REM-Net: Recursive Erasure Memory Network for Commonsense Evidence Refinement

Yinya Huang1, Meng Fang2, Xunlin Zhan1, Qingxing Cao1, Xiaodan Liang1*
1 Shenzhen Campus of Sun Yat-sen University
2 Tencent AI Lab / Robotics X
yinya.huang@hotmail.com, mfang@tencent.com,
{zhanxlin, caoqx}@mail2.sysu.edu.cn, xdliang328@gmail.com

Abstract
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. While recent works retrieve supporting facts/evidence from commonsense knowledge bases to supply additional information to each question, there is still ample opportunity to advance it on the quality of the evidence. It is crucial since the quality of the evidence is the key to answering commonsense questions, and even determines the upper bound on the QA systems’ performance. In this paper, we propose a recursive erasure memory network (REM-Net) to cope with the quality improvement of evidence. To address this, REM-Net is equipped with a module to refine the evidence by recursively erasing the low-quality evidence that does not explain the question answering. Besides, instead of retrieving evidence from existing knowledge bases, REM-Net leverages a pre-trained generative model to generate candidate evidence customized for the question. We conduct experiments on two commonsense question answering datasets, WIQA and CosmosQA. The results demonstrate the performance of REM-Net and show that the refined evidence is explainable.

Introduction
Commonsense question answering (commonsense QA) is recently an attractive field in that it requires systems to understand the common sense information beyond words, which are normal to human beings but nontrivial for machines. There are plenty of datasets that are proposed for this purpose, for instance, CommonsenseQA (Talmor et al. 2019), CosmosQA (Huang et al. 2019), WIQA (Tandon et al. 2019). Different from traditional machine reading comprehension (MRC) tasks such as SQuAD (Rajpurkar et al. 2016) or NewsQA (Trischler et al. 2016) that the key information for answering the questions is directly given by the context paragraph, solving commonsense questions requires a more comprehensive understanding of both the context and the relevant common knowledge, and further reasoning out the hidden logic between them. There are varieties of knowledge bases that meet the need, including text corpora like Wikipedia, and large-scale knowledge graphs (Speer, Chin, and Havasi 2017; Mitchell et al. 2015; Sap et al. 2019).

Recent popular solution resorts to external supporting facts from such knowledge bases as evidence, to enhance the question with commonsense knowledge or the logic of reasoning (Devlin et al. 2019; Liu et al. 2019; Lv et al. 2020; Lin et al. 2019; Xu et al. 2020). However, the quality of the supporting facts is not guaranteed, as some of them are weak in interpretability so that do not help the question answering. Specifically, current methods are mainly two-fold. The first group of methods (Devlin et al. 2019; Liu et al. 2019; Bosselut et al. 2019) pre-train language models on those external supporting facts (e.g., Wikipedia, ConceptNet) so that the models could remember some of the common knowledge, which is empirically proven by Tandon et al. (2019) and Trinh and Le (2018). The second group of methods (Lv et al. 2020; Lin et al. 2019; Cao, Fang, and Tao 2019) incorporates the question with knowledge subgraphs or paths that carry information such as relation among concepts or show multi-hop reasoning process. The structured information is typically encoded via graph models such as GCN (Kipf and Welling 2016), and after which merged with the question features. Generally, current methods all handle evidence by brute force, without further selection or refinement according to the interpretability of the supporting facts. But as the example shown in Figure 1, some of the supporting facts do not interpret the question, regardless that they are semantically related. Thus, there is need for models that will further our processing of the evidence.

In this paper, we introduce a new recursive erasure memory network (REM-Net) that further refines the candidate supporting fact set. The REM-Net consists of three main components: a query encoder, an evidence generator, and a novel recursive erasure memory (REM) module. Specifically, the query encoder is a pre-trained encoder that encodes the question with commonsense knowledge or the logic of reasoning. The evidence generator is a pre-trained generative model that produces candidate supporting facts based on the question. Compared with those retrieved supporting facts, the generated facts provides new question-specific information beyond the existing knowledge bases. The REM module refines the candidate supporting fact set by recursively matching the supporting facts and the question in feature space to estimate each fact’s quality. This estimation helps both updating the question feature and the supporting fact set. The question feature is updated by a residual term, whereas the supporting fact set is updated by remov-
Figure 1: (a) An example about supporting facts for a question. The data is from WIQA (Tandon et al. 2019) dev set. The supporting facts are generated by COMET (Bosselut et al. 2019). The quality of the facts is not guaranteed. The facts are mostly semantically related to the key phrases in the question, but they contribute differently to answering this commonsense question. For example, “is part of flower” conveys an attribute of the concept “seeds”, but does not tell us how in fact it will affect “less seeds germinates”. By contrast, “causes starvation” gives straightforward information that fills the causal gap between “less nutrients in the soil” and “less seeds germinates”. Therefore, facts like “seeds is part of flower” do not explain “the cause of seeds germination” or “the effect of nutrients in the soil to the seeds germination” that answers the question, whereas “causes starvation” as an evidence is favorable. (b) The facts with X marks are erased by our proposed REM-Net model, whereas those with check marks survive the multi-hop refinement.

- We propose a model named recursive erasure memory network (REM-Net) towards evidence refinement according to the commonsense question, which improves the explainability of the supporting facts.
- We design a new REM module that recursively erases the unqualified supporting facts to provide refined appropriate evidence.
- Our experimental results demonstrate the superiority of REM-Net compared with other methods that uses external evidence. Moreover, case study shows the interpretability of the refined evidence.

Related Works

Commonsense Question Answering Similar to open-domain question answering tasks (Rajpurkar, Jia, and Liang 2018; Kwiatkowski et al. 2019), commonsense question answering (Tandon et al. 2019; Huang et al. 2019) requires open-domain information to support the answer prediction. But different from open-domain question answering tasks that the text comprehension is straightforward and the retrieved open-domain information is direct to the questions, in commonsense question answering tasks the open-domain information is more complicated in that they play a role as evidence to bridge the understanding gap in the commonsense questions. Current works leverage the open-domain information by whether incorporating external knowledge as evidence or training the models to generate evidence. Lv et al. (2020) extracts knowledge from ConceptNet (Speer, Chin, and Havasi 2017) and Wikipedia, and learns features with GCN (Kipf and Welling 2016) and graph attention (Veličković et al. 2017). Zhong et al. (2019) retrieves ConceptNet (Speer, Chin, and Havasi 2017) triplets and train two functions to measure direct and indirect connections between concepts. Rajani et al. (2019) train a GPT (Zhong et al. 2019) to generate reasonable evidence for the questions. During evaluation, the model generates evidence and predicts the multi-choice answers concurrently. Ye et al. (2019) automatically constructs a commonsense multi-choice dataset from ConceptNet triplets. However, the retrieved or generated evidence are usually not further refined, and some of them could be unnecessary or even confounding to answering the questions. The proposed model explores to refine the original evidence to discover those most supporting evidence to the commonsense questions and therefore provides stronger interpretations.

Memory Networks Memory networks (Weston, Chopra, and Bordes 2015; Bordes et al. 2015; Miller et al. 2016; Sukhbaatar et al. 2015) are proposed to solve early reasoning problems such as bAbI (Weston et al. 2016) that requires to locate useful information for answer prediction. The sentences are stored into memory slots and later selected for the question answering. Recently, multi-head attention memory networks (Dai et al. 2019) are proposed so that takes advantage of the transformer-based networks. Our proposed model is based on multi-head attention memory network that is modified with a recursive erasure manipulation to adapt to the commonsense question answering tasks for accurate evidence refinement.
Recursive Erasure Memory Network

The main purpose of this model is to refine supporting facts so that they are more explainable to the question. The idea is to recursively erase the unqualified supporting facts. As a result, during the recursive procedure, the retained supporting facts are repeatedly used for updating the features.

The architecture of our model is shown in Figure 2. It has three main modules. A query encoder encodes the question to a query embedding. An evidence generator produces candidate supporting fact set, and encodes them into embeddings. A recursive erasure memory (REM) module refines the parameterized supporting facts by filtering out unqualified items conditioning on the query embedding.

Query Encoder

We follow baselines to use pre-trained language models (e.g., BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019)) to encode the question to contextual embeddings. Given a question as a triplet of (context paragraph, question sentence, answer options), the input sequence is in such format “[CLS] context [SEP] question [SEP] answer option”, where “[CLS]” and “[SEP]” are special tokens for pre-trained language model. The output [CLS] embeddings are provided as query to the recursive erasure memory (REM) module.

Evidence Generator

Generally, for a commonsense question, its supporting facts can be obtained in three main sources: (1) retrieved texts/triplets from knowledge bases, (2) texts/triplets that are generated conditioning on the question, (3) reuse of the context paragraph. Among the three approaches, retrieval-based methods are widely used (Lv et al. 2020; Lin et al. 2019), whereas generation-based methods are barely explored. However, generated supporting facts provide new information that is beyond the commonsense question and knowledge bases. Therefore in this work we use generated supporting facts. We also compare the three sources of supporting facts in the experiment section.

The mechanism of the evidence generator are presented in Figure 3. The generation is achieved by four steps. First, it extracts key phrases from the question. Second, taking the key phrases as head concepts, it generates relations and triplet tails by COMET (Bosselut et al. 2019). The triplets are turned into sentences, and finally encoded into evidence embeddings with a pre-trained encoder.

Recursive Erasure Memory Module

The recursive erasure memory (REM) module takes the query embedding and the evidence matrix as input, producing an output feature that merges the updated embeddings. The detailed mechanism is shown in Figure 4. Similar to end-to-end memory networks (Sukhbaatar et al. 2015), REM module matches the question embedding and the evidence matrix recursively to find significant information for the question. However, the manipulations are essentially dif-[342x612]erent.
We formalize the manipulation at recursive step $t - 1$. Current updated query embedding $q^{t-1} \in \mathbb{R}^h$ and updated evidence matrix $E^{t-1} \in \mathbb{R}^{I \times h}$ are fed into multi-head attention, where h is the embedding size and I is the number of stored supporting facts. E^{t-1} performs as the key and value and q^{t-1} as the query. We obtain evidence scores $s^{t-1} \in \mathbb{R}^I$ for each supporting fact:

$$s^{t-1} = \text{MultiHead}(q^{t-1}, E^{t-1}, E^{t-1}).$$

(2)

The query embedding is updated with a residual term p^{t-1}. It is the outer product of the evidence matrix E^{t-1} and the evidence score s^{t-1}:

$$p^{t-1} = E^{t-1T} s^{t-1},$$

$$q^{t} = q^{t-1} + p^{t-1}.$$

(3)

The evidence matrix E^{t-1} is then updated with an erasure manipulation. According to the evidence scores, the supporting facts are sorted, and embeddings of the lowest k supporting facts are removed from the matrix. The evidence matrix is then updated to E^t:

$$E^t = \begin{bmatrix} e^t_0 \\ e^t_1 \\ \vdots \\ e^t_I \end{bmatrix}, \quad e^t_i = \begin{cases} e^{t-1}_i, & s^{t-1}_i \geq s^{t-1}_{[I-k]}, \\ 0, & s^{t-1}_i < s^{t-1}_{[I-k]} \end{cases}$$

(4)

where $s^{t-1}_{[I-k]}$ is the lowest kth score among s^{t-1}.

The resulting query q^t and evidence E^t are the inputs of the next recursive step. Therefore, the survived supporting facts are continually matched with the question, whereas the erased supporting facts stop contributing to this procedure. As a consequence, this multi-hop erasure manipulation provides more accurate and interpretable reasoning to the question answering, as the supporting facts are gradually refined.

At the end of the recursive procedure, queries in all recursive steps $q^t, t \in \{0, 1, \ldots, T\}$ are concatenated and fed into a fully connected layer, as the output of the REM module:

$$m = [q^0; \ldots; q^T]W_m + b_m,$$

(5)

where $[;]$ indicates the concatenation operation, $m \in \mathbb{R}^h$, $W_m \in \mathbb{R}^{hT \times h}$, and $b_m \in \mathbb{R}^h$.

Answer Prediction

The probabilities Pr of choosing the final answer option are:

$$Pr = \text{SoftMax}([m_1; \ldots; m_C]W_p + b_p),$$

(6)

where $[;]$ indicates concatenation, $\{m_1, \ldots, m_C\}$ are outputs of the REM module for each answer option, and C is the number of answer options. $W_p \in \mathbb{R}^{h \times 1}$, $b_p \in \mathbb{R}$.

Experiments

We evaluate REM-Net on two commonsense QA datasets, WIQA (Tandon et al. 2019) and CosmosQA (Huang et al. 2019). We then conduct ablation study on the REM module, and show several cases of REM-Net’s evidence refinement.
Table 1: Results (accuracy%) on the WIQA test set, including accuracies on three separate question types (In="in-para", Out="out-of-para", No="no-effect"), and the overall test set. The baselines labeled with * are taken from Tandon et al. (2019), in which the used test set is slightly different.

Data

WIQA (Tandon et al. 2019) contains counterfactual questions in such a fixed pattern as “suppose ... happens, how will it affects ...”, in which the two clauses relate to cause and effect separately. The context paragraphs provide descriptions of natural phenomenons, which are manually written based on specifically defined “influence graphs”. The questions are split into three types (“in-para”, “out-of-para”, “no-effect”) depending on whether the questions are derived from the original “influence graphs”. For “out-of-para” and “no-effect” questions, the context paragraphs are irrelevant to the questions, so that they are unable to provide meaningful evidence.

CosmosQA (Huang et al. 2019) includes questions of daily life scenarios, such as cultural norms, counterfactual reasoning, situational fact, and temporal event. The scenarios are plentiful and the questions are also diverse. The questions are in a multi-choice format.

Compared Methods

We compare the performance of REM-Net with several groups of competitive methods.

Group 1: Baselines. For WIQA, Majority predicts the most frequent answer option in the training set. Polarity pre-
The learning rate of the model is optimized by Adam (Kingma and Ba 2015) with a two parallel REM modules to separately refine them. The supporting facts relating to the cause and the effect, we adopt Table 2. The REM-Net is compared with three groups of

The experimental results are presented in Table 1 and Table 2. The REM-Net is compared with three groups of

Table 3: Ablation study on REM-Net (BERT\textsubscript{LARGE}) that are conducted on WIQA. E signifies the erasure manipulation, whereas R indicates to the recursive mechanism. In=“In-para” type, Out=“Out-of-para” type, No=“No-effect” type.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM-Net (BERT\textsubscript{LARGE})</td>
<td>73.21</td>
<td>68.14</td>
<td>90.84</td>
</tr>
<tr>
<td>w/o E</td>
<td>69.81</td>
<td>52.79</td>
<td>91.79</td>
</tr>
<tr>
<td>w/o E, w/o R</td>
<td>62.08</td>
<td>43.27</td>
<td>92.35</td>
</tr>
</tbody>
</table>

Table 4: Ablation study on REM-Net (BERT\textsubscript{LARGE}) that are conducted on CosmosQA. E denotes the erasure manipulation, while R refers to the recursive mechanism.

<table>
<thead>
<tr>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM-Net (BERT\textsubscript{LARGE})</td>
<td>69.49</td>
</tr>
<tr>
<td>w/o E</td>
<td>68.44</td>
</tr>
<tr>
<td>w/o E, w/o R</td>
<td>68.27</td>
</tr>
</tbody>
</table>

Experimental Setup

Seed Key Phrases Extraction The supporting facts are generated based on the key phrases. For WIQA, we set a rule to extract those key phrases. Since each of the question sentences consists of a cause clause and an effect clause with fixed pattern, we remove the pattern words to obtain two groups of key phrases, and separately generate two groups of supporting facts. For CosmosQA, we use the TAGME (Assante et al. 2019) toolkit3 to automatically tag the key phrases from the context paragraphs and the question.

Implementation Details We use BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019) as the backbones. The sequence length for the query encoder is 128, which is sufficient to include the input sequence “[CLS] context [SEP] question [SEP] answer option” (> 88%). For the evidence generator, the sequence length is set to 30 and covers the vast majority of evidence sentences (> 99%).

For experiments on WIQA, since there are two groups of supporting facts relating to the cause and the effect, we adopt two parallel REM modules to separately refine them. The model is optimized by Adam (Kingma and Ba 2015) with a learning rate of 1×10^{-5}. Warmup steps are 1000. We train 25 epochs with batch size 8. For the termination condition of the recursion, we set a fixed recursive step to 2. The upper bound of erased evidence sentences at each recursive step is 50. For CosmosQA, we use a single REM module to refine the evidence. The model is optimized using the Adam optimizer with a learning rate of 5×10^{-6} and warmup steps of 1500. The model is trained with 10 epochs and a batch size of 4. The fixed recursive step is 2. The upper bound of erased evidence sentences at each recursive step is 10.

Experimental Results

The experimental results are presented in Table 1 and Table 2. The REM-Net is compared with three groups of methods. It is shown that the REM-Net outperforms the compared approaches in most of the experiments. Besides, models perform differently on different data. In the CosmosQA dataset, our REM-Net outperforms all of the compared methods. In WIQA, REM-Net (BERT\textsubscript{LARGE}) is superior, whereas REM-Net (RoBERTa\textsubscript{LARGE}) is comparable to other methods. REM-Net (RoBERTa\textsubscript{LARGE}) is mainly inferior in the “in-para” and “out-of-para” data type, but surpasses compared methods in the “no-effect” data type. This is because the majority of the “in-para” and “out-of-para” evidence is meaningful to the question, and thus the erasure operation from the REM module provides limited effect.

Ablation Study

We further investigate the details in REM-Net. The results are shown in Table 3 and Table 4. It is observed that removing the erasure manipulation from the REM module leads to performance drop. This indicates that excluding those low-quality supporting facts benefits the results. Further removing the recursive mechanism, which means the REM module calculates the evidence scores once, brings a further performance drop. This indicates that recursively estimating the evidence sentences refines the understanding of the question and provides better interpretation. Therefore, erasure manipulation and the recursive mechanism both contribute to the benefits provided by our model.

Generated Evidence Versus Retrieved Evidence

We compare the quality of generated evidence and retrieved evidence. For a fair comparison, both evidence are based on ConceptNet. Specifically, the generated evidence are produced by COMET that is pre-trained on ConceptNet, whereas the retrieved evidence is directly retrieved from ConceptNet. Besides, to provide baseline results, we simply take the context paragraph provided by the question as another type of evidence. In the experiments, we provide different types of evidence to three methods that use evidence in an explicit manner, which are input augmentation, scaled dot-product attention, and the proposed REM-Net. The comparison results are shown in Figure 5. It is shown that in the

Figure 5: Comparison accuracies (%) on WIQA test set among three evidence sources. The base model being used for the three methods is RoBERTa\textsubscript{LARGE}.

3https://tagme.d4science.org/tagme/
Supporting facts

<table>
<thead>
<tr>
<th>Supporting facts</th>
<th>Question and Options</th>
<th>Question and Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ The oil needs to be pumped from the ground.</td>
<td>✓ As a result, he/she feels sad.</td>
<td>(D) It helps make sure that you are getting the best deal possible.</td>
</tr>
<tr>
<td>✓ After it is pumped it then is transported to a factory.</td>
<td>✓ As a result, he/she feels good.</td>
<td>(A) Sometimes your current insurance will be too complacent with you.</td>
</tr>
<tr>
<td>✓ The oil is processed and turned into fuel.</td>
<td>✓ As a result, he/she feels annoyed.</td>
<td>(B) None of the above choices.</td>
</tr>
<tr>
<td>✓ Once the fuel is refined it is then sent to a truck.</td>
<td>✓ As a result, he/she feels satisfied.</td>
<td>(C) You need to keep your insurance provider on their toes.</td>
</tr>
<tr>
<td>✓ By truck the fuel is sent to the gas station.</td>
<td>✓ As a result, he/she feels happy.</td>
<td>(D) It helps make sure that you are getting the best deal possible.</td>
</tr>
</tbody>
</table>

(1) successful case (WQA)
(2) successful case (CosmosQA)
(3) failure case (CosmosQA)

Figure 6: Examples of evidence refinement by REM-Net. Case (1) presents a successful case from the WQA test set. The supporting facts are context sentences. Case (2) is a successful case from the CosmosQA dev set, in which the presented supporting facts are part of the generated facts by the evidence generator. Case (3) shows a failure case from the CosmosQA dev set. The presented supporting facts are part of the generated facts by the evidence generator, therein the underlined facts are incorrectly erased or retained.

Case Study

We show three cases to see the quality of refined evidence, as presented in Figure 6.

Figure 6 (1) shows a successful case in WQA. The supporting facts are context paragraph sentences. The provided context paragraph covers a whole process of fuel production, whereas the question is about the causal relation between oil processing and fuel transportation. REM-Net erases the irrelevant oil processing sentences, retaining the sentences about fuel transportation.

Figure 6 (2) presents a successful case in CosmosQA, in which REM-Net refines generated supporting facts. The question is about good reasons for regularly buying insurance. The context paragraph tells a story about the narrator deciding to change his/her insurance products, but the reason for his/her decision is not provided. The generated facts supply such reasons. The erased facts such as “As a result, he/she feels sad” or “As a result, he/she feels happy” do not interpret the question, since changing the insurance products are normally someone’s rational decision. On the contrary, “Because he/she wanted to have good quality of products” support the question well. It is intuitive that the retained facts interpret the question better.

Figure 6 (3) shows a failure case in CosmosQA. This question is about the follow-up events after the young man makes a call to help the old man. The erasure by REM-Net seems unreasonable. The erased supporting facts include “As a result, he/she wants put the phone down” and “As a result, he/she wants get a bandage”, which are events related to the question. On the other hand, the retained supporting facts contain “As a result, he/she wants go to jail” and “Because he/she wanted get money”. Including the context and the question, these supporting facts are unreasonable inferences. This case indicates that the erasure operation of REM-Net does not cover all the questions. One of the reasons is that the commonsense questions are in varied domains so that some of the domains with fewer samples are not well trained.

Conclusion

In this paper, we propose a recursive erasure memory network (REM-Net) that refines evidence for commonsense question. It recursively estimates quality of each supporting fact based on the question, and refines the supporting fact set accordingly. The recursive procedure leads to repeated use of high-quality supporting facts, so that the question answering is conducted by useful information. Experimental results demonstrates that REM-Net is effective for the commonsense QA tasks, and the evidence refinement is interpretable. Besides, we evaluate the quality of generated evidence compared to retrieved evidence, learning that using generated evidence gives better performance.
Acknowledgments

The authors would like to thank Yu Cao, Jinghui Qin, Zheng Ye, Zhicheng Yang for their useful discussions. This work was supported in part by National Natural Science Foundation of China (NSFC) under Grant No.U19A2073 and No.61976233, Guangdong Province Basic and Applied Basic Research (Regional Joint Fund-Key) Grant No.2019B1515120039, Shenzhen Basic Research Project (Project No. JCYJ20190807154211365), Zhijiang Lab’s Open Fund (No. 2020AA3AB14) and CSIG Young Fellow Support Fund.

References

Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Classification with Graph Convolutional Networks. ArXiv, abs/1609.02907.

