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Abstract

Sequential sensor data is generated in a wide variety of real-
world applications. A fundamental machine learning chal-
lenge involves learning effective classifiers for such sequen-
tial data. While deep learning has led to impressive perfor-
mance gains in recent years within domains such as speech,
this has relied on the availability of large datasets of se-
quences with high-quality labels. In many applications, how-
ever, the associated class labels are often extremely limited,
with precise labelling/segmentation being too expensive to
perform in a high volume. However, large amounts of un-
labeled data may still be available. In this paper we pro-
pose a novel framework for semi-supervised learning in such
contexts. In an unsupervised manner, change point detec-
tion methods can be used to identify instances where classes
change within a sequence. We show that change points pro-
vide examples of similar/dissimilar pairs of sequences which,
when coupled with class labels, can be used in a semi-
supervised classification setting. Pairs from labels and change
points are used by a neural network to learn improved repre-
sentations for classification. We provide extensive synthetic
simulations and show that the learned representations are bet-
ter than those learned through an autoencoder and obtain im-
proved results on simulations and human activity recognition
datasets.

Introduction
As devices ranging from smart watches to smart toasters are
equipped with ever more sensors, machine learning prob-
lems involving sequential data are becoming increasingly
ubiquitous. Sleep tracking, activity recognition and charac-
terization, and machine health monitoring are just a few ap-
plications where machine learning can be applied to sequen-
tial data. In recent years, deep networks have been widely
used for such tasks as these networks are able to automat-
ically learn suitable representations, helping them achieve
state-of-the-art performance (Wang et al. 2019). However,
such methods typically require large, accurately labeled
training datasets in order to obtain these results. Unfortu-
nately, especially in the context of sequential data, it is often
the case that despite the availability of huge amounts of un-
labeled data, labeled data is often scarce and expensive to
obtain.
Copyright c© 2021, Association for the Advancement of Artificial
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In such settings, semi-supervised techniques can pro-
vide significant advantages over traditional supervised tech-
niques. Over the past decade, there have been great advances
in semi-supervised learning methods. Impressive classifica-
tion performance – particularly in the fields of computer vi-
sion – has been achieved by using large amounts of unla-
beled data on top of limited labeled data. However, despite
these advances, there has been comparatively much less
work on semi-supervised classification of sequential data.

A key intuition that most semi-supervised learning meth-
ods share is that the data should (in the right representa-
tion) exhibit some kind of clustering, where different classes
correspond to different clusters. In the context of sequential
data, the equivalent assumption is that data segments within
a sequence corresponding to different classes should map to
distinct clusters. In the context of sequential data, the chal-
lenge is that exploiting this clustering would require the se-
quence to be appropriately segmented, but segment bound-
aries are generally unknown a priori. If the start/end points
of each segment were actually known, it would be much eas-
ier to apply traditional semi-supervised learning methods.

In this paper, we show that standard (unsupervised)
change point detection algorithms provide a natural and use-
ful approach to segmenting an unlabeled sequence so that
it can be more easily exploited in a semi-supervised con-
text. Specifically, change point-detection algorithms aim to
identify instances in a sequence where the data distribution
changes (indicating an underlying class change). We show
that the resulting change points can be leveraged to learn
improved representations for semi-supervised learning.

We propose a novel framework for semi-supervised se-
quential classification using change point detection. We first
apply unsupervised change point detection to the unlabeled
data. We assume that segments between two change points
belong to the same distribution and should be classified simi-
larly, whereas adjacent segments which are on opposite sides
of a change point belong to different distributions and should
be classified differently. These similar/dissimilar pairs, de-
rived from change points, can then be combined with simi-
lar/dissimilar pairs derived from labeled data. We use these
combined similar/dissimilar constraints to train a neural net-
work that preserves similarity/dissimilarity. The learned rep-
resentation can then be fed into a multilayer feedforward
network trained via existing semi-supervised techniques.
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We show that this approach leads to improved results
compared to sequential auto-encoders in a semi-supervised
setting. We show that even if the final classifier is trained
using standard supervised techniques that ignore the unla-
beled data, the learned representations (which utilize both
label and unlabeled data pairs) result in competitive perfor-
mance, indicating the value of incorporating change points
to learning improved representations. The proposed method
method is completely agnostic with respect to the change
point detection procedure to be used – any detection proce-
dure can be used as long as it does well in detecting changes.

Our main contribution is to show that pairwise infor-
mation generated via change points helps neural networks
achieve improved classification results in settings with lim-
ited labeled data. This, to the best of our knowledge, is the
first work to recognize the utility of change points within the
context of semi-supervised sequence classification. The pro-
posed method should not be considered a substitute for exist-
ing semi-supervised methods, but should be taken as a com-
plementary procedure that produces representations which
are better suited for existing semi-supervised methods.

Related Work
The fundamental idea of semi-supervised learning is that un-
labeled data contains useful information that can be lever-
aged to more efficiently learn from a small subset of la-
beled data. For example, in the context of classification, an
intuitive justification for why this might be possible might
involve an implicit expectation that instances belonging to
different classes will map to different clusters. More con-
cretely, most semi-supervised approaches make assumptions
on the data such as: that instances corresponding to different
classes lie on different submanifolds, that class boundaries
are smooth, or that class boundaries pass through regions of
low data density (Van Engelen and Hoos 2020).

Perhaps the simplest semi-supervised learning method is
to use transductive methods to learn a classifier on the un-
labeled data and then assign “pseudo labels” to some or
all of the unlabeled data, which can be used together with
the labeled data to retrain the classifier. Transductive SVMs
and graphical label propagation are examples of such meth-
ods (Joachims 1999; Zhu, Ghahramani, and Lafferty 2003).
See (Zhu 2005) for a survey of such methods. However,
such self-training semi-supervised methods struggle when
the initial model trained from limited labels is poor.

A more common approach to semi-supervised learning is
to employ methods that try to learn class boundaries that
are smooth or pass through areas of low data density (Oliver
et al. 2018). Entropy regularization can be used to encourage
class boundaries to pass through low density regions (Grand-
valet and Bengio 2005). Consistency-based methods such as
denoising autoencoders, ladder networks (Rasmus et al.
2015) and the π method (Laine and Aila 2016) attempt
to learn smooth class boundaries by augmenting the data.
Specifically, unlabeled instances can be perturbed by adding
noise, and while both the original and perturbed instances
are unlabeled, we can ask that they both be assigned the
same class. This approach is particularly effective in com-
puter vision tasks, where rather than using only noise pertur-

bations, we can exploit class-preserving augmentations such
as rotation, mirroring, and other transformations (Berthelot
et al. 2019). By enforcing the classifier to produce the same
labels for original and transformed images, decision bound-
aries are encouraged to be smooth, leading to good general-
ization.

Unfortunately, due to a lack of natural segmentation and
the difficulty of defining class-preserving transformations,
there has been comparatively little work on semi-supervised
classification of sequences. Most prior work (e.g., (Dai and
Le 2015; Rasmus et al. 2015) ) use sequential autoencoders
(or their variants) as a consistency-based method to learn
representations that lead to improved classification perfor-
mance. Such autoencoders have been exploited successfully
in the context of semi-supervised classification for human
activity recognition (Zeng et al. 2017). However, while such
consistency-based approaches do encourage smooth class
boundaries, they do not necessarily promote the kind of clus-
tering behavior that we need in cases where there are ex-
tremely few labels available.

An alternative approach that more explicitly separates dif-
ferent classes involves learning representations that directly
incorporate pairwise similarity information about different
instances. One example of this approach is metric learning
– as an early example, (Xing et al. 2003) showed that im-
proved classification could be achieved by learning a Ma-
halanobis distance using pairwise constraints based on class
membership. The learned metric leads to a representation in
which different classes map to different clusters. A similar
approach learns a more general non-linear metric to encour-
age the formation of clusters while adhering to the provided
pairwise constraints (Baghshah and Shouraki 2009). Neural
networks such as Siamese (Koch, Zemel, and Salakhutdinov
2015) and Triplet networks also learn representations from
available similar/dissimilar pairs. In (Hsu and Kira 2016) it
was shown that such similar/dissimilar pairs (obtained from
labeled data) can be used for clustering data where each
cluster belongs to a different class in the dataset.

Our approach is similar in spirit to that of (Hsu and Kira
2016). While this prior work used pairwise similarity con-
straints derived from labeled images to learn clustered rep-
resentations, our goal is to apply this idea in the semi-
supervised context. At the core of our approach is the obser-
vation that pairwise similarity constraints on sequential data
can be derived through unsupervised methods. Specifically,
change point detection can be used to identify points within
a sequence corresponding to distribution shifts, which can
then be used to obtain pairwise similarity constraints. When
the availability of labeled data is limited, this can be a valu-
able source of additional information.

Proposed Method
Change Point Detection
Given a sequence X : x1, . . . , xN of N vectors xi P RD,
the first step in our procedure is to detect all change points
withinX in an unsupervised way. Note that this is a different
problem than quickest change detection, where only a single
change point is to be detected in the fastest possible manner.
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Figure 1: Using change points to generate similar and dis-
similar pairs of size s.

To detect a change at a point i in the sequence, two consec-
utive length-w windows (Xi

p and Xi
f ) are first formed:

Xi
p “ xi´1, xi´2...xi´w Xi

f “ xi, xi`1...xi`w.

A change statistic, mi, is then computed via some function
that quantifies the difference between the distributions gen-
eratingXi

p andXi
f . Ifmi is greater than a specified constant

τ , a change point is detected at the point i.
As one example, many change point detection procedures

assume a parametric form on the distributions generatingXi
p

and Xi
f . In this case, the distribution parameters (θ̂ip and θ̂if )

can be estimated from Xi
p and Xi

f via, e.g., maximum like-
lihood estimation. Given these parameter estimates, a sym-
metrical KL-divergence can be used to quantify the differ-
ence between the distributions (Liu et al. 2013):

mi “ KLpθ̂ip, θ̂
i
f q ` KLpθ̂if , θ̂

i
pq. (1)

More commonly in practice, the underlying distributions
generating the sequence are unknown. In this case, non-
parametric techniques can be used to estimate the difference
between the distributions of Xi

p and Xi
f . One such approach

uses the maximum mean discrepancy (MMD) as a change
statistic (Gretton et al. 2012). The MMD has been used to
identify change points in (Li et al. 2015) and (Chang et al.
2019). The MMD statistic is given below, where Ki

a,´b :“

kpxi`a, xi´bq represents a kernel-based measure of the sim-
ilarity between xi`a and xi´b:

mi “ MMDpXi
f , X

i
pq

“
1
`

w
2

˘

w
ÿ

a,b“1
a‰b

2pKi
a,b `K

i
´a,´bq `

1

w2

w
ÿ

a,b“1

2Ki
a,´b.

Throughout this paper, MMD with a radial basis function
kernel is used to detect change points unless otherwise spec-
ified. However, we again emphasize that any change point
detection method can be used as long as it performs well in
identifying changes points.

The labeled data can be used to set the change point detec-
tion threshold τ and the window size w to balance between
false and missed change points. While we simply fix these
parameters in advance using labeled data, these could also
be considered as tuning parameters whose values can be set
based on performance on a hold-out validation dataset.

Pairwise Constraints via Change Point Detection
Equipped with the detected change points, similar and dis-
similar pairs of sub-sequences can be obtained in an unsu-
pervised manner as shown in Figure 1. The idea is to form
four consecutive non-overlapping sub-sequences. The first
two sub-sequences pXp1, Xp2q both occur before the change
point. Since the change point detection algorithm did not
determine that there was a change point in the combined
segment of pXp1, Xp2q, we assume these two segments are
generated by the same distribution and should be classified
similarly. Similarly, the last two sub-sequences pXf1, Xf2q

both occur after the change point and are also taken as a sim-
ilar pair. In contrast, the segments on opposite sides of the
change point have been identified as having different under-
lying distributions. In order to lead to a balanced distribution
of similar/dissimilar pairs, we only use the constraints that
pXf1, Xp2q and pXf2, Xp1q should be classified differently.
Each of the subsequences above is chosen to be of a fixed
length s (determined by the spacing between change points).

The proposed method assumes that data distributions be-
longing to different classes do not change. This assumption
is also made by most semi-supervised learning methods.

Clustered Representation via Pairwise Constraints
Using the approach described above, we can obtain similar-
ity constraints from the unlabeled data. We can also obtain
such constraints from labeled data via the assumption that
sub-sequences corresponding to the same (different) class
labels are similar (dissimilar) respectively. We can represent
these as a set PS consisting of sub-sequence pairs pX1, X2q

that are similar and a set PD of dissimilar pairs. For com-
pactness, we use the notation P “ pX1, X2q to refer to a
sub-sequence pair belonging to PS or PD.

These sub-sequences are then fed into a 1D temporal con-
volutional neural network (Bai, Kolter, and Koltun 2018),
as illustrated in Figure 2. The neural network consists of
6 convolutional layers (or 3 temporal blocks as defined by
(Bai, Kolter, and Koltun 2018)) followed by 1 linear layer.
We use a RELU activation function after every convolutional
layer. We choose this architecture because the dilated filter
structure leads to improved performance at classifying time
series while being less computationally expensive than re-
current networks such as RNNs and LSTMs, although our
framework could also easily accommodate either of these
alternate network architectures.

Each instance xi, in the input sub-sequence X , is passed
through the neural network where the final linear layer trans-
forms the output from the last convolutional layer into RC ,
whereC is the number of classes. A softmax function is then
applied to obtain the empirical distribution fθpxiq for each
instance xi. For a length-N sequenceX , we define the mean
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Figure 2: Neural network diagram (fθ) for learning representations.

empirical distribution as:

ĞfθpXq “
1

N

N
ÿ

i“1

fθpxiq.

We then compute the KL divergence between the mean
empirical distributions for each sub-sequence within a pair
P “ pX1, X2q. Our loss function is constructed applying a
hinge loss (with margin parameter ρ) to this KL divergence:

hθpP q “

"

KLp ĞfθpX1q, ĞfθpX2qq P P XS ,
ρ´ KLp ĞfθpX1q, ĞfθpX2qq P P XD.

The network is then trained according to the loss function:

LRpθq “
1

|PL|
ÿ

PPPL

hθpP q `
λR
|PU |

ÿ

PPPU

hθpP q.

Here, PL and PU denote the sets of sub-sequence pairs in
PS Y PD formed from the labeled and unlabeled data, re-
spectively, and λr is a tuning parameter which controls the
influence of the unsupervised part of the loss function.

Training a Classifier
Once trained, the network fθ is fixed. The mean empirical
distribution for an input sub-sequence X , ĞfθpXq, can then
be used as a representation of X that can serve as input to
classifier network fψ . We use a 2-layer feedforward neu-
ral network followed by a softmax function to obtain a dis-
tribution over the different classes. Labeled as well as un-
labeled sub-sequences (which correspond to the generated
pairs from change points) are passed through this classifi-
cation network. Since the learned representations encourage
unlabeled data points to cluster around provided labeled data
points, known semi-supervised methods can be also used to

incorporate unlabeled data while training fψ . We use en-
tropy regularization (Grandvalet and Bengio 2005) to exploit
the unlabeled data by encouraging the classifier boundary to
pass through low density regions.

The training data is comprised of two sets: XL and XU .
Each element of XL consists of a pair pX,Y q, where X de-
notes a sequence x1, . . . , xN of vectors in RD and Y denotes
a one-hot encoding of the class label for X (and is hence in
RC where C is the number of classes). Each element of XU
consists of a sub-sequence X identified by the change point
detection step (i.e., the individual sub-sequences in the set
PU ). The loss function that we use to train fψ is given by:

LCpψq “
1

|XL|
ÿ

pX,Y qPXL

LCEpX,Y q`
λC
|XU |

ÿ

XPXU

LNEpXq.

Here, λC is a tuning parameter, LCE is the cross entropy loss,
and LNE is the negative entropy loss:

LCEpX,Y q “ ´
C
ÿ

c“1

Yc log fψ
`

ĞfθpXq
˘

c

LNEpXq “ ´
C
ÿ

c“1

fψ
`

Ğfθ pXq
˘

c
log fψ

`

ĞfθpXq
˘

c
.

Above, fψ represents the output of the feedforward clas-
sification network which ends with a softmax distribution
over C classes. The input to fψ is the mean empirical repre-
sentations learned by network fθ for input sequence X . The
negative entropy loss encourages the network fψ to produce
low entropy empirical class distributions for unlabeled data.
This encourages unlabeled data to be mapped to a distribu-
tion that concentrates on a single class, pushing the classifier
boundary to fψ towards low-density regions.
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Algorithm 1 SSL via change point detection

Inputs: Unlabeled sequence X , labeled sequences
tXl, Yl}, CP detection parameters τ, w,
Output: Trained networks: fθ, fψ
Init: Add similar/dissimilar pairs from tXlu to PS ,PD
for i “ 1 to lengthpXq do

Form windows: Xi
p, Xi

f

mi “ MMDpXi
p, X

i
f q

if mi ą τ then
Form two segments before CP: Xi

p1, X
i
p2

Form two segments after CP: Xi
f1, X

i
f2

Add pairs pXi
p1, X

i
p2q and pXi

f1, X
i
f2q to PS

Add pairs (Xi
f1, X

i
p2) and pXi

f2, X
i
p1q to PD

for j “ 1 to num epochs do
Train network fθ by optimizing loss LR

for j “ 1 to num epochs do
Train network fψ by optimizing loss LC

A summary of our overall approach to semi-supervised
learning via change point detection is given in Algorithm 1.

Experiments
Baselines
All of the following baselines use the same representation
network fθ and classification network fψ architectures.

Supervised In the supervised setting, only the labeled se-
quence is passed through through both the representation fθ
and classifier networks fψ . We train the two networks in an
end-to-end manner by minimizing:

LSpθ, ψq “
1

|XL|
ÿ

pX,Y qPXL

LCEpX,Y q.

Denoising Autoencoder A denoising autoencoder (Dai
and Le 2015) or its variants such as the ladder network
(where the reconstruction error for intermediate layers is
also minimized) (Zeng et al. 2017) are often employed for
semi-supervised learning with sequential data. Since it has
been previously shown that the performance gap between
these approaches is marginal (Zeng et al. 2017) – which we
have observed as well – we focus only on the autoencoder
as a baseline. In this approach, for every X P XU , we also
consider a perturbed version pX produced by adding noise to
X . BothX and pX are passed through an encoder network fθ
to obtain embeddings which are used by a decoder network
f 1θ to reconstruct the unlabeled data. A reconstruction loss
of the form CpXq “ }X ´ f 1θpfθp pXqq}2 is incorporated into
the loss function to exploit the unlabeled data. The labeled
data is first passed through the encoder network fθ to obtain
embeddings, which are then fed into a classifier network fψ .
We train the two networks in an end-to-end manner by min-
imizing:

LAEpθ, ψq “
1

|XL|
ÿ

pX,Y qPXL

LCEpX,Y q`
λC
|XU |

ÿ

XPXU

CpXq.

Method 10 labels 30 labels

Supervised 0.90 ˘0.02 0.98 ˘0.01
Autoencoder 0.87 ˘0.03 0.99 ˘0.01
SSL-CP 0.99 ˘ 0.01 0.99 ˘ 0.01
SSL-CP (ER) 0.99 ˘ 0.01 0.99 ˘ 0.01

Table 1: Classifier performance for mean, variance change

Synthetic Experiments
In all of the results below, we use the mean F1 score (un-
weighted) as an evaluation metric. In all synthetic simula-
tions, we split the data in a 70/30 ratio where we use the
larger split for training and the smaller split as a test dataset.
We further split the training data in a ratio of 10/60/30. We
use the smallest of these splits to obtain labeled data, the
largest as unlabeled data for the semi-supervised setting, and
the last split for validation. We use a small sub-sequence
(comprising of 20 segments) in the unlabeled split to tune
the parameters for change point detection. In our results,
SSL-CP denotes our approach to semi-supervised learning
via change points, but without the inclusion of the negative
entropy term in the loss function. SSL-CP (ER) denotes our
approach when including this entropy regularization term.

Changing Mean and Variance This example consists
of data generated by a univariate normal distribution that
switches its parameters pµ, σ2q every 500 samples. We
use 1500 such random switches to produce a sequence of
data with five classes, correspond to the parameter set-
tings tp2, 0.1q, p4, 0.1q, p4, 0.7q, p10, 0.1q, p0, 0.1qu. We use
the symmetrical KL divergence from (1) to detect change
points in the unlabeled data. This is a simple change point
detection problem where we detect all change points cor-
rectly. We use small sub-sequences of length 20 as labeled
and unlabeled data. and we show the resulting performance
in Table 1. This is a relatively simple sequence classifica-
tion problem as it requires merely learning that the mean
and variance determine class membership. Both the super-
vised and autoencoder baselines do reasonably well. How-
ever, classes 2 and 3 have the same mean but different vari-
ance, and both baselines struggle compared to SSL-CP in
separating these classes when only 10 labels are provided.

Mackey-Glass Equation The Mackey-Glass equation
(Glass and Mackey 2010) is a non linear time delay differ-
ential equation defined as

dpxptqq

dptq
“ ´0.1xptq `

βxptqpt´ τq

1` xpt´ τq10
.

In a manner similar to (Kohlmorgen and Lemm 2002), we
generate a sequence by randomly switching between param-
eters pβ, τq P tp0.2, 8q, p0.18, 16q, p0.2, 22q, p0.22, 30qu ev-
ery 1400 samples. We define class membership according to
the parameter settings of each segment. We generated 2000

Code: https://github.com/nahad3/semi sup cp
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Unlabelled points
Class 1
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(a) Autoencoder

Class 1
Class 2
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Class 4

(b) True labels: Autoencoder

Pairs from CP
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(c) SSL-CP
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(d) True labels: SSL-CP

Figure 3: T-SNE visualizations for the representations learned by the representation network (fθ) on the Mackey-Glass example
when 5 labels are provided from each class. Figure 3(a) shows representations learned by an autoencoder using both labeled and
unlabeled data. It can be seen in 3(b) that different classes overlap in this representation. Figure 3(c) show the representations
learned by SSL-CP, which are clustered and non-overlapping. This leads to improved classification when limited labels are
provided. True labels for these representations are shown in Figure 3(d).
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Figure 4: Example switching Mackey-Glass sequence.

Model 20 labels 30 labels 60 labels

Supervised 0.55 ˘0.07 0.86 ˘ 0.04 0.95 ˘ 0.02
Autoencoder 0.73 ˘ 0.04 0.90 ˘ 0.02 0.98 ˘ 0.01
SSL-CP 0.96 ˘0.02 0.98 ˘ 0.01 0.99 ˘ 0.01
SSL-CP (ER) 0.99 ˘ 0.02 0.99 ˘ 0.01 0.99 ˘ 0.01

Table 2: Mackey-Glass: Classifier performance for different
number of labeled examples

such segments and added N p0, 0.1q noise to the entire se-
quence. A small sub-sequence is shown in Figure 4. We ob-
tained pairs of sequences of size 100 using change points de-
tected on the unlabeled dataset, where almost all true change
points were detected correctly. There were about 4000 such
pairs. We obtained 8100 non-overlapping windows of size
100 from the unlabeled-split for use by the autoencoder. La-
beled data is also formed using non-overlapping windows
of size 100 were used as labels. Table 2 shows results for
different numbers of provided labels. We see that SSL-CP
approach significantly outperforms the baselines. The repre-
sentations learned by the autoencoder and SSL-CP are vi-
sualized in Figure 3, which illustrates that the autoencoder
does not perform as well because it fails to learn representa-
tions that exhibit sufficient clustering. The influence of vary-
ing the number of provided pairs is shown in Table 3. We
note that entropy regularization enhances the performance
of SSL-CP when amount of unlabeled data is large.

Model 600 Pairs 1800 Pairs 4000 Pairs

SSL-CP 0.87 ˘0.2 0.94 ˘0.1 0.96 ˘0.1
SSL-CP (ER) 0.87 ˘0.2 0.95 ˘0.1 0.99 ˘0.2

Table 3: Mackey-Glass: Classifier performance for different
amounts of unlabeled data

Real World Datasets
HCI: Gesture Recognition The HCI gesture recognition
dataset consists of a user performing 5 different gestures
using the right arm (Forster, Roggen, and Troster 2009).
Data is obtained from 8 IMUs placed on the arm. The ges-
tures recorded included drawing triangle up, circle, infinity,
square, and triangle down. We also consider the null case
(where the user is not performing an activity) as a class.
We use the free-hand subset from this dataset as it presents
a relatively challenging classification problem when com-
pared with the more controlled subset. Rather than using
consecutive non-overlapping windows (as the resulting sub-
sequences are too small to contain a single class, since the
duration of the null class can be very small), the sequential
data is first divided into 100 segments using the labels. 30
segments are left as test data.

This dataset presents a challenge to the SSL-CP approach
in that most classes never appear adjacent to each other in the
data set as they are always separated by a period in the null
class. To obtain similarity constraints involving class pairs
that do not include the null class, we generate a sequence by
repeating a randomly sampled segment and concatenating it
with another repeated randomly sampled segment. Change
detection is then applied on this concatenated sequence to
provide similar and dissimilar pairs. 600 of such similar dis-
similar pairs were obtained.

When all labels within the dataset are provided, the mean
F1 score for the supervised approach is 0.88. Such a score
can actually sometimes be achieved by the supervised clas-
sifier even when only 1 label from each class is provided.
However in this setting, the results can vary dramatically de-
pending on exactly which instances are labeled. We obtained
classification results across 30 trials, with a different ran-
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Supervised Autoencoder SSL-CP

0.63 0.68 0.72

Table 4: HCI: Mean classifier performance when using one
label per class

Supervised Autoencoder SSL-CP

11% 26% 63%

Table 5: HCI: Percentage of trials in which each method per-
forms best when using one label per class

dom choice of which instance in each class were labeled. We
show the average results in Table 4. In Table 5 we show the
percentage of trials in which each method performed best.

WISDM: Activity Recognition The WISDM activity
recognition dataset (Kwapisz, Weiss, and Moore 2010) con-
sists of 36 users performing 6 activities which include run-
ning, walking, ascending stairs, descending stairs, sitting,
and standing. Data is collected through an accelerometer
mounted on the participant’s chest which provides 3 dimen-
sional data sampled at 20Hz. For our experiments, we re-
tained data from users 33, 34, and 35 as test set. We split the
data from the rest of the users in a 70/30 ratio, using the large
split for training and the small split for validation. We used
a small sub-sequence (consisting of about 20 change points)
to tune the change detection parameters. Once tuned, we ob-
tained change points on the entire training set to obtain pairs
of size 50. We obtained a total of about 4000 such pairs. We
used about 7000 non-overlapping windows of size 50 as un-
labeled data for the autoencoder. We used non-overlapping
windows of size 50 as labeled data. In all experiments, we
used a balanced number of labels from each class.

Table 6 shows results when 48 labels (6 from each class).
When pairs from all detected change points within the train-
ing set (4000 in number) are used, the performance of SSL-
CP is slightly worse than that of the autoencoder. This is
because many false change points are detected (up to about
40% false change points) for a small number of users, lead-
ing to erroneous similarity constraints. After the removal of
10 such users, the number of falsely detected change points
is reduced (to below 10% across all users) and about 1600
pairs are obtained. The performance of SSL-CP for this case
(filtered users) is notably better than the autoencoder. The
performance further improves when all true change points
are provided. In such a case, the number of unlabeled pairs
are larger leading to improved performance of entropy reg-
ularization as well. Figure 5 shows the relationship between
classification performance and the number of labels avail-
able. In this experiment, only pairs derived from change
points on the filtered users are used.

Method F1 score

Supervised 0.45 ˘ 0.04
Autoencoder 0.54 ˘ 0.02
SSL-CP (All users) 0.53 ˘ 0.03
SSL-CP (Filtered users) 0.65 ˘ 0.02
SSL-CP (True CPs, all users) 0.66 ˘ 0.01
SSL-CP-ER (Filtered users) 0.65 ˘ 0.01
SSL-CP-ER (True CPs, all users) 0.69 ˘ 0.01

Table 6: WISDM: Classifier performance with 48 labels

50 100 200 400 800
Number of labels

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

F1
 s

co
re

Supervised
Autoencoder
SSL-CP
Supervised on all labels

Figure 5: Performance on WISDM as the the number of pro-
vided labels increases. (Filtered users)

Discussion and Conclusion
As highlighted by the performance on the WISDM dataset,
the performance of our proposed method depends critically
on the successful detection of change points. The detection
of too many false change points can lead to corrupt similar-
ity/dissimiarity constraints, that can potentially deteriorate
performance. The other main limitation of the SSL-CP ap-
proach is that obtaining a rich set of similarity/dissimilarity
constraints across all possible combinations of classes re-
quires that these classes appear adjacent in the data. How-
ever, as we observed in the HCI dataset, the generation of
additional sequences can provide a synthetic solution to this
problem that is effective in practice.

Despite these limitations, SSL-CP consistently outper-
formed our baselines on both synthetic and real-world
datasets. This clearly shows the potential utility of incorpo-
rating information from change points in semi-supervised
learning. Moreover, the results on the WISDM dataset
clearly illustrate the potential improvement that could be re-
alized by more robust change point detection procedures.
Historically, change point detection has been mostly re-
stricted to detecting anomalies or segmenting data. We hope
that this work will encourage the community to recognize
the utility of change point detection in semi-supervised
learning and to devote more attention to developing im-
proved non-parametric change point detection procedures.
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Ethics Statement
Many biomedical and health assistive technologies use sen-
sor data for fitness tracking, rehabilitative exercise monitor-
ing etc. Machine learning models within such applications
require labelled data for training which can be difficult to ac-
quire. For example, it can be difficult to recruit wheel chair
users to obtain labels for training a machine learning model
that tracks rehabilitation exercises. The proposed method
could help train these models without requiring labels from
many participants. This is more convenient for the partici-
pants as they would need to provide lesser data. This would
also be more convenient for the developers of such models
as they will need to recruit less participants.
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