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Abstract

Description logics (DLs) are knowledge representation lan-
guages that are used in the field of artificial intelligence (AI).
A common technique is to query DL knowledge-bases, e.g.,
by Boolean Datalog queries, and ask for entailment. But real
world knowledge-bases often have a certain inconsistency
(with respect to a given query) or we are required to estimate a
degree of inconsistency when using a knowledge-base. In this
paper, we provide a complexity analysis of fixed-domain non-
entailment (NE) on Datalog programs for well-established
families of knowledge-bases (KBs). We exhibit a detailed
complexity map for the decision cases, counting and pro-
jected counting, which may serve as a quantitative measure
for inconsistency of a KB with respect to a query. Our results
show that NE is natural for the second, third, and fourth level
of the polynomial (counting) hierarchy depending on the type
of the studied query (stratified, tight, normal, disjunctive) and
one level higher for the projected versions. Further, we show
fixed-parameter tractability by bounding the treewidth, pro-
vide a constructive algorithm, and show its theoretical limita-
tion in terms of conditional lower bounds.

1 Introduction
Description logics (DL) have proven itself as a cen-
tral framework in the field of artificial intelligence
(AI) (Krötzsch, Simancik, and Horrocks 2012; Baader
et al. 2017). Since DL was introduced by Brachman and
Levesques in 1984, the formalism has become a host for
expressing knowledge representation problems and reason-
ing about the relevant concepts of an application domain
(ontologies). As the application domain is quite vast (Hit-
zler et al. 2012; Knublauch, Musen, and Rector 2004; Eiter
et al. 2015; Klinov 2008), a plethora of different extensions
as well as restrictions have emerged (Calvanese 2006; Hor-
rocks, Kutz, and Sattler 2006; Horrocks and Sattler 2007).
The versatility of DL is one of its strength and, as a result,
new extensions or combinations with other concepts or for-
malisms are common (Baader, Küsters, and Wolter 2003;
Baader et al. 2005; Motik 2006). In general, a knowledge-
base consists of different components: an ABox, a TBox,
and a RBox. An ABox (assertion box) can be seen as a
prescribed part of the model, a TBox (terminology box) is
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a set of so-called inclusion-axioms that have to be obeyed
in every world of the model, and an RBox (role box) is a
set of relation constraints. Reasoning in DLs often involves
querying knowledge-bases which, when asking for closed-
world, can be achieved by Boolean Datalog programs. While
constructing those queries seem straight-forward, huge real
world databases often contain data entries that are incon-
sistent with respect to a considered query. In other words,
given a knowledge-base and a Datalog query, a model of
a knowledge-base cannot consistently be extended to the
query and is seen to be inconsistent with respect to it. We
want to estimate a degree of inconsistency by counting in-
consistencies. This can be particularly interesting in a setting
where we need a quantitative measure on the models that
cannot be entailed. This is a stronger notion of reasoning
than classical skeptical reasoning (asking for containment
in all models). Let us consider the following example from
the propositional setting to illustrate this approach. Note that
stable models are defined in terms of subset-minimality. We
give a more elaborate example in the sequel of the paper.
Example 1. Consider the following entailment question:
{p(a) ∨ p(b)} |= {p(c) ←;← p(a), p(b)}? The models of
{p(a) ∨ p(b)} are {p(a)}, {p(b)}, and {p(a), p(b)}. How-
ever, only {p(a), p(c)} and {p(b), p(c)} are stable models of
the program {p(c) ←;← p(a), p(b)} extending {p(a)} and
{p(b)}, respectively. As a result, the last of the three models
cannot be extended to a stable model. a

In this paper, we investigate the complexity of fixed-
domain non-entailment (NE) on Datalog programs for
SROIQ or DLmin knowledge-bases, which may serve
as a quantitative measure for inconsistency. The DL
SROIQ is quite expressive: it allows to express transitivity,
(ir)reflexivity, antisymmetry, subrole-relation, inverse, dis-
jointness of roles, as well as negated role assertions, com-
plex role inclusions, the universal role, and local reflexiv-
ity (Horrocks, Kutz, and Sattler 2006). The DL DLmin is,
as already stated by its name, quite restricted: only TBox-
axioms of the form A w ¬B as well as atomic assertions
A(a), r(a, b) are allowed, with A,B are concept names, r
a role name and a, b individual names. In our setting, we
also incorporate a more fine-grained analysis by consider-
ing the treewidth, which is a popular parameter that makes
various NP-hard problems tractable and is widely used in
the field of artificial intelligence (Gottlob and Szeider 2007;
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Name Syntax Semantics

inverse role r− { (x, y) ∈ ∆×∆ | (y, x) ∈ rI }
universal role u ∆×∆
top > ∆
bottom ⊥ ∅
negation ¬C ∆ \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a1, . . . , an} {aI1 , . . . , aIn}
univ. restr. ∀s.C {x | ∀y.(x, y) ∈ sI → y ∈ CI }
exist. restr. ∃s.C {x | ∃.(x, y) ∈ sI ∧ y ∈ CI }
self concept ∃s.self {x | (x, x) ∈ sI }
qualified no. ≤ nr.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
restriction ≥ nr.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

Sets Axiom α I satisfies α if

ABox A C(a) aI ∈ CI
r(a, b) (aI , bI) ∈ rI
a ≡ b aI = bI

a 6= b aI 6= bI

RBoxR r1 ◦ . . . ◦ rn v r rI1 ◦ . . . ◦ rIn ⊆ rI
Dis(r1, r2) rI1 ∩ rI2 = ∅

TBox T C v D CI ⊆ DI

Table 1: Syntax and semantics of SROIQ, where a, b, a1,
. . ., an denote individual names, s is a role name, r, r1, . . .,
rn are role expressions, and C and D concept expressions.

Gottlob, Pichler, and Wei 2006, 2007) and databases (Grohe
2007). Our main contributions are as follows: (I) We estab-
lish the computational complexity for deciding NE and for
(projected) counting of NE anti-witnesses. Our results show
that NE is complete for the second, third, and fourth level of
the polynomial (counting) hierarchy depending on the type
of the studied query (stratified, tight or normal, disjunctive)
and increases by one level when considering projected an-
swers in the setting of bounded domains. (II) We provide a
novel graph (knowledge-program graph) to define treewidth
on non-ground Datalog programs and show fixed-parameter
tractability by bounding the treewidth of the knowledge-
program graph and bounding the domain. (III) We establish
dynamic programming algorithms for solving the problems
and show also matching conditional lower bounds.

Related Works Parameterized complexity results for de-
scription logics, however, mostly hardness results, have re-
cently been established by de Haan (2018). Treewidth is
widely used for fine-grained complexity analyzes and to
establish algorithms that provide tractability when bound-
ing the treewidth, e.g., artificial intelligence (Gottlob and
Szeider 2007), knowledge representation (Gottlob, Pich-
ler, and Wei 2006), abduction in Datalog (Gottlob, Pich-
ler, and Wei 2007), and databases (Grohe 2007). In the
context of counting and projected counting treewidth has
been considered in various areas (Fichte, Hecher, and Meier
2018; Fichte et al. 2017; Fichte and Hecher 2019; Fichte,
Hecher, and Schindler 2018; Fichte et al. 2018a). Also com-
petitive implementations are available (Fichte et al. 2018b,
2020; Hecher, Thier, and Woltran 2020; Dudek, Phan, and

Vardi 2020). Conditional lower bounds have been consid-
ered by Pan and Vardi (2006) and Fichte, Hecher, and Pfan-
dler (2020). Inconsistencies and distance measures, in terms
of the number of formulas responsible for an inconsistency
and the propositions in the language affected by the incon-
sistency, have been considered by Ma, Qi, and Hitzler (2010;
2011). Para-consistent semantics for handling inconsisten-
cies occurring in the combination of description logics and
rules have been suggested by Huang, Li, and Hitzler (2012).
Repair-related problems have been considered in databases,
but are conceptually different from our setting, as databases
usually only assume closed world. Eiter et al. (2008) studied
the combination of ASP and DL in terms of fixpoint char-
acterizations, strong and a weak answer set semantics, and
computational complexity (EXP, NEXP, co-EXP, PNEXP).
Gaggl, Rudolph, and Schweizer (2016) considered the com-
plexity for standard reasoning and query answering under
the fixed-domain semantics for DLs. While they investigate
the complexity under queries that implement stable model
semantics, their work is limited to the ground case and
does not incorporate disjunctive queries. In contrast to our
work, they consider a different formalism restricting the oc-
currences of atoms in the heads in the rules of the query.
They do not consider treewidth. We state explicit runtime
bounds yielding tractability and precise runtime guarantees.
Rosati (2011) considered the complexity of inconsistency by
minimally repairing an ABox while keeping the TBox un-
touched. There are various works that consider treewidth or
other parameterizations in the realm of DL (Bienvenu et al.
2013; Simančík, Motik, and Horrocks 2014; Barceló et al.
2019; Bienvenu et al. 2017). We consider the fixed-domain
setting, which in practical solving is a fairly weak limitation,
but allows for much better complexity behavior. In contrast
to the mentioned works above, we establish exact runtimes
that cannot be significantly improved under ETH (both up-
per and lower bounds). Projected model counting is also
emerging topic in practical experimental evaluations (Fichte,
Hecher, and Hamiti 2020).

2 Preliminaries
Let tower(i, p) be tower(i− 1, 2p) if i > 0 and p otherwise.

Description Logics For an introduction to the description
logic SROIQ, we refer to its original source (Horrocks
and Sattler 2007). We briefly outline its syntax and seman-
tics. Let ∆ be a finite, fixed domain. Let NI, NC, and NR

be finite disjoint sets. We call NI individual names, NC con-
cept names, and NR role names, which can be used to form
complex expressions as displayed in Table 1. An axiom in
description logic is a logical statement that relates roles and
concepts. Table 1 provides the axioms that are allowed for
the description logic SROIQ and its ABox (assertion box),
TBox (terminology box), and RBox (role box). Intuitively,
an ABox contains sentences stating where in the hierarchy,
individuals belong (i.e., relations between individuals and
concepts), and a TBox contains sentences describing con-
cept hierarchies (i.e., relations between concepts), and an
RBox the relations of constraints. Let K = (A, T ,R) be
a tuple called knowledge-base, where A is an ABox, T is
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a TBox, and R is an RBox. Then, we abbreviate the indi-
vidual names, concept names, and role names that occur in
K by NI(K), NC(K), and NR(K), respectively. Further, we
let N(K) := NI(K) ∪ NC(K) ∪ NR(K) be the names oc-
curring in K and we let these definitions naturally extend to
ABox, TBox, RBox, and axioms. An interpretation I is a
tuple I = (∆, ·I) where ·I is a function that maps elements
in NI to elements in ∆, elements in NC to elements in 2∆,
elements in NR to elements in 2∆×∆, and for extended con-
cepts to complex role and concept expressions according to
Table 1. Alternatively, we may view an interpretation I as a
triple 〈I, C,R〉 with I : NI(K) → ∆, C : NC(K) → 2∆,
and R : NR(K) → 2∆×∆. We say that I satisfies K, or
I |= K for short and call I model of K, if it satisfies all
axioms of A, T , and R where the satisfaction of axioms is
given as in Table 1. We say that K entails an axiom α, or
K |= α for short, if all models of K are models of α.

The DL DLmin allows only TBox-axioms of the formA w
¬B as well as atomic assertionsA(a), r(a, b), withA,B are
concept names, r a role name and a, b individual names.
Datalog Programs Let ∆ be a fixed, finite domain of cardi-
nality at least 2, and NP be a set of predicate names. An atom
is an expression p(t1, . . . , tc), where a predicate p ∈ NP is
of bounded-arity c ≥ 0 and each ti is either a (first-order)
variable or an element of domain ∆. We say an atom is
Boolean if it contains only domain elements. We usually
write upper case letters like X or X attributed with a sub-
script for a variable. A (disjunctive) rule r is an expressions
of the form a1∨· · ·∨a` ← a`+1, . . . , am,¬am+1, . . . ,¬an.
with n > 0, ` ≤ m ≤ n and where a1, . . . , am are atoms.
We let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am}, and
B−r := {am+1, . . . , an}. A ground rule is of the same
form as a disjunctive role, however, a1, . . . , am are Boolean
atoms. A rule r is normal if |Hr| ≤ 1. We say that a program
has a certain property if all its rules have the property.

A program is a finite set of rules. We denote the sets
of atoms occurring in a rule r, resp., in a program P , by
at(r) := Hr ∪ B+

r ∪ B−r , resp., by at(P) :=
⋃

r∈P at(r).
Further, the predicates of NP occurring in a rule r or pro-
gram P are addressed by NP(r) or NP(P), respectively. A
substitution σ is a total mapping from a given set of vari-
ables to ∆. Then, Ground(P) is the set of ground rules rσ
obtained by applying, to each rule r ∈ P , all possible sub-
stitutions σ from variables in P to ∆.

A normal program P is stratified if there is a mapping
str : at(Ground(P)) → N such that for each rule r ∈
Ground(P) the following is true: (i) if x ∈ Hr and y ∈ B+

r ,
then str(x) ≤ str(y), and (ii) if x ∈ Hr and y ∈ B−r , then
str(x) < str(y). We say that a normal program is tight if it
has no cycles w.r.t. the graph that has as vertices the Boolean
atoms at(Ground(P)) and a directed edge (x, y) between
any two atoms x,y ∈ at(Ground(P)) for which there is a
rule r ∈ Ground(P) with x ∈ Hr and y ∈ B+

r . We denote
the class of all normal programs by Normal, the class of all
stratified programs by Strat, the class of all tight programs
by Tight, and the class of all programs by Disj.

An interpretation J is a set of Boolean atoms. Then,
J satisfies a ground rule r if (Hr ∪ B−r ) ∩ J 6= ∅ or
B+

r \ J 6= ∅. J is a model of P if it satisfies every ground

rule r ∈ Ground(P), in symbols J |= P . The GL-reduct
of P (Gelfond and Lifschitz 1991) under J is the pro-
gram PJ = {Hr ← B+

r | J ∩B−r = ∅, r ∈ Ground(P) }.
We say that J is a stable model of a program P if J is
a subset-minimal model of PJ . For tight programs this is
equivalent (Lin and Zhao 2003) to J |= P such that ev-
ery a ∈ J is justified (by P), i.e., there has to exist r ∈
Ground(P) with a ∈ Hr, J ⊆ B+

r and J ∩ B−r = ∅. De-
ciding whether a ground program has a stable model (con-
sistency problem) is ΣP

2 -complete (Eiter et al. 2007; Eiter
and Gottlob 1995). Deciding whether a program has a sta-
ble model (consistency problem of a program with bounded-
arities) as well as deciding whether an atom is in a stable
model (brave reasoning) is ΣP

3 -complete (Eiter et al. 2007).
Tree Decompositions Let G = (V,E) be a graph. A tree
decomposition (TD) of a graph G is a pair T = (T, χ),
where T is a rooted tree and χ a mapping that assigns to
each node t of T a set χ(t) ⊆ V , called a bag, such that the
following conditions hold: (i) E ⊆ ∪t of T { {u, v} | u, v ∈
χ(t) }; and (ii) for each r, s, t, such that s lies on the path
from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). Then, the width
of T corresponds to maxt of T |χ(t)| − 1 and the treewidth
is the minimum width over all TDs of G. In order to sim-
plify case distinctions in the algorithms, we assume nice
TDs as follows: For a node t of T , we say that type(t) is
leaf if t has no child nodes and χ(t) = ∅; join if t has ex-
actly two child nodes t1, t2 with χ(t) = χ(t1) = χ(t2);
intr if t has only one child node t1 with χ(t1) ⊆ χ(t) and
|χ(t)| = |χ(t1)| + 1; forget if t has only one child node t1
s.t. χ(t1) ⊇ χ(t) and |χ(t1)| = |χ(t)|+ 1. If for every node
t ∈ N , type(t) ∈ {leaf, join, intr, forget} and the bag of the
root is empty, then the TD is called nice.

3 Datalog Queries in Description Logics
We use fixed-domain semantics inspired by earlier
work (Gaggl, Rudolph, and Schweizer 2016). However,
we extend the notion and enable full Datalog programs.
Given a knowledge-base K, a fixed domain ∆, and a Dat-
alog program P , we say that K ·|= P if and only if every
model I = (∆, ·I) ofK can be extended to a stable modelJ
of P . More precisely, K ·|= P is true if and only if there
a subset-minimal model J of (Ground(P) ∪ PI)J where
PI := {C(d)← | d ∈ CI , C ∈ NC(K) }∪{R(d1, d2)←
| (d1, d2) ∈ RI , R ∈ NR(K) }. If I cannot be extended to a
stable model J of P , we say I is an anti-witness ofK ·|= P .

We consider the following fixed-domain non-entailment
problem on specific bounded-arity Datalog programs. Let
NEC ; C ∈ {Strat,Tight,Normal,Disj} be the problem
asking, given KB K and a C-program P , K 6 ·|= P? Some-
times we write NE for NEDisj. The following example illus-
trates the problem NE.

Example 2. Consider the following knowledge-base K =
(A, T , ∅), which describes a “medical” setting and re-
lations between diseases and symptoms. First, take as
the domain ∆ = {donald, emanuel, silvio} describ-
ing three people and define the ABox A and the TBox
T as follows: A := {Meet(P1, P2),Contagious(P1),
Meet(P2, P3), P1 6= P2, P2 6= P3, P1 6= P3}, T := {
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≤ 1u.Mask, Contagious ≡ Flu t Sinusitis, Exposed ≡
∃Meet.(Contagious u ¬Mask), Flu ≡ Fever u Exposed,
Sinusitis ≡ ¬Fever u Exposed, Meet ◦ Meet ≡
Meet, Meet ≡ Meet−}. Then, we ask the follow-
ing query P := {← ¬superspread; superspread ←
Contagious(X),Contagious(Y ), X 6= Y }, where we sim-
ply consider “6=” as a shortcut, since we have a fixed do-
main. When we ask for entailment of K ·|= P , P expresses
that there are at least two contagious people (superspread).
Observe that this does not hold, i.e., P is a positive instance
for NE. However, the number of anti-witnesses to K ·|= P
is small compared to all models I of K with I |= P . This
is justified since only interpretations J with PJ1 ∈ MaskJ

are anti-witnesses, attributing to about 1
3 of the models ofK.

Hence, weaker forms of entailment are still rather likely. a
Theorem 3. The combined complexity of NEStrat w.r.t. a
SROIQ or DLmin knowledge-base is ΣP

2 -complete.

Proof (Sketch). We reduce QBFVAL∀,2 to the complement
of NEStrat. Let Φ = ∀p1, . . . , pk∃q1, . . . , qmϕ with ϕ in
3CNF, that is ϕ =

∧n
i=1 Ci and Ci = `i,1 ∨ `i,2 ∨ `i,3

for 1 ≤ i ≤ n, k,m, n ∈ N, and `i,j are literals from
variables in V := P ∪ Q, where P := {p1, . . . , pk},
Q := {q1, . . . , qm}. Next, we define a DLmin knowledge-
base K = (A, T , ∅), a fixed-domain ∆, and a non-ground
stratified Datalog program P such that K ·|= P if and only
if Φ is valid. Set ∆ := { 0, 1 } and define K as follows. Let
the ABox A contain the following axioms:

Selectv(xv),UnSelectv(yv) for all v ∈ {p1, . . . , pk}
Let the TBox T contain the following axioms:

Selectv v ¬UnSelectv for all v ∈ {p1, . . . , pk}
Fix an arbitrary total ordering < on the variables of Φ. For
a set W of variables and a clause or term T , let W̄ (T ) =
(w1, . . . , we) be the ordered sequence of variables of T that
are also in W where 0 ≤ e ≤ 3, i.e., {w1, . . . , we} = W ∩
Vars(T ). We define program P as the union of programs⋃n

i=1{satCi
(θ)← ˜̀

i,j | `i,j /∈ Lit(Q), θ : Q̄(Ci)→ {0, 1},
|Q̄(Ci)| < 3, θ 6|= Ci ∩ Lit(Q) },⋃n

i=1{satCi
(θ) | θ : Q̄(Ci)→ {0, 1}, θ |= Ci },

{sat← satC1(Q̄(C1)), . . . , satCn(Q̄(Cn)); ← ¬sat}

where ˜̀ := Selectv(0) if ` = ¬v and ˜̀ := Selectv(1) if ` =
v. Note that θ is interpreted as bit-vector, where expressions
of the form “satCi(Q̄(Ci))” contain for “Q̄(Ci)” tuples of
FO-variables. The construction with the tuples Q̄ resembles
an idea influenced by Eiter et al. (2007, Lemma 6). When
asking for entailment, program P ensures that only those
models of K are also stable models of Φ for which we have
validity (i.e., for all {p1, . . ., pk} we can satisfy all clauses
by setting {q1, . . ., qm} using FO-variables Q̄(Ci) of satCi

.
It remains to argue membership. We can obtain fixed-

domain non-entailment of a query P from a SROIQ
knowledge-base K (I 6 ·|=P) by (a) guessing an interpreta-
tion I and verifying whether I is a model of K and then
(b) by checking whether P ∪ PI has a stable model. Since

for (a) we can simply guess an interpretation and checking
fixed-domain satisfiability of a SROIQ knowledge-base
is in NP (Gaggl, Rudolph, and Schweizer 2016, Lem 5)
and for (b) consistency of a bounded-arity Datalog query is
in ∆P

2 (Eiter et al. 2007, Lem. 2), we have a machine wit-
nessing membership in NP∆P

2 = NPNP.

Example 4. Let Φ = ∀p∃qϕ and ϕ = C1 ∧ C2,
with C1 = (p ∨ q), C2 = (p ∨ ¬q). Then, A =
{Selectp(xp),UnSelectp(yp)}, and T = {Selectp v
¬UnSelectp}. We choose the ordering p < q. (1) P contains
‘satC1(0) ← Selectp(1)’ and ‘satC2(1) ← Selectp(1)’ as
C1 is only satisfied w.r.t. the variable q by setting it to 1
and for C2 by setting q to 0. (2) P contains ‘satC1(1)’
and ‘satC2

(0)’ as argued before. (3) P contains ‘sat ←
satC1

(Xq), satC2
(Xq)’ as well as ‘← ¬sat’. Clearly, Φ is

false, and, as a result, we have K 6 ·|= P . Then, we construct
an interpretation I = (∆, ·I) such that I |= K and it can-
not be extended to a stable model J of P . Set xIp = 0 and
yIp = 1, SelectIp = {0}, UnSelectIp = {1}. Now, no stable
model J of I can set satC1

and satC2
to contain the same

element. As a result, satJ = 0, contradicting← ¬sat. a
Theorem 5. The combined complexity of NEDisj w.r.t. a
SROIQ or DLmin knowledge-base is ΣP

4 -complete.
Proof (Sketch). We reduce QBFVAL∀,4 to the complement
of NEDisj. Let k,m, h, o ∈ N, P := {p1, . . . , pk}, Q :=
{q1, . . . , qm}, R := {r1, . . . , rh}, and S := {s1, . . . , so}.
Let Φ = ∀p1, . . . , pk∃q1, . . . , qm∀r1, . . . , rh∃s1, . . . , soϕ
with ϕ in 3CNF, that is ϕ =

∨n
i=1 Ci and Ci = `i,1 ∧

`i,2 ∧ `i,3 for 1 ≤ i ≤ n, and `i,j ∈ Lit(Φ). We use the
same knowledge-base as in the proof of Theorem 3 and use
notation from the proof of Theorem 6. However, of course,
we will use a more complex program P , which is the union
of the following programs

{Selectv(0)← ¬Selectv(1);
Selectv(1)← ¬Selectv(0) | v ∈ Q },
{Selectv(0) ∨ Selectv(1) | v ∈ R },⋃n

i=1{satCi(θ)← ˜̀
i,j | `i,j /∈ Lit(S), θ : S̄(Ci)→ {0, 1},
|S̄(Ci)| < 3, θ 6|= Ci ∩ Lit(S) },⋃n

i=1{satCi
(θ) | θ : S̄(Ci)→ {0, 1}, θ |= Ci },

{sat← satC1(S̄(C1)), . . . , satCn(S̄(Cn)); ← ¬sat},
{Selectv(α)← sat | α ∈ {0, 1}, v ∈ R },

where sat is a fresh atom.
It remains to argue membership. We can obtain fixed-

domain non-entailment of a query P from a SROIQ
knowledge-base K (I 6 ·|=P) by (a) guessing an interpreta-
tion I and verifying whether I is a model of K and then
(b) by checking whether P ∪ PI has a stable model. Since
for (a) we can simply guess an interpretation and checking
fixed-domain satisfiability of a SROIQ knowledge-base is
in NP (Gaggl, Rudolph, and Schweizer 2016, Lem 5) and
for (b) consistency of a bounded-arity Datalog query is in
ΣP

2 (Eiter et al. 2007, Lem 3), we have an algorithm wit-
nessing membership in NPΣP

3 = ΣP
4 .

Theorem 6. Let C ∈ {Tight, Normal}. The combined com-
plexity of NEC w.r.t. a SROIQ or DLmin knowledge-base
is ΣP

3 -complete.
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Characterizing Counting Complexity
In this section, we investigate the complexity of count-
ing (projected) anti-witnesses for entailment problems on
bounded-arity Datalog programs. We follow standard termi-
nology in this area (Durand, Hermann, and Kolaitis 2005),
using complexity classes preceded with the sharp-dot op-
erator ‘#·’. A witness function is a function w : Σ∗ →
P<ω(Γ∗), where Σ and Γ are alphabets, mapping to a finite
subset of Γ∗. Such a function relates to the counting problem
“given x ∈ Σ∗, find |w(x)|”. If C is a decision complexity
class then # · C is the class of all counting problems whose
witness function w satisfies (1.) ∃ polynomial p such that for
all y ∈ w(x), we have that |y| 6 p(|x|), and (2.) the decision
problem “given x and y, is y ∈ w(x)?” is in C. Finally, note
that we use parsimonious reductions (Durand et al. 2005)
that preserve the cardinality between the corresponding wit-
ness sets and is computable in polynomial time.

Let #NEC ; C ∈ {Strat,Tight,Normal,Disj} be the
problem asking to compute the number of anti-witnesses of
K ·|= P , given A knowledge-base K and a C-program P .
As the reductions in Section 3 preserve the cardinality of
solutions, we immediately obtain the following corollary.

Corollary 7. For a SROIQ or DLmin knowledge-base: (1.)
#NEStrat is # · NP-complete, (2.) #NETight and #NENormal
are # · ΣP

2 -complete, and (3.) #NEDisj is # · ΣP
3 -complete.

Next, we naturally want to extend the problem above by
taking a set of atoms as part of the input to which all so-
lutions are projected onto. When we count, multiple anti-
witnesses that are identical when restricted to a set of pro-
jected atoms those count as only one anti-witness.

Let #pNEC ; C ∈ {Strat,Tight,Normal,Disj} be the
problem asking to compute the number of distinct anti-
witnesses to K ·|= P , when restricted to names in Π, given
a Datalog program P ∈ C, a KB K, and a projection
Π ⊆ N(K).

Example 8. Consider knowledge-baseK andP from Exam-
ple 2. Recall that about 1

3 of the models are anti-witnesses
to K ·|= P . Still, the number of anti-witnesses can be very
large, since one can almost arbitrarily interpret Fever. If
we are interested only in how to distribute the one mask,
we could ask for #pNE on K,P and projection Π :=
{P1,Mask}. Then, this results in only three projected anti-
witnesses. Each anti-witness J ensures PJ1 ∈ MaskJ . a

Similarly, one can show the result for the projected ver-
sions that yield one jump in the complexities, whose proof
is in the extended version.

Theorem 9. For a SROIQ or DLmin knowledge-base:
(1.) #pNEStrat is # · ΣP

2 -complete, (2.) #pNETight and
#pNENormal are # · ΣP

3 -complete, and (3.) #pNEDisj is
# · ΣP

4 -complete.

4 Algorithms and Results for Treewidth
In the following, we provide a parameterized complexity
analysis for the problems NE and #NE when parameter-
ized by treewidth of the input instance. We give algorithms
and thereby establish upper bounds on the runtime. These

Contagious
superspread

Flu Fever

Sinusitis

Exposed

Mask

Meet

P1

P2

P3

{Cont,Exp,Mask,Meet}t6

{P1,Meet,Cont}
t5

{P1, P2, P3,Meet} t4

{Cont,Exp,Flu, Sin}t3

{Exp,Fever,Flu, Sin}
t1

{super,Cont}t2

Figure 1: Knowledge-program graph G and a tree-
decomposition TG of G.

runtime results match with conditional lower bounds if we
believe in the exponential time hypothesis (ETH) (Impagli-
azzo, Paturi, and Zane 2001). Algorithms that exploit small
treewidth, typically run dynamic programming along a tree
decomposition (Bodlaender and Kloks 1996) of a graph rep-
resentation of the input instance. During dynamic program-
ming the nodes of the decomposition are traversed bottom-
up and at each node t of the decomposition a set τt of records
is computed by means of a bag algorithm. Such a bag algo-
rithm is specified by describing how this set of records is
computed for each node of the TD, thereby considering the
sets of records for the child node and evaluating only a part
of the instance, called bag instance. At the root we interpret
the set of records and output the solution to our question.

Before we provide our algorithms for treewidth, we re-
quire a dedicated graph representation of our knowledge-
bases and datalog programs, as well as the definition of a
bag instance. Here we are dealing with the non-ground set-
ting and bounding treewidth for both KBs and non-ground
datalog programs. Consequently, we define a graph repre-
sentation similar to the primal graph, but for non-ground
datalog and thereby also considering KBs. To this end, we
consider for an instance I = 〈K,P〉, consisting of a given
knowledge-base K = (A, T ,R) and a given datalog pro-
gram P , the knowledge-program graph GI . The vertices
ofGI consist of all individual, concept, and role names ofK
as well as all predicates occurring in P . Then, there is an
edge between two vertices of GI , whenever the correspond-
ing names appear together in at least one axiom, concept
inclusion, role inclusion or at least one datalog rule. For-
mally, we let GI := (V,E), where V := N(K) ∪ NP(P)
andE := {{e1, e2} | {e1, e2} ⊆ N(a), a ∈ A}∪{{C,C′} |
{C,C′} ⊆ N(c), c ∈ T } ∪ {{R,R′} | {R,R′} ⊆ N(r), r ∈
R} ∪ {{p1, p2} | p1, p2 ∈ NP(r), r ∈ P}.
Example 10. Consider the knowledge-base K and pro-
gram P from Example 2. The knowledge-program graph G
of K and P and a decomposition is shown in Figure 1. a

Let T = (T, χ) be a TD of the knowledge-program
graph for given K and P , and let t be a node of T . Then,
the bag knowledge-base is defined as Kt := (At, Tt,Rt),
where At := {a | a ∈ A,N(a) ⊆ χ(t)}, Tt := {c | c ∈
T ,N(c) ⊆ χ(t)}, and Rt := {r | r ∈ R,N(r) ⊆ χ(t)}.
Further, the bag program Pt is given by Pt := {r | r ∈
P,NP(r) ⊆ χ(t)}. As a result, this leads to the bag in-
stance It, which is defined by It := 〈Kt,Pt〉. Intuitively,
the bag instance consists of those axioms and rules, whose
symbols are fully contained in the bag.
Example 11. Consider Example 2 and TD TG of G. Take
node t3 from TD TG. Then, bag knowledge-base Kt3 =
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(∅, {Contagious ≡ Flu t Sinusitis}, ∅) and bag pro-
gram Pt3 = ∅, resulting in It3 = 〈Kt3 ,Pt3〉. a

Having established graph representations and the defini-
tion of bag instances that is evaluated in a node of a TD
of the graph, we are ready to present our bag algorithm
for NETight and #NETight. While the specifics are for brevity
carried out only for the simple case of tight programs, the
basic concept of these algorithms vacuously extends to the
other program classes, cf., (Fichte and Hecher 2019). This
algorithm is described in Figure 2 in the form of a case dis-
tinction, whose cases depend on the types of nodes of a nice
TD. Note that any TD can be turned into a nice TD without
increasing the width, cf., (Kloks 1994). However, for non-
nice TDs, these cases simply overlap accordingly. Overall,
for any set τt of records, Figure 2 maintains records of the
following form: 〈I, C,R,J , c〉, where 〈I, C,R〉 forms an
interpretation of Kt and c is an integer for solving #NE (ir-
relevant for decision problem NETight). Further, J is a set
of tuples of the form 〈J, P 〉, where J is an interpretation of
Pt and P ⊆ J is a set of atoms of J , where for every a ∈ P
there is a rule r ∈ Pt justifying a. Consequently, we define
the atoms of J justified by Pt by justift(J) := {a | r ∈
Ground(Pt), a ∈ Hr, J ⊆ B+

r , J ∩ (B−r ∪Hr \{a}) = ∅}.
While the actual details of this bag algorithm are quite

technical, the high-level idea of the algorithm for a node t is
as follows: The table τt for node t contains records consist-
ing of a model of Kt that can be extended to a model of the
knowledge-base obtained by combining all bag knowledge-
bases below t in T , as well as a set of models of Pt such that
each of these models can be extended to a stable model of
the program consisting of all bag programs below t in T .

For leaf nodes t (see Line 1 of Figure 2) the set τt of
records only contains the empty interpretation (satisfying the
empty knowledge-base) and the empty interpretation and the
empty set of justified atoms satisfying the empty program.

Now, let s ∈ N(Kt) ∪ NP(Pt) be any symbol of the bag
instance It. Then, we define the (exhaustive) interpretations
for individuals by Int(s) := {s 7→ d | s ∈ NI(Kt), d ∈ ∆},
the concept interpretations by Cot(s) := {s 7→ D | s ∈
NC(Kt), D ⊆ ∆}, and the role interpretations by Rot(s) :=
{s 7→ D | s ∈ NR(Kt),D ⊆ (∆ ×∆)}, as well as the dat-
alog interpretations by Prt(s) := {s(d) | s ∈ NP(Pt), d ∈
∆}. These definitions are used to exhaustively guess for
nodes t that introduce a symbol s, as shown in Line 3 of
Figure 2, all potential interpretations satisfying both Kt, as
well as Pt. Further, Line 3 also “updates” justified atoms.

Intuitively, whenever a symbol s is forgotten in a node t
(cf., Line 5), the interpretations do not need to care about s
any more, so we remove information about s. However, we
have to ensure that every atom in J is justified. Further, for
forget nodes one has to take care that interpretations that are
different for child nodes of t might collapse in the set of
records τt, so one has to sum up the corresponding counters.

For a join node t, which is a node with two child nodes as
handled by Line 8, one has to ensure to combine records,
where the corresponding assignments coincide. Justifica-
tions for atoms, however, suffice in only one node and one
has to multiply counters accordingly.

Finally, we analyze the set τr of records for the (empty)

In: Node t, bag χ(t), bag instance It = (Kt,Pt), and sets
〈τ1, . . . , τ`〉 of records for children of t.

Out: Set τt of records.
1 if type(t) = leaf then τt ← {〈∅, ∅, ∅, {〈∅, ∅〉}, 1〉}
2 else if type(t) = intr and symbol s∈χ(t) is introduced then
3 τt ← {〈I ′, C′, R′,J ′, c〉 | 〈I, C,R,J , c〉 ∈ τ1, I ⊆ I ′ ⊆

Int(s)
+
I , C ⊆ C′ ⊆ Cot(s)

+
C , R ⊆ R′ ⊆ Rot(s)

+
R,J ′ =

{〈J ′, justift(X)+P 〉 | 〈J, P 〉 ∈ J , J ⊆ J ′ ⊆ Prt(s)
+
J ,

X = I ′ ∪ C′ ∪R′ ∪ J ′, X |= Pt}, 〈I ′, C′, R′〉 |= Kt}
4 else if type(t) = forget and symbol s 6∈ χ(t) is forgotten then
5 ρt ← {〈I−Int(s)

, C−Cot(s)
, R−Rot(s)

, {〈J−Prt(s)
, P−Prt(s)

〉 | 〈J, P 〉 ∈
J , J ∩ Prt(s) ⊆ P}, c, u〉 | u ∈ τ1, u = 〈I, C,R,J , c〉}

6 τt ← {〈I ′, C′, R′,J ′,
∑
〈I′,C′,R′,J ′,c,... 〉∈ρt{c}〉 |

〈I ′, C′, R′,J ′, . . . 〉 ∈ ρt}
7 else if type(t) = join then
8 τt ← {〈I, C,R, {〈J, P1 ∪ P2〉 | 〈J, P1〉 ∈ J1, 〈J, P2〉 ∈ J2},

c1 · c2〉 | 〈I, C,R,J1, c1〉 ∈ τ1, 〈I, C,R,J2, c2〉 ∈ τ2}
S+
S′ :=S ∪ S′ and S−

S′ :=S \ S′.

Figure 2: Bag algorithm #NETight(t, 〈τ1, . . . , τ`〉).

root node r of TD T . Instance I is a positive instance
of NETight if and only if τr contains a record u whose fourth
component J is empty. It is easy to see that also the comple-
ment of NETight can be solved using Figure 2, i.e., therefore
(runtime) properties sustain even for the complement prob-
lem. Further, the number of solutions to problem #NETight is
contained in the fifth component (counter c) of this record u.
Example 12. Consider the knowledge-base K, domain ∆
and program P from Example 2 as well as TD T of G〈K,P〉.
Then, table τ4 for node t4 is the result of introduc-
ing symbols (individual names) P1, P2, P3 as well as role
name Meet. Consequently, due to Line 3 of Figure 2, we have
〈{P1 7→donald, P2 7→emanuel, P3 7→silvio}, ∅, {Meet 7→
{(donald, emanuel), (emanuel, silvio)}}, {〈∅, ∅〉}, 1〉∈τ4.
In total there are 3! = 3 · 2 · 1 = 6 many records of
similar kind in τ4, corresponding to the possibilities
of mapping individuals P1, P2, P3 to ∆ without over-
laps. For node t2, we introduce superspread as well
as Contagious. Note that superspread /∈ χ(t3) and there-
fore only those records of table τ2 have successor records
in table τ3 for node t3, where we have justification for the
atom superspread of arity 0 over predicate superspread,
cf., Line 5 of Figure 2. Among these sustaining records we
have 〈∅, {Contagious 7→{donald, emanuel, silvio}}, ∅, {〈{
superspread}, {superspread}〉}, 1〉 of τ2 as well as

(
3
2

)
= 3

many records according to the possibilities of selecting two
contagious people over domain ∆ in order to be able to
derive and justify superspread as required by program P .
Then, node t3 is the result of removing from table τ2 predi-
cate name superspread and merging the result (cf., Line 8)
with the table obtained from table τ1 for node t1, where
interpretations for concept name Fever have been removed,
cf., Line 5. Similarly, one continues with computing the
table for node t6 in order to finally obtain that there are
anti-witnesses of K ·|= P and the solution to NETight. a

Overall, the algorithm established in Figure 2 leads to
the following result due to the number of records and since
a TD of GK,P with a linear number of nodes can be 5-
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approximated (Bodlaender et al. 2016) in linear time.
Theorem 13. Given a KB K and a program P ∈ Tight,
both over fixed domain ∆, where k is the treewidth of
the knowledge-program graph G〈K,P〉. Then, we can de-
cide NETight in time tower(2, |∆|O(k)) · |N(K) ∪ NP(P)|.

This approach can be used for the class Strat of stratified
programs, where the fourth components J of the records
only need to be of cardinality 1, since stratified programs
have one unique stable model (Apt, Blair, and Walker 1988).
Further, the algorithm can be extended to more expressive
datalog programs, namely normal and disjunctive programs,
thereby obtaining runtimes of tower(2, |∆|O(k·log(k))) ·
|N(K) ∪ NP(P)| and tower(3, |∆|O(k)) · |N(K) ∪ NP(P)|,
respectively. For counting, we need to keep track of counts,
which slightly increases runtimes from being linear in the in-
stance size |N(K)∪NP(P)| to a runtime that is subquadratic
in the instance size. The reason is that the multiplication of
two n-bit numbers, if not assumed to be constant-time by
definition, runs in time n·log(n)·log(log(n)) (Knuth 1998).

Similarly, one can provide dynamic programming algo-
rithms for problem #pNEC by lifting algorithms for pro-
jected counting of the literature (Fichte and Hecher 2019).
Thereby, the runtime results are exponentially worsened in
the treewidth, cf., complexity results summarized in Table 2.

Hardness Results via Conditional Lower Bounds
However, if we believe in reasonable assumptions in com-
putational complexity, namely the exponential time hypoth-
esis (ETH) (Impagliazzo, Paturi, and Zane 2001), it turns
out that one can show that these runtimes can probably not
be significantly improved in the worst case. ETH is a widely
accepted standard hypothesis in algorithms and complexity,
which implies that one cannot solve the Boolean satisfiabil-
ity problem in sub-exponential time.

To this end, we rely on very recent conditional lower
bounds (Fichte, Hecher, and Kieler 2020, Thm. 15) for quan-
tified constraint satisfaction and show the following.
Theorem 14. Given a knowledge-base K = (A, T ,R)
and a datalog program P , both over fixed domain ∆, such
that the treewidth of the knowledge-program graph GK,P
is k and assume ETH. Then, problems NEC , #NEC
for C = Strat and C ∈ {Tight,Normal} can
not be solved in time f(k) · poly(|N(K) ∪ NP(P)|)
with f(k) = 2|∆|

o(k)

and f(k) = tower(2, |∆|o(k)), respec-
tively. Further, problems NEDisj, #NEDisj can not be solved
in time tower(3, |∆|o(k)) · poly(|N(K) ∪ NP(P)|).

Proof (Sketch). We show the case for C = Disj by re-
ducing QCSPVAL∀,4 to the complement of NEDisj. Let
k,m, h, o ∈ N, P := {p1, . . . , pk}, Q := {q1, . . . , qm},
R := {r1, . . . , rh}, and S := {s1, . . . , so}. Further,
let Φ = ∀p1, . . . , pk∃q1, . . . , qm∀r1, . . . , rh∃s1, . . . , soC,
where each constraint Ci in C = {C1, . . . , Cn} is over three
variables vi,1, . . . , vi,li ∈ P∪Q∪R and vi,li+1, . . . vi,3 ∈ S,
and forms allowed assignments {σ1, . . . , σ|Ci|} over ∆.

Now, we will define a DLmin knowledge-base K =
(A, ∅, ∅) over domain ∆, and a non-ground Datalog program
P such that K ·|= P if and only if Φ is valid.

Strat Tight Normal Disj
NEC ΣP

2 ΣP
3 ΣP

3 ΣP
4

(#)NEC [tw] 2|∆|
Θ(k)

22|∆|
Θ(k)

22|∆|
O(k·log(k))

222|∆|
Θ(k)

#NEC # ·NP # · ΣP
2 # · ΣP

2 # · ΣP
3

#pNEC # · ΣP
2 # · ΣP

3 # · ΣP
3 # · ΣP

4

#pNEC [tw] 22|∆|
Θ(k)

222|∆|
Θ(k)

222|∆|
O(k·log(k))

2222|∆|
Θ(k)

Table 2: Combined complexity overview of the non-
entailment problem variants over fixed domain ∆ on spe-
cific bounded-arity Datalog programs from class C w.r.t. a
SROIQ or DLmin knowledge-bases. For the tw-result, we
assume ETH and omit polynomial factors in the instance
size. All entries are completeness results or provide match-
ing and lower bounds (under ETH), except parameterized
results for class Normal, where we only have the slightly
weaker lower bounds as for Tight.

Further, let the ABox A contain the following axioms:
Selectv(xv) for all v ∈ {p1, . . . , pk}. We define program P
as the union of following programs {∨d∈∆ Selectv(d) | v ∈
Q }, {∨d∈∆ Selectv(d) | v ∈ R }, ⋃n

i=1{ satCi
(θ) ←

Selectvi,1(σ(vi,1)), . . . , Selectvi,li
(σ(vi,li)) | θ : S̄(Ci) →

∆, σ ∈ Ci, li ≥ 1, θ = σ|S̄(Ci) },
⋃n

i=1{ satCi
(θ) |

θ : S̄(Ci) → ∆, σ ∈ Ci, li = 0, θ = σ|S̄(Ci) },
{sat ← satC1

(S̄(C1)), . . . , satCn
(S̄(Cn)); ← ¬sat},

{Selectv(d) ← sat | v ∈ R, d ∈ ∆},where σ|X is func-
tion σ, but restricted to variables inX . Then, Φ is valid if and
only if the entailment holds (also for every subset-minimal
model). Observe that this also shows hardness for #NEDisj.
Further, compared to the treewidth k of instance Σ, the
treewidth k′ ofGK,P is linear in k. The only large rule r ∈ P
is the one with sat ∈ Hr, which can be split up in auxiliary
rules such that k′ is linear in k.

The same idea can be used to lift these lower bounds (cf.,
Theorem 9) for the problem #pNE, as provided in Table 2.

5 Conclusion
We provide a wide view on the combined complexity of
the fixed-domain non-entailment problem NE on specific
bounded-arity Datalog programs with respect to a SROIQ
or DLmin knowledge-bases. This approach combines open
and closed world semantics in a very general way. We in-
vestigate the classical decision and counting complexity as
well as the parameterized complexity of this problem when
allowing for arbitrary disjunctive Datalog programs or re-
stricting the program to be stratified, normal, or tight. Inter-
estingly, by applying very recent advances in parameterized
complexity, we immodestly obtain tight complexity results.

A further research direction is to study our algorithm for
practical applications and stronger parameters, e.g., (Grohe
and Marx 2014; Greco et al. 2018), particularly, in the light
of recent decomposition techniques (Gottlob, Okulmus, and
Pichler 2020). Also enumeration complexity (Creignou et al.
2017, 2019; Meier 2020) is worth studying in this context.
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Simančík, F.; Motik, B.; and Horrocks, I. 2014.
Consequence-Based and Fixed-Parameter Tractable
Reasoning in Description Logics. Artificial Intelligence
209: 29–77. ISSN 0004-3702.

6357


