
sition. The proposition states that the optimization problem
appearing in 3) of Theorem 1 is a convex optimization prob-
lem with a unique global maximizer which is also the unique
solution of the set of nonlinear equations (1).

Proposition 1. Let a < b, and define the setC def
= {z ∈ Rk :

a < z1 < z2 < · · · < zk < b}. Then the set of equations

1

zi − a
+
∑
j 6=i

1

zi − zj
+

1

zi − b
= 0, i = 1, . . . , k, (3)

has a unique solution z∗ in the convex set C. Moreover, z∗
is the unique global maximizer in C of the strongly concave
function U : C → R defined by

U(z)
def
= ln

∣∣∣∣∣∣∣∣
(

k∏
i=1

(a− zi)(b− zi)

) ∏
i=1,...,k;

j>i,

(zi − zj)


∣∣∣∣∣∣∣∣ .

(4)
Finally, z∗ satisfies

z∗i + z∗k−i+1 = a+ b, i = 1, . . . , k. (5)

Discussion
Proposition 1 along with Theorem 1 implies that the set Dn

has a unique barycentric spanner, and this barycentric span-
ner can be found either by solving the set of nonlinear equa-
tions (1), or by solving the convex optimization problem (2),
both of which have unique solutions. More importantly, both
problems can be solved efficiently using well known algo-
rithms. For example, (1) can be solved using Powell’s hybrid
method (Powell 1970), while the convex optimization prob-
lem (2) can be solved using an interior point method (Nes-
terov and Nemirovskii 1994). Note that the computational
run time of both types of algorithms grows polynomially in
the number of variables.

Next, observe that if pi, i = 1, . . . , n + 1, satisfy (1),
then so do api + b for all a, b ∈ R. Since the interval
[pmin, pmax] is an image of the unit interval under an affine
map, it follows that a barycentric spanner for any given val-
ues of pmin and pmax can simply be computed from the
barycentric spanner for the canonical case pmin = 0 and
pmax = 1. Effectively, the problems (1) or (2) have to be
solved only once for any given value of n.

The relations (5) imply that the points pi, i = 1, . . . , n+1,
yielding the barycentric spanner are symmetrically placed
about the midpoint p̄ def

= 1
2 (pmin + pmax) of the inter-

val [pmin, pmax]. Thus, it is sufficient to find points lying
only on one side of the midpoint. This can be essentially
achieved by using the symmetry relations (5) to eliminate
(roughly) half the variables from (1) and (2). The resulting
simplified versions of (1) and (2) are given in the supple-
mentary material (see Amballa, Gupta, and Bhat (2020)).
Assuming pmin = 0 and pmax = 1, the simplified equa-
tions can be solved analytically to obtain (p1, p2, p3) =(
0, 12 , 1

)
, (p1, p2, p3, p4) =

(
0, 12 −

√
1
20 ,

1
2 +

√
1
20 , 1

)
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and (p1, p2, p3, p4, p5) =
(

0, 12 −
√

3
28 ,

1
2 ,

1
2 +

√
3
28 , 1

)
for the cases n = 2, 3 and 4, respectively.

Empirical Comparison of Run Times
Table 1 provides a comparison of the run times (in seconds)
to compute a barycentric spanner for the set Dn for vari-
ous values of n in the canonical case [pmin, pmax] = [0, 1]
using the full versions (1) and (2) and reduced versions
given by (20)-(23) in the supplementary material (see Am-
balla, Gupta, and Bhat (2020)). Table 1 also gives the ex-
ecution time of our implementation of the algorithm pro-
vided by Awerbuch and Kleinberg (2008) (referred to as
A-K) for computing a C-approximate barycentric spanner
with C = 1, 2 and 5. As expected, Table 1 shows that com-
putations using the reduced versions of either the nonlinear
equations or the convex optimization are faster than with the
corresponding full versions.

For higher values of n, our implementation of the A-K
algorithm does not give the correct spanner due to numer-
ical inadequacy. We emphasize that we have implemented
the A-K algorithm by fully exploiting the structure of our
decision space to increase efficiency. Specifically, the search
for an initial set of linearly independent vectors from the
set D as well as repeated optimization of the determinant of
n + 1 vectors chosen from D in the original A-K algorithm
are both implemented after specializing to the polynomial
setting.

The nonlinear equations (1) were solved using the fsolve
function available in SciPy optimize Python package, which
uses a modified version of Powell’s hybrid method. The op-
timization in (2) was achieved using CVXPY Python pack-
age (Diamond and Boyd 2016). All computations were per-
formed on an Intel R© CoreTM i5-7200U CPU with 8GB
memory and four cores, each running at 2.50GHz.

Dynamic Pricing
In this section, we illustrate the impact of using barycen-
tric spanners in the context of dynamic pricing which has
been widely studied as a bandit optimization problem (see
Den Boer (2015) for references).

Bandit Formulation
Consider a seller selling a certain product over a time hori-
zon of T periods. In each period, t = 1, 2, . . . , T, the
seller must choose a price pt from a given feasible set
[pmin, pmax] ∈ R, where 0 ≤ pmin < pmax <∞. The seller
observes demand dt according to the noisy linear demand
model given by dt = α−βpt+εt for t = 1, 2, . . . , T, where
α, β > 0 represent the unknown parameters of the demand
model, and εt ∼ N (0, σ2) represents unobserved demand
perturbations. The linear demand model is often considered
in literature (see Keskin and Zeevi (2014)). The seller’s sin-
gle period revenue rt in period t equals rt = dtpt. This leads
to a quadratic dependence of rt on pt.

More generally, one can consider demand models that in-
volve a higher degree polynomial dependence of revenue
on the price. Hence, we consider the revenue to be of the
general form r(pt) = g(pt) + εt, where g(pt) = µ̃0 +

µ̃1pt + µ̃2p
2
t + · · ·+ µ̃np

n
t and εt ∼ N (0, σ2). The seller’s

goal is to learn the unknown parameters µ̃0, µ̃1, . . . , µ̃n from
noisy observations of price and revenue pairs {(pt, rt)}Tt=1
well enough to reduce the T -period expected regret, de-
fined as R(T ) =

∑T
t=1 [r∗ − E(r(pt))] , where r∗ =

maxp∈[pmin,pmax] g(p) is the optimal expected single pe-
riod revenue. The above formulation of the dynamic pricing
problem results in a bandit optimization problem to which
the Thompson sampling (TS) algorithm may be efficiently
applied (see Ganti et al. (2018)).

Thompson Sampling Algorithm
TS begins by putting a prior distribution over the unknown
parameters. We choose the prior over the parameter vector
µ̃ = [µ̃0, µ̃1, µ̃2, . . . , µ̃n] to be multi-variate Gaussian with
mean vector µ0 and covariance matrix A0. In this case, the
posterior distribution over µ̃ at time step t+ 1 is also multi-
variate Gaussian with mean vector µt ∈ Rn+1 and covari-
ance matrix At ∈ Rn+1×n+1 given by the update equations
(see Bagnell (2005) and Chapter 3 of Bishop (2006))

At+1 =
[
A−1t + σ−2xt+1x

T
t+1

]−1
,

µt+1 = At+1

[
A−1t µt + σ−2rt+1xt+1

]
,

}
(6)

where xt+1 = fn(pt+1). The convergence of (6) as well as
the regret incurred by any algorithm based on these updates
is, expectedly, dependent on the initialization A0 and µ0.

We claim that there is a natural way of using a barycentric
spanner to initialize A0 and µ0, and show through numer-
ical experiments that such an initialization leads to lower
regret than the baseline method. Let {b1, b2, . . . , bn+1}
be a barycentric spanner for the set Dn. We query the
revenue curve at each of these barycentric points once,
and perform a least squares fit on the resulting data. De-
note B = [b1, b2, . . . , bn+1] and ε = [ε1, ε2, . . . , εn+1]T,
where ε1, ε2, . . . , εn+1 are the noise samples hidden in
the data. As (7) in the next section shows, performing
a least squares fit at points of the barycentric spanner
gives µ = µ̃ + (BBT)−1Bε. Further, E(µ) = µ̃ and
hence the least squares estimate is an unbiased estima-
tor for µ̃. The covariance matrix of µ is E[(µ − µ̃)(µ −
µ̃)T] = (BBT)−1BE(εεT)BT(BBT)−1 = σ2(BBT)−1

since E(εεT) = σ2I . Thus, it makes sense to choose our
prior with mean µ0 = µ and covariance matrix A0 =

σ2(BBT)−1 = σ2
(∑n+1

i=1 bib
T
i

)−1
.

Since the value of σ may not be known in applications, we
treat it as a parameter and apply the updates (6) as well as
the initialization described above with σ = 1 in Algorithm
1 below. The confidence-ball-based algorithm for stochas-
tic bandit linear optimization given by Dani, Hayes, and
Kakade (2008) also uses the same updates as (6) along with
the above initialization for A−10 with σ = 1.

The initialization steps 2-4 in Algorithm 1 query the un-
known revenue curve at barycentric points, fit a least squares
model, and initialize the Thompson sampling iterations ex-
ecuted by the while loop. The algorithm relies on (6) for
learning, and uses Thompson sampling for suggesting the
new price at each iteration. Specifically, at each round t,
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Polynomial degree n A-K Non linear equations Convex optimization
C = 1 C = 2 C = 5 Full Reduced Full Reduced

2 0.097 0.097 0.097 0.0002 0.00003 0.0209 0.0154
5 4.537 0.372 0.372 0.0007 0.0004 0.0713 0.0478

10 35.185 2.891 2.698 0.0081 0.0025 0.2296 0.1517
13 53.752 5.537 5.467 0.0158 0.0038 0.3678 0.2087
15 65.656 8.163 7.937 0.0316 0.0081 0.4853 0.2691
20 115.45 19.13 18.93 0.0793 0.0241 0.9198 0.4967
25 NA NA NA 0.206 0.068 1.933 0.804
30 NA NA NA 0.415 0.099 2.126 1.278
45 NA NA NA 2.305 0.377 4.656 2.527
60 NA NA NA 6.985 1.534 9.618 5.975
80 NA NA NA 24.676 3.299 15.636 8.196

Table 1: Time in seconds for computing an exact or approximate barycentric spanner using different methods.

Algorithm 1 Thompson sampling for dynamic pricing

Input: Model degree n, total iterations
Initialization:

Step 1. Find the barycentric spanner b1, . . . , bn+1 for
Dn.

Step 2. Suggest each barycentric spanner point as a
price, perform a least squares fit on resulting data to
obtain µ0.
Step 3. Set σ = 1, A−10 = σ−2

∑n+1
i=1 bib

T
i .

Step 4. Set t = 0.
while t ≤ total iterations do

Sampling: Sample wt ∼ N (µt, At) and form the sam-
pled revenue curve ht(·) = wT

t fn(·).
Optimization: Find the optimal price for the sampled
revenue curve: pt = arg maxpmin≤p≤pmax ht(p).
Decision: Apply price pt and observe noisy revenue rt
Learning: A−1t+1 = A−1t + σ−2xtxt

T, A−1t+1µt+1 =

A−1t µt + σ−2rtxt with xt = fn(pt).
Set t← t+ 1.

end while

the algorithm samples a parameter vector from the current
posterior distribution, computes the optimal price pt for the
sampled parameter vector, suggests the price pt, observes
the noisy revenue rt returned by the environment, and uses
the observation to update the posterior distribution accord-
ing to (6).

Simulation Results
It is common to choose the covariance matrix A0 to be
a scalar multiple of the identity matrix (see Agrawal and
Goyal (2013) and Ganti et al. (2018)). As a baseline method
for comparison, we use Thompson Sampling with the co-
variance matrix initialization A−10 = I in all our experi-
ments, and compare its performance with Algorithm 1.

We uniformly observed that the Algorithm 1 significantly
outperforms the baseline method (see Figures 1 and 2). In
fact, we experimented with A−10 = λI for various values of
λ as well as various polynomial degrees for revenue func-
tion, and observed that Algorithm 1 continues to outperform

the baseline method. In the first plot in Figure 1 (which is
generated by letting λ = 1), we consider an environment
which returns the revenue r = −p4+22p3−165p2+480p−
150 + ε, at the price p ∈ [1, 10], where ε is a zero-mean
Gaussian noise sample with σ = 10. The second plot in
Figure 1 shows the regret for a second degree polynomial
(r = 1.1p − 0.5p2 + ε, ε ∼ N (0, 0.01), p ∈ [0.75, 2]). In
both plots, the expected cumulative regret is estimated by
averaging over 10 sample paths. To close the section, we
present the results of some robustness checks performed on
Algorithm 1.

1. Robustness to assumed model degree: We performed a
wide range of experiments in which the degree of the true
revenue function was different from the one assumed in
the algorithm. The first plot in Figure 2 shows a typical
result.

2. Robustness to polynomial assumption: We also ran the
algorithm with radial basis functions as the true revenue
function. The second plot in Figure 2 shows the regret
comparison when the model assumed in the algorithm is a
fourth degree polynomial, while the true revenue at a price
p ∈ [1, 10] is given by 100e−(p−5)

2/20 + ε, ε ∼ N (0, 9).

Linear Regression: Adversarial Setting
Problem Setting and Main Result
To understand how barycentric spanners help in an adver-
sarial setting, consider a simple linear regression problem
with an adversarial twist. A learner selects d training points
x1, . . . , xd ∈ D ⊆ Rd, and observes noisy measurements
yi = g(xi) + εi, i = 1, . . . , d, of an unknown linear
function g(x) = µTx, with εi being independent random
variables with zero mean and variance σ2

i . The noise vari-
ances are chosen by an adversary subject to the constraint
σ2
1 + · · · + σ2

d ≤ σ2 for a given σ > 0. The adversary also
chooses k test points z1, . . . , zk ∈ D at which the linear fit
obtained by the learner is tested. The adversary makes all
his choices after observing the training points chosen by the
learner. The adversary’s goal is to force the highest possible
value for the expected mean square testing error by choosing
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Figure 1: Expected cumulative regret comparison for a
fourth (top) and a second (bottom) degree revenue function
for the linear demand model considered by Keskin and Zeevi
(2014).

the noise variances, the number of test points k, and the test
points themselves.

Let X def
= [x1, . . . , xd] ∈ Rd×d, y = [y1, . . . , yd]T ∈ Rd,

and ε = [ε1, . . . , εd]T. Then, y = XTµ+ ε. We assume that
rank(X) = d. The least-squares estimate µ̂ of µ is obtained
by minimizing the sum of squares of the training errors, that
is, ‖y −XTµ̂‖22, and is given by

µ̂ = (XXT)−1Xy = µ+X−Tε. (7)
The learner’s estimate ĝ of the function g is then given by
ĝ(x) = µ̂Tx for x ∈ Rd. The learner’s goal is to choose X
such that the worst-case expected value of the mean square
error (MSE), 1

k

∑k
i=1 E[ĝ(zi)−g(zi)]

2, over the adversary’s
choice of testing points z1, z2, . . . , zk and variances σ2

i , i =
1, . . . , d, is minimized. The following result, whose proof is
given in the supplementary material (see Amballa, Gupta,
and Bhat (2020)), states that the learner can achieve her goal
by choosing the elements of a barycentric spanner as training
points.
Proposition 2. The expected mean-square testing error is
given by

1

k

k∑
i=1

E[ĝ(zi)− g(zi)]
2 =

1

k

k∑
i=1

[σ2
1(eT1X

−1zj)
2 +

· · ·+ σ2
d(eTdX

−1zj)
2], (8)

Figure 2: Expected cumulative regret comparison for 4th de-
gree polynomial learnt using a 7th degree model (top) and a
radial basis function when learnt by assuming a 4th degree
model (bottom).

where e1, . . . , ed are column vectors of the d × d identity
matrix. Moreover, the learner can minimize the worst-case
(over the adversary’s choices) expected MSE by choosing
elements of a barycentric spanner of D as training points.

We performed several numerical experiments related to
Proposition 2 for the polynomial case considered in the pre-
vious two sections. The observations are reported in the sub-
section below.

Numerical Illustration
We numerically compare the difference between the worst-
case expected MSE in (8) when a polynomial regression
model is trained using a barycentric spanner (BS) versus a
2-approximate barycentric spanner (2-BS) for various poly-
nomial degrees, and observed that the worst-case expected
MSE is equal to σ2 when trained with a BS, and can be sig-
nificantly higher than σ2 when trained with a 2-BS.

While we performed several experiments to test the above
observation, we restrict ourselves to describing only one of
them here. We assume that the learner has access to noisy
observations of the following 9th degree polynomial,

g(p) = p9− 27p8 + 323p7− 2247p6 + 10017p5− 29673p4

+ 58401p3 − 73629p2 + 53946p− 17494,

(9)
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Figure 3: Worst-case value of the right hand side of (8) as a
function of the test point z = f9(ptest), ptest ∈ [2, 4], that
results from using barycentric spanner (BS) points and 2-
approximate barycentric spanner (2 BS) points for training.

for p ∈ [2, 4], where the noise at each observation is zero-
mean Gaussian with σ = 0.1. We test the correctness of our
fit at only one test point ptest ∈ [2, 4], since an adversary
can always choose the worst-case test point every time in
the case of multiple testing opportunities. It is easy to see
that, for k = 1, the largest value (over admissible choices of
the noise variances) of the expected MSE (8) at a test point
z is σ2‖X−1z‖2∞. Recall that, in this case, X = V (p) and
z = f9(ptest), with p ∈ R10 being the vector of training
points chosen by the learner.

Figure 3 shows a comparison of σ2‖X−1f9(ptest)‖∞ as a
function of the test point ptest over the entire domain when
the training is performed at a barycentric spanner and a 2-
approximate barycentric spanner. We observe that the worst-
case value (represented by the maximum value of the plot)
is 0.01 when training is performed at a barycentric spanner
(marked with blue crosses in Figure 3), and 0.0291 when
training is performed at a 2-approximate barycentric span-
ner.

We also computed the expected MSE in (8) for a fixed
set of equidistant testing points for three sets of training
points, all of the same cardinality. Table 2 shows a com-
parison of the MSE averaged over 500 trials when the
MSE is computed over 1000 equidistant testing points
in the domain of interest, that is, the closed interval
[2, 4] for the polynomial (9). The sets of training points
chosen for comparison are the barycentric spanner, a set
of 10 uniformly spaced points including 2 and 4, and
the fixed set of 10 randomly selected training points
{2.72, 2.64, 2.12, 2.04, 3.44, 2.96, 2.99, 3.96, 2.24, 3.76}.
The results given in Table 2 show that choosing a barycen-
tric spanner as the set of training points leads to the lowest
expected MSE among the three choices. The same behavior
can also be visually noticed in Figure 4, which depicts
plots of the polynomials learned in one of the 500 trials
summarized in Table 2.

Training ↓
Testing→ 1000 equidistant points

Barycentric spanner 0.0090
10 Equidistant points 0.036

10 Random points 0.3169

Table 2: Expected MSE at 1000 equidistant testing points
averaged over 500 trials for the 9th degree polynomial (9)

Figure 4: Polynomial regression with training points as
barycentric spanner (top) and equidistant points (bottom) for
the 9th degree polynomial (9).

Conclusions

We have shown that the barycentric spanner for a decision
space arising from univariate polynomial cost functions can
be efficiently computed using convex optimization. We have
illustrated the applicability of our results through a dynamic
pricing problem involving a polynomial demand curve, and
empirically shown that using the barycentric spanner for ini-
tializing the prior distribution within a Thompson sampling
algorithm leads to lower regret. We have also provided theo-
retical and empirical results to show that a barycentric span-
ner achieves the least worst-case expected MSE in an ad-
versarial linear regression setting. We plan to extend the re-
sults to multivariate polynomials and explore applications to
multi-product dynamic pricing in the future.
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