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Abstract

Matrix factorization (MF) plays an important role in a wide
range of machine learning and data mining models. MF is
commonly used to obtain item embeddings and feature repre-
sentations due to its ability to capture correlations and higher-
order statistical dependencies across dimensions. In many ap-
plications, the categories of items exhibit a hierarchical tree
structure. For instance, human diseases can be divided into
coarse categories, e.g., bacterial, and viral. These categories
can be further divided into finer categories, e.g., viral in-
fections can be respiratory, gastrointestinal, and exanthema-
tous viral diseases. In e-commerce, products, movies, books,
etc., are grouped into hierarchical categories, e.g., clothing
items are divided by gender, then by type (formal, casual,
etc.). While the tree structure and the categories of the dif-
ferent items may be known in some applications, they have
to be learned together with the embeddings in many others.
In this work, we propose eTREE, a model that incorporates
the (usually ignored) tree structure to enhance the quality of
the embeddings. We leverage the special uniqueness prop-
erties of Nonnegative MF (NMF) to prove identifiability of
eTREE. The proposed model not only exploits the tree struc-
ture prior, but also learns the hierarchical clustering in an un-
supervised data-driven fashion. We derive an efficient algo-
rithmic solution and a scalable implementation of eTREE that
exploits parallel computing, computation caching, and warm
start strategies. We showcase the effectiveness of eTREE on
real data from various application domains: healthcare, rec-
ommender systems, and education. We also demonstrate the
meaningfulness of the tree obtained from eTREE by means of
domain experts interpretation.

Introduction
Matrix Factorization (MF) plays an important role in a wide
range of machine learning models, for various applications
such as dimensional reduction and embedding. A popular
task is matrix completion, where the goal is to infer the
unknown/missing matrix entries from the observed ones.
A common approach is to employ MF to find a reduced-
dimension representation (embedding) of each element cor-
responding to the matrix dimensions (e.g., users and items)
These embeddings capture the essential information due to
the ability of MF to capture correlations and higher-order
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Figure 1: An example of hierarchical movie categories.

statistical dependencies across dimensions. The entry cor-
responding to the ith user and jth item can be inferred
by the inner product of their embeddings. Matrix comple-
tion finds a wide range of applications including collabora-
tive filtering in recommender systems (Koren 2008), disease
and treatment prediction and patient subtyping (Wang et al.
2019) in healthcare analytics, student performance predic-
tion and course recommendation in learning analytics (Al-
mutairi, Sidiropoulos, and Karypis 2017), and image pro-
cessing (Liu et al. 2015).

Incorporating side contextual information or priors, e.g.,
sparsity (Hoyer 2004), smoothness, and latent clustering
(Yang, Fu, and Sidiropoulos 2016), is well-motivated in ma-
trix factorization and completion of sparse data. This is be-
cause a major challenge stems from the fact that we aim to
find latent representations from very few samples. In this pa-
per, we present a principled approach that incorporates the
unknown implicit tree structure prior. In many applications,
categories of items display a hierarchical tree structure. In
higher education, for instance, courses form multiple trees
via their prerequisite hierarchy. Movie genres, e.g., comedy,
action, and fantasy, comprise different fine subcategories as
illustrated in the example in Fig. 1. Another example ap-
pears in Electronics Health Records (EHR) in healthcare an-
alytics, where medical service (diagnoses, procedures, and
prescription) can be clustered into subcategories, and these
subcategories can also be grouped into coarse categories (ex-
amples are provided in the experimental results in Fig. 3).
Individuals, e.g., users, students, and patients, also exhibit
hierarchical clusters where the common traits between peo-
ple increase as we move down from the root nodes to the leaf
nodes in a tree (Maleszka, Mianowska, and Nguyen 2013;
Wang, Pan, and Xu 2014). In many applications, the categor-
ical hierarchy is either unknown, or requires manual labeling
of massive amounts of data.

Incorporating tree structures in machine learning models
has been recently considered, mostly in recommender sys-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6609



tems (Nikolakopoulos, Kouneli, and Garofalakis 2015; Li
et al. 2019; Zhong, Fan, and Yang 2012) and also in other ap-
plications such as image processing (Fan and Cheng 2018),
clustering and classification (Trigeorgis et al. 2016), and nat-
ural language processing (NLP) (Shen et al. 2018). For ex-
ample, the recommender system model in (Yang et al. 2016)
penalizes MF with the distance between users who share
common traits based on hierarchically-organized features.
In another MF model (Sun et al. 2017), the item embeddings
are assumed to form a tree, where each leaf node represents
a single item and the parent nodes contain subsets of items
(categories). The embeddings of parent nodes and leaf nodes
are learned jointly. The final item feature vector is modeled
as a weighted sum of its embedding and those of the cat-
egories it belongs to. Regularizing MF with a pre-defined
tree prior has been also explored in response prediction in
online advertising (Menon et al. 2011). In this example, the
tree groups the set of ads according to their campaigns, and
the campaigns are further grouped based on the advertisers
running them.

All the aforementioned methods assume that the tree
structure is known apriori, or learned separately via side
information. Recently, (Wang et al. 2018, 2015) proposed
to capture the unknown implicit tree structure via a model
based on nonnegative matrix factorization (NMF). In a
three-layer tree, the embedding of a leaf node (item/user)
is assumed to be a linear combination of all the parent nodes
(subcategories) in the intermediate layer, and each subcat-
egory is a linear combination of all the categories in the
root nodes. The weights that determine the memberships of
a child node to the parent nodes are non-negative and learned
by the model. This results in a fully connected tree, thus, a
clear tree clustering can not be obtained. Moreover, (Wang
et al. 2018, 2015) imposes the implicit tree as a hard con-
straint, which can be restrictive if the data do not exactly
follow the imposed prior.

In this paper, we propose eTREE (Learning Tree-
structured Embeddings), a framework that integrates the un-
known implicit tree structure into a low-rank nonnegative
factorization model to improve the quality of embeddings.
eTREE does not require any extra information and jointly
learns: i) the embeddings of all the tree nodes (items, sub-
categories, and main categories), and ii) the tree clustering
in an unsupervised fashion. Unlike (Wang et al. 2015, 2018),
the obtained tree provides clear hierarchical clusters as each
node belongs to exactly one parent node, e.g., an item be-
longs to one subcategory, and a subcategory belongs to one
main category. The formulation of eTREE handles partially
observed data matrices, which appear often in real-world
applications. We derive an efficient algorithm to compute
eTREE with a scalable implementation that leverages paral-
lel computing, computation caching, and warm-start strate-
gies. Our contributions can be summarized as follows:
1. Formulation: eTREE provides an intuitive formulation
that: i) exploits the tree structure, and ii) learns the hierar-
chical clustering in an unsupervised data-driven fashion.
2. Identifiability: We leverage the special uniqueness prop-
erties of NMF to prove identifiability of eTREE.
3. Effectiveness: eTREE significantly improves the quality

of the embeddings in terms of matrix completion error on
data from recommender systems, healthcare, and education.
4. Interpretability: We demonstrate the meaningfulness of
the tree clusters learned by eTREE using real-data inter-
preted by domain experts.

Background
In this section, we provide the background needed before
presenting eTREE. We review NMF and related recent iden-
tifiability results, followed by a brief background on the al-
ternating direction method of multipliers (ADMM).
Notation: x. x, X denote scalars, vectors, and matrices, re-
spectively; X(i, :) (X(:, j)) refers to the ith row (jth col-
umn) of X; X(J , :) denotes the rows of X in the set J . The
product � is the Hadamard (element-wise) product.

Non-negative Matrix Factorization
Assume we have a healthcare data matrix X ∈ RN×M in-
dexed by (patient, medical service), where X(i, j) denotes
the number of times the ith patient has received the jth

service. In other applications, X may contain the ratings
given by users to items, or the grades received by students in
their courses. In some parts of this paper, we refer to pa-
tients, users, students, etc. as individuals, and to medical
services, products, etc. as items. NMF models aim to de-
compose the data matrix into low-rank latent factor matrices
as X = ABT , where A ∈ RN×R, BM×R only have non-
negative values, and R ≤ min(N,M) is the matrix rank.
NMF has gained considerably special attention as it tends
to produce interpretable representations. For instance, it has
been shown that the columns of A produce clear parts of hu-
man faces (e.g., nose, ears, and eyes) when NMF in applied
on a matrix X whose columns are vectorized face images
(Lee and Seung 1999). In practice, NMF is often formulated
as a bilinear optimization problem:

min
A≥0,B≥0

1

2
F(A,B) = ‖W � (X−ABT )‖2F (1)

where W ∈ {0, 1}N×M has ones at the indices of the ob-
served entries in X, and zeros otherwise. Each row of A
corresponds to the embedding/latent representation of the
corresponding individual, whereas the rows of B are the em-
beddings of the items.
Identifiability of NMF: The interpretability of NMF is in-
timately related to its uniqueness properties – the latent
factors are identifiable under some conditions (up to triv-
ial ambiguity, e.g., scaling/counter-scaling or permutation).
To facilitate our discussion of the uniqueness of eTREE, we
present the following definitions and established identifia-
bility results.
Definition 1 (Identifiability) The NMF of X = ABT is
said to be (essentially) unique if X = ÃB̃T implies Ã =

AΠD and B̃ = B(ΠD)−1, where Π is a permutation ma-
trix, and D is a diagonal positive matrix.

Definition 2 (Sufficiently Scattered) A nonnegative ma-
trix B ∈ RM×R is said to be sufficiently scattered if: 1)
cone{BT } ⊇ C, and 2) cone{BT } ∩ bd{C?} = {λek|λ ≥
0, k = 1, . . . , R}, where C = {x|xT1 ≥

√
R− 1‖x‖2},
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C? = {x|xT1 ≥ ‖x‖2}, cone{BT } = {x|x = BTθ, ∀θ ≥
0, 1Tθ = 1}, and cone{BT }? = {y|x = xTy, ∀x ∈
cone{HT }} are the conic hull of BT and its dual cone, re-
spectively, and bd is the boundary of a set.

The works in (Fu et al. 2015; Lin et al. 2015) prove that
the so-called volume minimization (VolMin) criterion can
identify the factor matrices if A is full-column rank, and the
rows of B are sufficiently scattered (Definition 2) and sum-
to-one (row stochastic). Recently, Fu et al. shifted the row
stochastic condition on rows of B to the columns of B.
Theorem 1 (NMF Identifiability) (Fu, Huang, and
Sidiropoulos 2018) A and B are essentially unique under
the criterion of minimizing det(ATA) w.r.t. A ∈ RN×R and
B ∈ RM×R, subject to X = ABT and BT1 = 1,B ≥ 0 if
B is sufficiently scattered, and rank(X) = rank(A) = R.

Theorem 1 provides an intriguing generalization of NMF,
as it pertains to a more general factorization. Note that A is
not restricted to be non-negative. Also note that the column-
sum-to-one constraint on B is without loss of generality, as
one can always assume the columns of B are scaled by a
diagonal matrix D, and compensate for this scaling in the
columns of A, i.e., X = (AD−1)(BD)T .

Alternating Direction Method of Multipliers
ADMM is a primal-dual algorithm that solves convex opti-
mization problems in the form

minx,z f(x) + g(z)

s.t. Ax + Bz = c
(2)

by iterating the following updates
x← arg minx f(x) + ρ/2‖Ax + Bz− c + u‖22
z← arg minz g(z) + ρ/2‖Ax + Bz− c + u‖22
u← u + (Ax + Bz− c)

(3)

where u is a scaled version of the dual variable, and ρ >
0 is a Lagrangian parameter. A comprehensive review of
ADMM can be found in (Boyd, Parikh, and Chu 2011).

Proposed Framework: eTREE
In this section, we present our proposed framework. We start
with the mathematical formulation of eTREE, then we dis-
cuss the theoretical uniqueness of the proposed model. Next,
we work out some design considerations of eTREE, then we
derive the algorithmic solution.

eTREE: Formulation
In many applications, categories of items exhibit a hierar-
chical tree structure – as we showed in the introduction. For
ease of notation, let us denote the embedding matrix of items
resulting from NMF in (1) as B1 ∈ RM1×R, where M1 is
the number of items. Assume that the embeddings of the
M1 items (rows of B1) are the leaf nodes at the very bot-
tom layer in a tree. A subset of items that belong to the same
category is grouped together via one parent node, where the
parent node is the embedding of the corresponding category.
Assuming that the embeddings are fully inherited (replicated
verbatim) from one’s parent category, we can further decom-
pose B1 into

B1 = S1B2 (4)

Figure 2: Illustration of the tree prior in eTREE.

where each row of B2 ∈ RM2×R is the embedding of one
category, M2 is the number of categories with M2 ≤ M1,
and S1 ∈ {0, 1}M1×M2 , ‖S1(i, :)‖0 = 1, ∀i ∈ [M1], i.e.,
values in S1 are binary with only one 1 per row to ensure that
each item belongs to exactly one category. Note that M2 is
the number of parent nodes (categories) in the second from
bottom layer. TheM2 categories can be grouped into coarser
categories, i.e., we decompose B2 into B2 = S2B3, where
rows of B3 ∈ RM2×M3 represent the embeddings of the
coarse categories, and S2 maps the M2 fine-level categories
into the M3 coarse-level categories in the same fashion as
S1. Up to here, we have constructed a three-layer tree, and
we can use the same concept to create a Q-layer tree. Fig. 2
illustrates the mapping between B1 and B2 in matrix nota-
tion (left), and shows a 3-layer tree (right). Generalizing to
Q layers, we obtain

B1 = S1S2 . . .SQ−1BQ (5)

Substituting the embedding matrix of items in (1) with the
right term in (5) above may seem natural, however there is a
solution ambiguity in the cases whereQ > 2. To see this, the
route B1(1, :)→ B2(2, :)→B3(1, :) in Fig. 2 (right) would
give the same cost value as B1(1, :)→ B2(1, :)→ B3(1, :)
(the dotted gray arrow). Moreover, imposing the tree struc-
ture as a hard constraint can be too intrusive when the data
do not exactly follow the assumed prior. Thus, we propose
to: i) incorporate the tree prior as a soft constraint, and ii)
explicitly solve for the embedding of the intermediate layers
to resolve the (immaterial for our purposes) solution ambi-
guity. This yields the following formulation:

minU F(A,B1) +
µ

2

∑Q−1
q=1 ‖Bq − SqBq+1‖2F

s.t. Sq ∈ {0, 1}Mq×Mq+1 , q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

A ≥ 0, B1 ≥ 0

(6)

where U :=
{
A, {Bq}Qq=1, {Sq}

Q−1
q=1

}
is the set of all vari-

ables, and F is the NMF cost function as defined in (1) with
B1 as the embedding matrix of items. The second term is
to minimize the difference between the embedding of each
child node and its parent node in the tree structure. In other
words, it minimizes the difference between the embeddings
of each item and its category, or between each fine category
and its coarse category. µ ≥ 0 is a regularization parameter
to balance the data fidelity and the tree prior.

There is an intriguing connection between the proposed
tree regularizer and k-means formulation. The variables
{Sq}Q−1q=1 are equivalent to the assignment variables in k-
means for clustering the rows of {Bq}Q−1q=1 , respectively, and
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BQ is equivalent to the centroid variable in k-means for clus-
tering the rows of BQ−1. On the other hand, each variable in
{Bq}Q−1q=2 is involved in two terms: 1) ‖Bq−1 − Sq−1Bq‖2F
where its rows are centroids, and 2) ‖Bq−SqBq+1‖2F where
its rows are the points to be clustered. This can be thought of
as a regularized k-means. Interestingly, the joint NMF and
latent k-means model in (Yang, Fu, and Sidiropoulos 2016)
is a special case of eTREE with Q = 2.

Note that if the tree structure is known apriori, it can be
seamlessly incorporated using our formulation. A direct way
is to fix {Sq}Q−1q=1 to the known tree and solve (6) w.r.t. the
rest of the variables. This way we learn the embedding of the
categories and penalize the distance between items and their
corresponding categories. When the tree is partially known,
one can fix the known parts and learn the unknowns. An-
other way to integrate a known tree is to penalize the dif-
ference between the embeddings of items that share similar
paths to the root nodes. The latter method does not require us
to learn {Bq}Qq=2. In this work, we focus on the more chal-
lenging scenario where the tree structure is unknown and to
be learned from the data.

eTREE has the following advantages: i) it incorporates the
tree structure to improve the quality of embeddings, ii) un-
like most methods in the literature, it assumes the tree is
unknown and learns it through the solution of {Sq}Q−1q=1 in
an unsupervised fashion, and iii) it provides the embedding
of the parent nodes (categories) in addition to the item em-
beddings. The tree clustering can be useful in broader ap-
plications such as classification and data labeling. The em-
beddings of categories provide extra information for some
applications, e.g., web personalization and category-based
recommendation (He, Li, and Liao 2017).

eTREE: Theoretical Identifiability
Identifiability in machine learning problems that require pa-
rameter estimation is essential in guaranteeing sensible re-
sults, especially in applications where model identifiability
is entangled with interpretability, such as topic modeling
(Arora et al. 2013), image processing (Lee and Seung 1999),
and social network clustering (Mao, Sarkar, and Chakrabarti
2017). Nevertheless, the majority of MF-based methods in
practice do not have known identifiability guarantees. In the
following theorem, we establish the identifiability of eTREE
for the case where X is fully observed.
Theorem 2 Assume that a data matrix follows X = ABT

1 ,
where A ∈ RN×R, and B1 ∈ RM1×R are the ground-truth
factors, and assume that B1 = S1S2 . . .SQ−1BQ, where
Sq ∈ {0, 1}Mq×Mq+1 , ‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈
[Q − 1]. Let S = S1S2 . . .SQ−1, then, B1 = SBQ. Also,
assume that rank(X) = rank(A) = R, and, without loss of
generality, MQ ≥ R. If A and S are full-column rank, and
rows of BQ are sufficiently scattered, then rows of B1 are
sufficiently scattered, and A, B1, BQ, and S are essentially
unique.
Proof Sketch: The factors A and BQ in M = ABT

Q are es-
sentially unique by Theorem 1, since A is full-column rank,
and rows of BQ are sufficiently scattered (Definition 2). If
S is full-column rank, then all the rows of BQ will appear in

B1 = SBQ. Thus, rows of B1 are sufficiently scattered iff
the rows of BQ are sufficiently scattered. Now, A and B1 in
X = ABT

1 are essentially unique by Theorem 1, since A is
full-column rank, and rows of B1 are sufficiently scattered.
Next, the factor S in B1 = SBQ is also essentially unique
because the rows of B1 are rows of BQ, and every row of
BQ appears in B1, hence S can be determined based on the
correspondence (identifiability of S also follows as a very
special instance of Theorem 1).

In plain words, in addition to the NMF identifiability con-
ditions (A to be full-rank, and rows of BQ to be sufficiently
scattered), we only require S to be full-column rank, which
means that every root node (main category) must have at
least one leaf node — this is a natural condition in a tree. In-
terestingly, the rows of BQ are likely to be sufficiently scat-
tered as they are the embeddings of the coarsest categories
and encouraged to be distant (think, e.g., in a 3-layer tree,
each row is the centroid of multiple subcategories, where
each subcategory is the centroid of a set of items). We point
out that there is an inherent column permutation ambiguity
in {Sq}Q−1q=1 in S = S1S2 . . .SQ−1, however, this is imma-
terial in our context.

eTREE: Model Engineering
In this section, we discuss some caveats that need to be ad-
dressed in the formulation (6) before moving to the algorith-
mic derivation.

The first point is the scaling between the low-rank factors
A and B1. The tree structure regularizer implicitly favors
B1 to have a small norm. On the other hand, the first term
is not affected by the scaling of B1, as long as this scaling
is compensated for in A. This motivates introducing norm
regularization on A, i.e., ‖A‖F .

The second consideration is regarding the tree structure
term. It has been shown that the cosine similarity metric is
superior over the Euclidean distance in clustering (Strehl,
Ghosh, and Mooney 2000) and latent clustering (Yang, Fu,
and Sidiropoulos 2016) in many applications. We also ob-
served that constraining the rows of {B}Q−1q=1 to be in the
unit l2-norm ball, which is equivalent to using cosine sim-
ilarity in clustering, gives better performance. Taking these
points into account, we obtain the following formulation:

minY Fd(A,B,D) +
µ

2

Q−1∑
q=1

‖Bq − SqBq+1‖2F +
λ

2
‖A‖2F

s.t. ‖Bq(i, :)‖2 = 1 ∀i ∈ [Mq], ∀q ∈ [Q− 1]

Sq ∈ {0, 1}Mq×Mq+1 , ∀q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

D = Diag(d1, . . . , dM1)

A ≥ 0, B1 ≥ 0
(7)

where Y :=
{
A,D, {Bq}Qq=1, {Sq}

Q−1
q=1

}
is the set of all

variables, λ ≥ 0, Fd := 1/2‖W � (X −ABTD)‖2F , and
D is a diagonal matrix that is introduced to allow us to fix
the rows of B1 onto the unit l2-norm ball without loss of
generality of the factorization model.
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eTREE: Algorithm
The optimization problem in (7) is NP-hard (as it contains
both NMF and k-means as special cases, and both are known
to be NP-hard). We therefore present a carefully designed al-
ternating optimization (AO) algorithm. The proposed algo-
rithm leverages ADMM (reviewed in the background sec-
tion above) and utilizes parallel computing, computation
caching, and warm-start to provide a scalable implementa-
tion. The high level algorithmic strategy is to employ AO to
update A, D, {Bq}Qq=1, and {Sq}Q−1q=1 one at a time, while
fixing the others. The resulting sub-problems w.r.t. a single
variable can be solved optimally.

We propose a variable-splitting strategy by introducing
slack variables {Zq ∈ RMq×R}Q−1q=1 to handle the unit l2
norm ball constraints on {Bq ∈ RMq×R}Q−1q=1 in (7). Specif-
ically, we consider the following optimization surrogate:

minH Fd(A,B,D) +
µ

2

∑Q−1
q=1 ‖Bq − SqBq+1‖2F

+
η

2

∑Q−1
q=1 ‖Bq − Zq‖2F + λ

2 ‖A‖
2
F

s.t. ‖Zq(i, :)‖2 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

Sq ∈ {0, 1}Mq×Mq+1 , ∀q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

D = Diag(d1, . . . , dM1
)

A ≥ 0, B1 ≥ 0

(8)

where H :=
{
A,D, {Bq}Qq=1, {Zq}

Q−1
q=1 , {Sq}

Q−1
q=1

}
is the

set of all the variables, and η ≥ 0. Note that when η = +∞,
then (8) is equivalent to (7). In practice, we choose a large
η to enforce Bq ≈ Zq (we set it to η = 1000 in all experi-
ments). We handle problem (8) as follows. First, we update
A by solving the following non-negative least squares

min
A≥0

1

2
‖W � (X−ABT

1 D)‖2F +
λ

2
‖A‖2F (9)

using ADMM. Due to space limitation, we use the update
of A as a working example for the two updates that uses
ADMM (A and B1). Problem (9) can be reformulated by
introducing an auxiliary variable Ã

min
A,Ã

1

2
‖WT � (XT − B̃Ã)‖2F +

λ

2
‖Ã‖2F +R(A)

s.t. A = ÃT (10)

where B̃ = DB1, and R(.) is the indicator function of the
nonnegative orthant. Next, we derive the ADMM updates

Ã(:, i)← (B̃(Ji, :)
T
B̃(Ji, :) + cIR)

−1(B̃(Ji, :)T ·

X(i,Ji)T + ρ(Ã(:, i) + U(i, :)T )
)

(11a)

A(i, :)← [Ã(:, i)
T −U(i, :)]+ (11b)

U(i, :)← U(i, :) + A(i, :)− Ã(:, i)T (11c)

where c := λ + ρ, [.]+ is the projection on R+ by ze-
roing the negative entries, and Ji is the set of items that
have observations for the ith individual. We use the adaptive

ρ = ‖B̃‖2F /NR, which is a scaled version of ρ suggested in
(Huang, Sidiropoulos, and Liavas 2016). The ADMM steps
in (11) are performed until a termination criterion is met. We
adopt the criterion in (Boyd, Parikh, and Chu 2011; Huang,
Sidiropoulos, and Liavas 2016), namely, the primal and dual
residuals

pi = ‖A(i, :)− Ã(:, i)
T ‖2F /‖A(i, :)‖2F ;

di = ‖A(i, :)−A0(i, :)‖2F /‖U(i, :)‖2F ;
(12)

where A0 is A from the previous iteration. We iterate be-
tween the ADMM updates until p and d are smaller than a
predefined threshold, or we reach the maximum number of
iterations K – in our experiments we set K = 5.
Scalability Considerations: There are some important ob-
servations regarding the implementation of the ADMM up-
dates in (11). First, we do not compute the matrix inversion
in (11a) explicitly. Instead, the Cholesky decomposition of

the Gram matrix Gi := B̃(Ji, :)
T
B̃(Ji, :) + cIR is com-

puted, i.e., Gi = LiL
T
i , where Li is a lower triangular ma-

trix. Then, at each ADMM iteration, we only need to per-
form a forward and a backward substitution to get the solu-
tion of Ã(:, i). Thus, the step in (11a) is replaced with:

Gi←B̃(Ji, :)T B̃(Ji, :) + cIR; Li←Cholesky(Gi) (13a)

Fi ← B̃(Ji, :)TX(i,Ji)T (13b)

Ã(:, i)← L−Ti L−1i (Fi + ρ(Ã(:, i) + U(i, :)
T
)) (13c)

Computing the Cholesky decomposition requires O(R3)
flops, and the back and forward substitution steps cost
O(NR2). The matrix multiplication in B̃(Ji, :)T B̃(Ji, :)
and in computing Fi in (13b) takes O(|Ji|R2) and
O(|Ji|R), respectively, where, |Ji| ≤ N is the cardinal-
ity of the set Ji. An important implication is that Li and Fi
do not change throughout the ADMM iterations, thus can
be cached to save computation. The overall complexity to
update A is O(NR2). Moreover, the ADMM updates en-
joy row separability, allowing parallel computation. In the
case where X is fully observed, G := B̃T B̃ + cIR and
F := B̃TXT are shared not only across the ADMM iter-
ations, but also among the N parallel sub-problems corre-
sponding to the rows of A. Finally, the outer AO routine
naturally provides a good initial point (warm-start) to the in-
ner ADMM iterations (for both A and its dual variable U),
resulting in a faster convergence.

Next, we update B1 using ADMM in the same fashion as
A. The updates of Z1 and D admit closed form solutions

Z1(j, :) = B1(j, :)/‖B1(j, :)‖2; dj = hTj X(Ij , j)/hTj hj
(14)

where hj = (B1(j, :)A
T )T , and Ij is the set of individuals

that have observations for the jth item.
In the next step, we perform few inner iterations

to alternate between updating the tree structure triplets
{Sq−1,Bq,Zq)}Q−1q=2 and BQ in a cyclic fashion (we call
it the tree loop) – in the experiments we set the maxi-
mum number of tree iterations T = 5. The updates w.r.t.
{Bq}Q−1q=2 are unconstrained least squares problems. These
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Algorithm 1: Algorithmic Solution to eTREE

1 Initialize: A,B1 ← NMF;
2 {Bq}Qq=2 and {S}Q−1q=1 ← random; D← I; U← 0

3 repeat
4 Compute Li, and Fi, ∀i using (13a) and (13b)
5 Set k = 1 // counter of ADMM loop
6 while pi, di in (12) > ε and k < K do
7 Update Ã(:, i), A(i, :), and U(i, :), ∀i using

(13c), (11b), and (11c), respectively
8 k = k + 1
9 end

10 Update B1 using ADMM loop (similar to A)
11 Update D and Z1 using (14)
12 Set t = 1 // counter of tree loop
13 while t < T do
14 for q = 2, . . . , Q− 1 do
15 compute L using (15a)
16 update Bq(:, j), ∀j using (15b)
17 update Sq−1(i, :), ∀i using (17)
18 Zq(i, :) = Bq(i, :)/‖Bq(i, :)‖2, ∀i
19 end
20 update BQ(i, :), ∀i using (16)
21 t = t + 1
22 end
23 until convergence

problems are column separable with a common mixing ma-
trix. Thus, the complexity can be reduced by computing one
Cholesky decomposition. Then, at each iteration, the update
of each column only requires a forward and a backward sub-
stitution as follows

H← µSTq−1Sq−1 + vIMq ; L← Cholesky(H) (15a)

Bq(:, j)← L−TL−1
(
µSq−1Bq−1(:, j) + µSqBq+1(:, j)·

+ ηZq(:, j)
)

(15b)

where v := µ + η. The updates of BQ and the matrices
{S}Q−1q=1 are similar to solving for the centroids and the as-
signment variables in the k-means algorithm, respectively.
Let TmQ

= {i|SQ−1(i,mQ) = 1}, then each row in BQ is

BQ(mQ, :)←
∑
i∈TmQ

BQ−1(i, :)/|TmQ
| (16)

And the ith row of the assignment matrices is updated using

Sq(i, k)←
{
1, k = argminmq

‖Bq−1(i, :)−Bq(mq, :)‖2
0, otherwise

(17)
The overall algorithm is summarized in Algorithm 1. One

nice property of the proposed algorithm is that all the up-
dates are row separable and can be computed in a distributed
fashion (with the exception of {Bq}Q−1q=2 , which are column
separable).

Experiments1

In this section, we evaluate the proposed framework on real
data from various application domains: healthcare analytics,

1Code is at: https://github.com/FaisalAlmutairi/eTREE

movie recommendations, and education. This section aims
to answer the following questions:
Q1. Accuracy: Does eTREE improve the quality of embed-
dings for the downstream tasks?
Q2. Interpretability: How meaningful is the tree structure
learned by eTREE from an application domain knowledge
viewpoint?
Datasets: We evaluate eTREE and the competing baselines
on the following real datasets: (i) Med-HF: These data are
provided by IQVIA Inc. and include the counts of medi-
cal services performed on patients with heart failure (HF)
conditions, including patients with preserved ejection frac-
tion (pEF), and reduced ejection fraction (rEF). We include
the 5, 000 patients with the most records in our experiments.
The total number of medical services is 411. The majorities
of the counts fall in the range of small numbers, with a small
percentage of larger numbers, resulting in a “long tail” in the
histogram of the data. To circumvent this, we apply a loga-
rithmic transform on X+1 (we add the 1 to be slightly above
the zero as we have nonnegativity constraints). The resulting
range is log(2) − 7.79, and the sparsity of the data matrix
is 78.01%, (ii) Med-MCI: These data are also provided by
IQVIA Inc. and similar to Med-HF, but they include patients
with mild cognitive impairment (MCI) conditions. Similarly,
we include 5, 000 patients and the total number of medi-
cal services is 412. We also apply a logarithmic transform
on the data. The final range of data is log(2) − 6.98, with
a 77.76% sparsity, (iii) Movielens: Movielens (Harper and
Konstan 2015) is a movie rating dataset and a popular base-
line in recommender systems literature. It contains ∼ 105

ratings. The data only include users with at least 20 ratings.
We also filter out movies with less than 20 ratings. The total
number of users is 943 and the total number of movies is
1, 152. The rating range is 1 − 5, with 0.5 increments. The
sparsity of this dataset is 90.98%, and (iv) College Grades:
These data contain the grades of students from the College
of Science and Engineering at the University of Minnesota
spanning from Fall 2002 to Spring 2013. The total number
of students is 5, 703, and the number of courses is 837. The
grades take 11 discrete values (0, and 1 to 4 with increments
of 1.33), and the sparsity of the data matrix is 96.28%.
Baselines: We compare to the plain NMF and following
state-of-the-art methods from the literature: (i) NMF: non-
negative Matrix factorization (1) regularized with (‖A‖2F +
‖B‖2F ), and implemented using ADMM (Huang, Sidiropou-
los, and Liavas 2016), (ii) BMF: matrix factorization with
rank-1 factors specified to capture items’ and individu-
als’ biases (Paterek 2007; Koren 2008); implemented using
Stochastic Gradient Descent (SGD). The is a well-known
approach in recommender systems and is considered a state-
of-the-art method in student grade prediction (Almutairi,
Sidiropoulos, and Karypis 2017), (iii) AdaError: a collab-
orative filtering model based on matrix factorization with
learning rate that adaptively adjusts based on the prediction
error (Li et al. 2018). AdaError is reported to have a state-
of-the-art results on MovieLens (Rendle, Zhang, and Koren
2019), (iv) HSR: a hierarchical structure recommender sys-
tem model that captures the tree structure in items (users) via
factorizing the item (user) embeddings matrix into a prod-
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BMF AdaError HSR NMF eTREE NMF+KM
Data RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Med-HF 0.9875 0.7721 0.9147 0.6858 0.9287 0.7094 0.9031 0.6788 0.8873 0.6808 1.0797 0.8094
Med-MCI 0.8034 0.6232 0.7468 0.5680 0.7807 0.5990 0.7445 0.5612 0.7317 0.5611 0.8781 0.6578
MovieLens 0.9300 0.7312 0.9123 0.7165 0.9216 0.7226 0.9286 0.7286 0.9106 0.7136 1.0182 0.8250

College Grades 0.5765 0.4254 0.5777 0.4206 0.5844 0.4339 0.5755 0.4229 0.5601 0.4126 0.5991 0.4476

Table 1: Matrix Completion Errors. eTREE significantly improves the prediction accuracy.

uct of matrices, i.e., X = A1A2 . . .AP (B1B2 . . .BQ)
T

(Wang et al. 2018, 2015). BQ ∈ RMQ×R can be interpreted
as the embedding of the coarsest items categories, whereas
the matrices {Bq ∈ RMq×Mq+1}Q−1q=1 indicate the affiliation
of the Mq subcategories (or items) with the Mq+1 coarser
categories. Note that an item can belong to all the subcat-
egories with different scales since no constraints are im-
posed on Bq’s matrices (except for nonnegativity). The same
analysis also applies to user embeddings. We are unaware
of other algorithms that incorporate the tree structure while
learning the embeddings simultaneously. We used the Mat-
lab code sample provided by the authors for a 3-layer tree
and generalized it to handle Q layers, and (v) NMF+KM:
is a simple two-stage procedure where we first apply NMF,
then we obtain the embeddings of the root nodes BQ and the
product of the assignment matrices S = S1 . . .SQ−1 via k-
means’ centroids and assignment variable, respectively – we
include NMF+KM to demonstrate the advantage of learning
the embeddings and tree structure simultaneously.
Q1. Accuracy of Embeddings: The quality of embeddings
can be evaluated by testing their performance with a partic-
ular task, e.g., classification or regression. Here we take a
more generic approach and evaluate the embedding quality
on matrix completion. The philosophy is: if the embeddings
predict missing data with high accuracy, then they must be
good representations of items and individuals. We split each
dataset into 5 equal folds. After training the models on 4
folds (80% of the data), we test the trained models on the
held-out fold. The hyper-parameters of all methods are cho-
sen via cross validation (10% of training data). Due to ran-
dom initialization, the results can differ for different runs.
Thus, after choosing the hyper-parameters, we run the train-
ing and testing on each fold 20 times and report the average
error of the total 100 experiments.

Table 1 shows the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) of all methods on the different
datasets. We highlight the smallest error in bold and under-
line the second smallest. eTREE significantly improves the
best baseline with all datasets. Note that MovieLens and the
grade datasets are challenging and an improvement in the
second digit is considered significant in the literature. By
comparing NMF and eTREE, we can conclude that the tree
prior enhances the accuracy. Moreover, we can see the clear
advantage of simultaneously learning the embeddings and
tree clusters when we compare eTREE with MNF+KM. We
point out that HSR baseline works better with MovieLens,
compared to the medical datasets. This is likely because a
movie usually belongs to a mix of genres, which suits the
complete tree assumption in HSR. Nevertheless, the pro-
posed tree formulation in eTREE provides better accuracy.
Q2. Interpretability of Learned Trees: We ran a 3-layer

(a) Sample of the 412 medical services in Med-MCI.

(b) A tree learned by eTREE and labeled by domain experts.
Figure 3: eTREE Provides Meaningful Clusters.

eTREE on Med-MCI with the following parameters: R = 9,
λ = 1, µ = 50 (more emphasis on the tree term), M2 = 27
(number of subcategories), and M3 = 9 (number of main
categories). A sample of the 412 medical services is shown
in Fig. 3 (a), where ‘dx’ stands for a diagnosis, ‘rx’ is a pre-
scription, and ‘px’ is a procedure. Note that eTREE assigns
each medical service to one subcategory, and each subcat-
egory to a main category. Services with the same color in
Fig. 3 (a) belong to the same subcategories, whereas services
with similar colors (e.g., light and dark blue) belong to the
same main category but to different subcategories. These
unsupervised tree clusters were then shown to medical pro-
fessionals. The domain experts were able to find coherence
in the groups and they labeled both the main categories and
their subcategories. The tables in Fig. 3 (b) shows the names
of the main categories and their subcategories as labeled by
the medical professionals – we show the top 6 coherent cat-
egories. Similar interpretability was observed on Med-HF
data, but not shown due to space limitation.

Conclusion
In this paper, we proposed eTREE, a framework that incor-
porates the tree structure while learning the embeddings of
a data matrix. eTREE not only exploits the tree structure, but
also learns the hierarchical clustering in an supervised fash-
ion. We leveraged the special properties of NMF to prove the
uniqueness of the proposed model. We employed ADMM,
parallel computing, and computation caching to derive a
lightweight algorithm with scalable implementation to solve
eTREE. We showed the effectiveness and interpretability of
eTREE on real data.
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