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Abstract

Recently, explanations for query answers under existential
rules have been investigated, where an explanation is an
inclusion-minimal subset of a given database that, together
with the ontology, entails the query. In this paper, we take a
step further and study explanations under different minimality
criteria. In particular, we first study cardinality-minimal expla-
nations and hence focus on deriving explanations of minimum
size. We then study a more general preference order induced
by a weight distribution. We assume that every database fact
is annotated with a (penalization) weight, and we are inter-
ested in explanations with minimum overall weight. For both
preference orders, we study a variety of explanation problems,
such as recognizing a preferred explanation, all preferred ex-
planations, a relevant or necessary fact, and the existence of
a preferred explanation not containing forbidden sets of facts.
We provide a detailed complexity analysis for all the aforemen-
tioned problems, thereby providing a more complete picture
for explaining query answers under existential rules.

Introduction
Ontology-based data access (Poggi et al. 2008) emerged as
a paradigm for better means of querying data sources, and
has become one of the focal points of research in knowledge
representation and reasoning. The core idea is to enrich user
queries with an ontology, which encodes the background
knowledge over the application domain. Intuitively, onto-
logical knowledge provides a conceptual abstraction over
the domain, and it helps to deduce more facts from (pos-
sibly incomplete) data sources, resulting in more complete
sets of answers to user queries. It is common practice to
view the ontology and the user query as a composite query,
called ontology-mediated query (OMQ). The task of evalu-
ating such queries is then called ontology-mediated query
answering (OMQA) (Bienvenu et al. 2014).

Description logics (DLs) (Baader et al. 2007) and existen-
tial rules (a.k.a. Datalog±) (Calı̀, Gottlob, and Kifer 2013;
Calı̀, Gottlob, and Lukasiewicz 2012) are two families of
logic-based knowledge representation languages, which are
commonly used to formulate ontologies. OMQA relative to
languages in these families is extensively studied and well-
understood. Numerous systems have been developed to sup-
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port OMQA and related tasks (Calvanese et al. 2017; Nenov
et al. 2015; Bellomarini, Sallinger, and Gottlob 2018).

Broadly speaking, a major challenge in artificial intelli-
gence systems is in explaining the various conclusions drawn
by such systems. One advantage of logic-based systems is
that they are well-suited to explain various logical inferences
in a principled manner. In fact, this can be achieved in vari-
ous ways, depending on the desired form of an explanation.
Given a conclusion, derived from a knowledge base, an expla-
nation could be a proof relative to the underlying deduction
calculi, or alternatively, it could be a set of axioms and/or
facts, responsible for the derived conclusion.

There is a large body of work for deriving explanations
in DLs, which can be dated back to earlier works in the
literature (McGuinness and Borgida 1995; Borgida, Fran-
coni, and Horrocks 2000). Explanations for classical rea-
soning tasks (Kalyanpur et al. 2007; Baader and Suntisri-
varaporn 2008; Peñaloza and Sertkaya 2017) as well as for
OMQA (Borgida, Calvanese, and Rodriguez-Muro 2008;
Ceylan et al. 2020b) have been widely studied ever since.
Contrastingly, literature for existential rules is very sparse,
which motivated recent work (Ceylan et al. 2019), aiming
at explaining OMQA under existential rules. The idea is to
view every explanation as an inclusion-minimal subset of a
given database that, together with the ontology, entails the
query. Defining explanations as subsets of the database that
entail an OMQ is particularly suitable for monotone queries.

In this work, we take a step further for explaining OMQA
under existential rules, and consider cardinality- and weight-
minimal explanations. A cardinality-minimal (resp., weight-
minimal) explanation is a database subset that is smallest in
size (resp., has the smallest weight w.r.t. to a weight func-
tion), and together with the ontology entails the query. In the
weight case, we assume the weight function to be given by
annotating every database fact with a weight, representing a
penalization degree for the corresponding fact, i.e., the higher
the weight of a fact the less it is to be preferred in an expla-
nation. Observe that cardinality-minimal explanations are a
special case of weight-minimal explanations, when all facts
have the same weight. Clearly, every cardinality-minimal
explanation is also an inclusion-minimal explanation. Finally,
we note that the study of different minimality criteria, based
on e.g. weights and cardinality, is common in other contexts,
including consistent query answering (Bienvenu, Bourgaux,
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and Goasdoué 2014; Lukasiewicz, Malizia, and Molinaro
2018; Lukasiewicz, Malizia, and Vaicenavičius 2019).

We argue in detail how weight- and cardinality-minimal
explanations can be useful in certain application domains.
As a concrete example, we consider a road map as part of
our running example, where the task is to identify the most
preferred route from the current station to a target station,
specified by a query. Suppose that the preference is for the
fastest route, then every fact corresponding to connections
between stations can be annotated with a weight indicating
the time between the stations, and every weight-minimal
explanation then corresponds to the most time-efficient route.

For the aforementioned preference orders, we study five
problems, namely, deciding whether a given set of facts is
a preferred explanation (IS-MINEX), deciding whether a
given collection of sets of facts contains exactly all preferred
explanations (ALL-MINEX), deciding whether there exists
some preferred explanation containing a distinguished fact
(MINEX-REL), deciding whether there exists some preferred
explanation not containing any of the forbidden sets of facts
(MINEX-IRREL), and deciding whether all preferred expla-
nations contain a distinguished fact (MINEX-NEC).

We conduct a detailed complexity analysis for each of the
problems introduced, and provide a host of complexity results
for a large class of existential rules, which can be naturally
extended to other existential rule languages. Our findings
show that the complexity of these problems are in most cases
different from the inclusion-minimal case, given by Ceylan
et al. (2019), and require different techniques and reduc-
tions. We show that the complexity results for the cardinality-
and weight-minimal cases coincide for IS-MINEX and ALL-
MINEX, but differ in all the remaining problems, where the
weight-minimal case is computationally harder.

Preliminaries
In this section, we recall some basics on existential rules (Calı̀,
Gottlob, and Pieris 2012; Calı̀, Gottlob, and Kifer 2013;
Calı̀, Gottlob, and Lukasiewicz 2012) and the paradigm
of ontology-mediated query answering, and give some
complexity-theoretic background relevant to our study.

General
We assume a relational vocabulary of mutually disjoint (pos-
sibly infinite) sets R, C, N, and V of predicates, constants,
nulls, and variables, respectively. Each predicate is associated
with an arity (a non-negative integer). A term is a constant,
a null, or a variable. An atom is an expression p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. A
ground atom (or fact) has only constants as terms. Conjunc-
tions of atoms are often identified with the sets of their atoms.

An instance I is a (possibly infinite) set of atoms con-
taining constants and nulls only. A database D is a finite
instance that contains only constants. A homomorphism is a
mapping h : C ∪N ∪V → C ∪N ∪V that is the identity
on C and maps N to C ∪N. With a slight abuse of notation,
homomorphisms are applied also to (sets of) atoms.

A conjunctive query (CQ) Q(X) is a first-order formula
of the form ∃Yφ(X,Y), where φ(X,Y) is a conjunction

of null-free atoms. The answer to Q(X) over an instance I ,
denoted Q(I), is the set of all tuples t ∈ C|X| for which
there is a homomorphism h such that h(φ(X,Y)) ⊆ I and
h(X) = t. A union of conjunctive queries (UCQ) Q(X) has
the form Q1(X)∨ · · · ∨Qn(X), where each Qi(X) is a CQ.
The answer to Q(X) over an instance I , denoted Q(I), is
defined as the set of tuples

⋃
1≤i≤nQi(I). A Boolean UCQ

Q is a UCQ where all variables are existentially quantified;
Q is true over I , denoted I |= Q, if Q(I) 6= ∅. Here, we
focus on Boolean UCQs and refer to them simply as UCQs.

Existential Rules
A tuple-generating dependency (TGD) σ is a first-order for-
mula of the form ∀X∀Y Φ(X,Y)→ ∃ZΨ(X,Z), where
Φ(X,Y) and Ψ(X,Z) are conjunctions of atoms without
nulls, called the body and the head of the TGD, respectively,
and denoted body(σ) and head(σ), respectively. Classes of
TGDs are also known in the literature as existential rules,
or Datalog± languages. An instance I satisfies σ, written
I |= σ, if whenever there exists a homomorphism h such that
h(Φ(X,Y)) ⊆ I , then there exists h′ ⊇ h|X, where h|X is
the restriction of h on X, such that h′(Ψ(X,Z)) ⊆ I . For
brevity, we omit the quantifiers in front of TGDs. A program
(or ontology) is a finite set Σ of TGDs. An instance I satisfies
Σ, written I |= Σ, if I satisfies every TGD of Σ.

We briefly recall the Datalog± languages that are rele-
vant to our study, namely, linear (L) (Calı̀, Gottlob, and
Lukasiewicz 2012), guarded (G) (Calı̀, Gottlob, and Kifer
2013), sticky (S) (Calı̀, Gottlob, and Pieris 2012), and acyclic
TGDs (A), along with the “weak” (proper) generalizations
weakly sticky (WS) (Calı̀, Gottlob, and Pieris 2012) and
weakly acyclic TGDs (WA) (Fagin et al. 2005), and their
“full” (i.e., existential-free) proper restrictions linear full (LF),
guarded full (GF), sticky full (SF), and acyclic full TGDs
(AF), and full TGDs (F) in general. We also recall the follow-
ing further inclusions: L⊂G and F⊂WA⊂WS. If a program
Σ belongs to a language L, we also call Σ an L-program; L∅
denotes the language including only the empty program.

Ontology-Mediated Query Answering
An ontology-mediated query (OMQ) is a pair (Q,Σ), where
Q is a query, and Σ is an ontology. Consider a database D
and an OMQ (Q,Σ). The set of models of 〈D,Σ〉, denoted
mods(D,Σ), is the set of instances {I | I ⊇ D ∧ I |=
Σ}. We say that D entails (Q,Σ), denoted D |= (Q,Σ),
if I |= Q for every I ∈ mods(D,Σ). Ontology-mediated
query answering is the task of deciding whetherD |= (Q,Σ).
We use OMQA(UCQ,L) to refer to the ontology-mediated
query answering problem when the query is a UCQ and the
program is from L. Table 1 summarizes the complexity for
OMQA(UCQ,L) in the different languages L considered.

An OMQ (Q,Σ) is FO-rewritable, if there is a first-
order query QΣ such that, for all databases D, D |=
(Q,Σ) iff D |=QΣ; in which case, QΣ is an FO-rewriting of
(Q,Σ). A class of programs L is FO-rewritable, if it admits
an FO-rewriting for every UCQ and program inL. Languages
in Table 1 with AC0 data complexity are FO-rewritable.
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L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ AC0 NP NP PSPACE

S, SF ≤ AC0 NP NP EXP

A ≤ AC0 NP NEXP NEXP
G P NP EXP 2EXP

F, GF P NP NP EXP
WS, WA P NP 2EXP 2EXP

Table 1: Complexity of OMQA(UCQ,L) for existential
rules.

Computational Complexity
In our complexity analysis, we make the standard assump-
tions (Vardi 1982): the combined complexity is evaluated by
considering the database, the program, and the query, as part
of the input. The bounded-arity combined complexity (or ba-
combined) assumes that the maximum arity of the predicates
in R is bounded by an integer constant. The fixed-program
combined complexity (or fp-combined) is evaluated by con-
sidering the ontology as fixed. Finally, the data complexity is
calculated by considering everything fixed but the database.

Besides the more standard complexity classes, we will also
refer to the following ones. The complexity class AC0 is the
class of all decision problems that can be solved by uniform
families of Boolean circuits of polynomial size and constant
depth. The class DP = NP∧ CONP (resp., DExp = NEXP∧
CONEXP) is the class of all problems that are the conjunction
of a problem in NP (resp., NEXP) and a problem in CONP
(resp., CONEXP). The class ΘP

2 (resp., PNEXP[O(log n)]) is the
class of all problems that can be decided in polynomial time
by a deterministic Turing machine with a logarithmic number
of calls to an NP (resp., a NEXP) oracle; while ∆P

2 (resp.,
PNEXP) is the class of all problems that can be decided in
polynomial time by a deterministic Turing machine with a
polynomial number of calls to an NP (resp., a NEXP) oracle.

Preferred Explanations
In this section, we define the concept of preferred explanation,
define the problems studied in the paper, and motivate them
with the help of a concrete example.

Given a database D, a preorder 4 on P(D), and subsets
E,E′ of D, we write E ≺ E′ if E 4 E′ and E′ 64 E.
Definition 1 (4-MinEX). For a database D and an OMQ
(Q,Σ) such that D |= (Q,Σ), we say that E ⊆ D is an
explanation for D |= (Q,Σ) if E |= (Q,Σ).

Furthermore, given a preorder 4 on P(D), E ⊆ D is a 4-
minimal explanation, or 4-MinEX, for D |= (Q,Σ) if it is an
explanation for D |= (Q,Σ) and it is 4-minimal, i.e., there
is no explanation E′ ⊆ D for D |= (Q,Σ) with E′ ≺ E.

Ceylan et al. (2019) considered ⊆-MinEXs. Here we con-
centrate on two other fundamental preference orders, com-
mon in the literature (Eiter and Gottlob 1995; Eiter, Gottlob,
and Leone 1997; Bienvenu, Bourgaux, and Goasdoué 2014),
namely, orders induced by cardinality and a weight function.
≤-MinEX: For preferences induced by cardinality (≤),

the preference is given to subsets of the database that are

Victoria (v)

Green
Park (g)

Oxford
Circus (o)

Bond
Street (b)

Marble
Arch (m)

Hyde Park (h) 3

2
12

2

4

3
Park Lane (p)

4

Victoria Ln (vline)
Central Ln (cline)
Jubilee Ln (jline)
Bus 148 (bus148)

Victoria

A

Figure 1: Excerpt from the London tube and bus map, where
each color denotes a different line, as shown in the key.

smaller in size. Given two sets D1 and D2, D1 ≤ D2 iff
|D1| ≤ |D2|. Such preferences are particularly relevant for
domains where explanations correspond to optimal answers
that are composed of equally costly components.
≤w-MinEX: For preferences induced by weights (≤w),

we assume that the facts in the database D are assigned
(rational) weights by a function w : D → Q, which de-
fines an order over the subsets of the database D such
that D1 ≤w D2 iff

∑
α∈D1

w(α) ≤
∑
α∈D2

w(α), for any
D1, D2 ⊆ D. The meaning of the weights is simple: facts
with higher weights are less preferred in the explanations.

In the following, cardinality- and weight-minimal explana-
tions are also more generally called preferred explanations.

Example 2. Consider the road map in Figure 1.
The database D = {stop(v), stop(h), stop(p),
stop(m), stop(g), stop(b), stop(o), link(bus148 , v , h),
link(bus148 , h, p), link(bus148 , p,m), link(vline, v , g),
link(vline, g , o), link(jline, g , b), link(cline, o, b),
link(cline, b,m), reach(v)} encodes the stops, the links
between them, and that we start at the Victoria (v) station.

The duration between stops and the changing time between
lines can be represented by weights. We set w(stop(i)) = 3
for all stops i, i.e., three minutes to change line at any stop.
Each link fact is assigned the weight capturing the duration
of the travel along that link, as indicated in Figure 1, e.g.,
w(link(jline, g , b)) = 2. Also, w(reach(v)) = 0.

The program Σ encodes reachability, and ensures that
changing a line requires getting off at a stop:

link(X,Y1, Y2)→ link(X,Y2, Y1),

link(X,Y1, Y2) ∧ link(X,Y2, Y3)→ link(X,Y1, Y3),

reach(Y1) ∧ link(X,Y1, Y2) ∧ stop(Y2)→ reach(Y2).

We aim to travel to Marble Arch, so the query is
Q = reach(m). The fastest route to Marble Arch from Vic-
toria corresponds to a ≤w-MinEX for D |= (Q,Σ). Then:

E1 = {reach(v), stop(m), link(bus148 , v , h),

link(bus148 , h, p), link(bus148 , p,m)},
E2 = {reach(v), stop(o), stop(m), link(vline, v , g),

link(vline, g , o), link(cline, o, b),

link(cline, b,m)},

are both explanations with the minimal weight 14.
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Explanation Problems
In this section, we introduce a number of problems, adapted
from Ceylan et al. (2019), associated with preferred explana-
tions. We define these problems in a general way, which can
be parameterized with any preference order 4. Our formula-
tion is tightly connected to the abduction literature, and our
problems can be seen as counterparts of those in abduction.

The first and most basic problem, IS-MINEX, is a decision
version of the problem of finding a preferred explanation.
Problem: IS-MINEX(4,UCQ,L)
Input: A database D, a set of facts E ⊆ D, and an OMQ
(Q,Σ), where Q is a UCQ and Σ is an L-program.
Question: Is E a 4-MinEX for D |= (Q,Σ)?

Example 3. E1 and E2 from Example 2 are weight-minimal
explanations for D |= (Q,Σ), and correspond to the fastest
route from Victoria to Marble Arch station. The set

E3 = {reach(v), stop(g), stop(b), stop(m),

link(vline, v , g), link(jline, g , b),

link(cline, b,m)},
where E3 |= (Q,Σ) and is inclusion-minimal, it is not a
≤w-MinEX, as w(E3) = 16 > w(E1) = 14.

The following problem is a decision version of the problem
of finding all preferred explanations.
Problem: ALL-MINEX(4,UCQ,L)
Input: A database D, a set E of subsets of D, and an OMQ
(Q,Σ), where Q is a UCQ and Σ is an L-program.
Question: Is E the set of all 4-MinEXs for D |= (Q,Σ)?

The next problem asks whether a particular fact f is rel-
evant, that is, f is contained in some preferred explanation.
This problem is important to separate facts that contribute to
a preferred explanation from those that do not.
Problem: MINEX-REL(4,UCQ,L)
Input: A database D, a fact f ∈ D, and an OMQ (Q,Σ),
where Q is a UCQ and Σ is an L-program.
Question: Is there a 4-MinEX for D |= (Q,Σ) including f?

We illustrate ALL-MINEX and MINEX-REL below.
Example 4. Observe that E = {E1, E2} are all the ≤w-
MinEXs for D |= (Q,Σ). While there is no ≤w-MinEX for
D |= (Q,Σ) that contains stop(g), there is a ≤w-MinEX for
D |= (Q,Σ) that contains stop(o).

The next problem asks whether there is a preferred expla-
nation that does not contain any forbidden set. This problem
applies when we know that some combination of facts corre-
spond to invalid configurations (e.g., invalid routes), and so
we want to find explanations that do not contain these facts.
Problem: MINEX-IRREL(4,UCQ,L)
Input: A database D, a set F of subsets of D, and an OMQ
(Q,Σ), where Q is a UCQ and Σ is an L-program.
Question: Is there a 4-MinEX for D |= (Q,Σ) not contain-
ing any of the sets in F?

Example 5. Suppose that the link between h and p cannot
be used, i.e., link(bus148 , h, p) is forbidden. Then,E2 gives
a quickest route that does not contain this forbidden link.

The next problem asks whether a particular fact f is nec-
essary, that is, f is contained in every preferred explanation.
This problem is important for computing the core of a pre-
ferred explanation, which consists of the intersection of all
preferred explanations—intuitively, a necessary fact is intrin-
sically related to the entailment.

Problem: MINEX-NEC(4,UCQ,L)
Input: A database D, a fact f ∈ D, and an OMQ (Q,Σ),
where Q is a UCQ and Σ is an L-program.
Question: Does every 4-MinEX for D |= (Q,Σ) contain f?

Example 6. Facts reach(v) and stop(m) are the only two
necessary facts for any ≤w-minimal explanation for D |=
(Q,Σ). Any other fact is not necessary. This can be seen by
taking the intersection of the two ≤w-minimal explanations,
which is E1 ∩ E2 = {reach(v), stop(m)}.

Complexity Analysis
In this section, we analyze the complexity of the explana-
tion problems presented above, for cardinality- and weight-
minimal explanations. Our results are reported in Tables 2
to 4. We first discuss membership and then hardness results.

Membership Results
To show the membership results we proceed as follows. First,
we provide general results (Theorems 7 and 8), relying on
general algorithms, which imply all the membership results
in Table 2 (resp., Tables 3 and 4) apart from the DP (resp.,
ΘP

2 , ∆P
2 ) ones in the fp-combined and ba-combined complex-

ity and the P ones, for which we will need tighter statements.
Then, we provide tighter upper bounds (Theorems 9 and 10)
for the case where OMQA(UCQ,L) is in NP, thereby es-
tablishing the DP (resp., ΘP

2 , ∆P
2 ) membership results in

in Table 2 (resp., Tables 3 and 4) in the fp-combined and
ba-combined complexity. Finally, we show membership in
P for FO-rewritable languages in the data complexity for all
the problems that we consider (Theorem 11).

We start by general results applying to all cases (even if
the resulting upper bounds are not tight in some cases).

The first problems considered are IS-MINEX and ALL-
MINEX, which turn out to have the same complexity, also
for the two minimality criteria that we consider, as shown in
Table 2. Intuitively, for IS-MINEX, deciding whether E is
a 4-MinEX requires to check that E entails the OMQ and
that there is no subset of the database E′ ≺ E that entails
the OMQ. If the complexity of OMQA is in C, then the first
check is in C, and the second check is the complement of
checking whether there is a subset of the database E′ ≺ E
that entails the OMQ, and so is in co-(NPC). This idea can
be generalized to ALL-MINEX (Ceylan et al. 2019).

Theorem 7. If OMQA(UCQ,L) is in the complexity
class C in the combined (resp., ba-combined, fp-combined,
and data) complexity, then IS-MINEX(4,UCQ,L) (resp.,
ALL-MINEX(4,UCQ,L)) can be decided by a test (resp.,
a linear number of tests) in C followed by a test in co-(NPC),
in the combined (resp., ba-combined, fp-combined, and data)
complexity, where 4 ∈ {≤,≤w}.
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L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P DP DP PSPACE
S, SF ≤ P DP DP EXP
A ≤ P DP DExp DExp

G CONP DP EXP 2EXP
F, GF CONP DP DP EXP

WS, WA CONP DP 2EXP 2EXP

Table 2: Complexity of IS-MINEX(4,UCQ,L) and
ALL-MINEX(4,UCQ,L), where 4 ∈ {≤,≤w}.

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P ΘP
2 ΘP

2 PSPACE
S, SF ≤ P ΘP

2 ΘP
2 EXP

A ≤ P ΘP
2 ≤ PNEXPlog † ≤ PNEXPlog †

G ΘP
2 ΘP

2 EXP 2EXP
F, GF ΘP

2 ΘP
2 ΘP

2 EXP
WS, WA ΘP

2 ΘP
2 2EXP 2EXP

Table 3: Complexity of MINEX-REL(≤,UCQ,L),
MINEX-IRREL(≤,UCQ,L), and MINEX-NEC(≤,UCQ,
L). †Shorthand for PNEXP[O(log n)].

We now proceed with MINEX-REL, MINEX-IRREL, and
MINEX-NEC, which turn out to have the same complexity
for a given minimality criterion; see Tables 3 and 4. The
solutions of these three problems share the necessity of find-
ing a 4-MinEX: for MINEX-REL, a 4-MinEX containing
the distinguished fact; for MINEX-IRREL, a 4-MinEX ex-
cluding all the forbidden fact-sets; and for MINEX-NEC, a
4-MinEX excluding the given fact f (i.e., a counterexample
of f ’s necessity, to subsequently flip the answer). Computing
a 4-MinEX requires the evaluation of the size and the weight
of the ≤-minimal and ≤w-minimal MinEXs, respectively:
for this reason, oracle calls are needed to perform a binary
search. The complexity of ≤w is higher in many cases.

Theorem 8. If OMQA(UCQ,L) is in the complexity
class C in the combined (resp., ba-combined, fp-combi-
ned, and data) complexity, then MINEX-REL(4, UCQ,L),
MINEX-IRREL(4,UCQ,L), and MINEX-NEC(4,UCQ,
L) are in PNPC [O(log n)] and in PNPC

for ≤ and ≤w, respec-
tively, in the combined (resp., ba-combined, fp-combined,
and data) complexity.

We now focus on the cases where OMQA(UCQ,L) is in
NP, and establish tighter upper bounds than those provided
by the theorems introduced so far. Intuitively, the tighter
upper bounds can be obtained, because the guess of the 4-
MinEX and the guess of the entailment witness (recall that
OMQA(UCQ,L) is in NP) can be combined and performed
by a single machine. Therefore, in Theorem 9, which is the
correspondent of Theorem 7, we obtain a membership in DP;
and in Theorem 10, which is the correspondent of Theorem 8,
we obtain memberships in ΘP

2 and ∆P
2 .

Theorem 9. If OMQA(UCQ,L) is in NP in the

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P ∆P
2 ∆P

2 PSPACE
S, SF ≤ P ∆P

2 ∆P
2 EXP

A ≤ P ∆P
2 ≤ PNEXP ≤ PNEXP

G ∆P
2 ∆P

2 EXP 2EXP
F, GF ∆P

2 ∆P
2 ∆P

2 EXP
WS, WA ∆P

2 ∆P
2 2EXP 2EXP

Table 4: Complexity of MINEX-REL(≤w,UCQ,L),
MINEX-IRREL(≤w,UCQ,L), and MINEX-NEC(≤w,
UCQ,L).

ba-combined (resp., fp-combined) complexity, then
IS-MINEX(4,UCQ,L) and ALL-MINEX(4,UCQ,L)
are in DP in the ba-combined (resp., fp-combined)
complexity, where 4 ∈ {≤,≤w}.

Theorem 10. If OMQA(UCQ,L) is in NP in the
ba-combined (resp., fp-combined) complexity, then
MINEX-REL(4,UCQ,L), MINEX-IRREL(4,UCQ,L),
and MINEX-NEC(4,UCQ,L) are in ΘP

2 and in ∆P
2

for ≤ and ≤w, respectively, in the ba-combined (resp.,
fp-combined) complexity.

In the data complexity, the tractability of all problems for
the FO-rewritable languages follows from the fact that all
explanations can be computed in polynomial time.

Theorem 11. For the FO-rewritable language over existen-
tial rules, all problems considered for both cardinality- and
weight-minimal explanations are in P in the data complexity.

Proof sketch.. Let D be a database, and (Q,Σ) be an OMQ.
For an FO-rewritable language, there exists a query QΣ,
which is a union of conjunctive queries, such that for ev-
ery database D′, D′ |= (Q,Σ) iff D′ |= QΣ. Note that
QΣ depends only on Q and Σ, which are fixed in the data
complexity, so QΣ can be constructed in constant time. Let
QΣ = Q1

Σ ∨ · · · ∨QmΣ , where QiΣ = ∃YiΦi(Yi).

Let DiQΣ
= {Φi(t) | t ∈ adom |Y

i|}, where adom is the
set of all constants appearing in D, and Φi(t) is viewed as
a set of facts. Thus, DiQΣ

is a set of sets of facts and can be
computed in polynomial time, as adom has polynomial size,
and |Yi| is a constant. Furthermore, DQΣ = ∪mi=1DiQΣ

can
be computed in polynomial time, as m is a constant. It is not
difficult to see that all elements in DQΣ

that are subsets of
D are all the explanations for D |= (Q,Σ). This set can be
computed in polynomial time in the size ofDQΣ

, and so in the
size of D. Then, preferred explanations can be computed in
polynomial time as well, and, as a consequence, all problems
that we consider can be decided in polynomial time.

Hardness Results
We start with the problem of recognizing cardinality-minimal
explanations and prove that it is intractable already for GF ex-
istential rules in the data complexity, even if query answering
is known to be in polynomial time for this fragment. This is in
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strong contrast with the complexity of recognizing inclusion-
minimal explanations, which remains in polynomial time.

Theorem 12. IS-MINEX(≤,UCQ,GF) is CONP-hard in
the data complexity.

IS-MINEX(≤,UCQ,L∅) is DP-hard in the fp-combined
complexity. This is implicit in the DP-hardness proof for the
fp-combined complexity of IS-MINEX(⊆,UCQ,L∅) (Cey-
lan et al. 2019, Thm 5), since the constructed set in that proof
is inclusion- and also cardinality-minimal.

IS-MINEX(⊆,UCQ,A) was shown DExp-hard in the ba-
combined complexity (Ceylan et al. 2019). The reduction
used in that work immediately applies to our case, as the
database and the OMQ constructed in that proof admit a
unique ⊆-MinEX, which is hence also a ≤-MinEX.

The other hardness results for IS-MINEX(≤,UCQ,L)
in Table 2 are proven by showing that it is as hard as OMQA
in the ba-combined and combined complexity.

Theorem 13. IS-MINEX(≤,UCQ,L) is at least as hard
as OMQA(UCQ,L) in the ba-combinded and combined
complexity.

Proof sketch. We reduce OMQA(UCQ,L) to
IS-MINEX(≤,UCQ,L). Let D be a database and (Q,Σ)
be an OMQ, which is an instance of OMQA(UCQ,L).
Let DQ be a set of facts obtained by grounding
variables in Q with fresh constant symbols. Then
certainly DQ |= (Q,Σ). Let D′ = {p(), r()},
Σ′ = Σ ∪ {p() → f | f ∈ D} ∪ {r() → g | g ∈ DQ},
Q′ = Q ∧ p(), and E = {p()}, where p and r are fresh pred-
icates. Note that D′ |= (Q′,Σ′) and thus it forms an instance
of IS-MINEX. Furthermore, it is not difficult to verify that
D |= (Q,Σ) iff E is a ≤-MinEX for D′ |= (Q′,Σ′).

As noted earlier, the cardinality order is a special case
of the weight one. Hence, all the hardness results for the
former immediately extends to the latter. This implies all the
hardness results for IS-MINEX(≤w,UCQ,L) in Table 2.

We now focus on ALL-MINEX under the cardinality crite-
rion. We start with a CONP-hardness in the data complexity.

Theorem 14. ALL-MINEX(≤,UCQ,GF) is CONP-hard in
the data complexity.

The DP-hardness of ALL-MINEX(≤,UCQ,L∅) and
the DExp-hardness of ALL-MINEX(≤,UCQ,A) are im-
plicit in the proofs of the DP-hardness and DExp-hardness
of ALL-MINEX(⊆,UCQ,L∅) and ALL-MINEX(⊆,UCQ,
A), respectively (Ceylan et al. 2019, Thm 11). This holds be-
cause the database and the OMQ constructed in those proofs
admit a unique ⊆-MinEX, which is hence also a ≤-MinEX.

The other hardness results for ALL-MINEX(≤,UCQ,L)
in Table 2 follow from the construction used to prove Theo-
rem 13, where the set of all MinEXs is {{p()}}.

All the hardness results for the cardinality order immedi-
ately extend to the weight order, thereby establishing all the
hardness results for ALL-MINEX(≤w,UCQ,L) in Table 2.

We move to MINEX-REL. Under cardinality-minimality,
MINEX-REL is hard already in the data complexity for GF
existential rules, and it is at the second level of the polynomial
hierarchy. The reduction is from the problem COMP-SAT: for

two sets of 3CNF formulas, decide whether one set contains a
greater number of satisfiable formulas compared to the other
(Lukasiewicz and Malizia 2016, 2017).

Theorem 15. MINEX-REL(≤,UCQ,GF) is ΘP
2 -hard in

the data complexity.

MINEX-REL under cardinality-minimality is ΘP
2 -hard in

the fp-combined complexity even with an empty program.

Theorem 16. MINEX-REL(≤,UCQ,L∅) is ΘP
2 -hard in the

fp-combined complexity.

Proof sketch.. The reduction is from the ΘP
2 -complete prob-

lem INMINCOVER: for a graph G = (V,E) and a node w,
is w in a cardinality-minimal vertex cover of G? We first
show the ΘP

2 -completeness of INMINCOVER. Lopatenko
and Bertossi (2006) showed that the following problem is
ΘP

2 -complete: given a graph G = (V,E) and a vertex w,
decide whether w belongs to all the cardinality-maximal
independent sets of G. It is known that a subset I of V
is a cardinality-maximal independent set of G iff V \ I
is a cardinality-minimal vertex cover of G. Then, deciding
whether w belongs to all the cardinality-maximal indepen-
dent sets of G is equivalent to deciding whether w does not
belong to any cardinality-minimal vertex cover of G. Since
INMINCOVER is the complement of the latter problem and
ΘP

2 is a deterministic class, INMINCOVER is ΘP
2 -complete.

The database built in the reduction is D = {edge(0, 1),
edge(1, 0), edge(1, 1)} ∪ {vertex (v, 0), vertex (v, 1) | v ∈
V }, where the fact vertex (v, 1) is intuitively associated with
the vertex v being in a vertex cover.

The program is empty, and the query comprises three parts:
The first imposes the presence of all edge facts in any ex-

planation: edge test = edge(0, 1)∧ edge(1, 0)∧ edge(1, 1).
The second part requires all facts vertex (v, 0) to be present

in any explanation: all vertices =
∧
v∈V

vertex (v, 0).

The third part captures how an edge is covered: cover =∧
(u,v)∈E

(edge(Xu, Xv) ∧ vertex (u,Xu) ∧ vertex (v,Xv)).

The query is Q = edge test ∧ all vertices ∧ cover . To
conclude, the distinguished fact is vertex (w, 1).

It can be shown that w is in a minimum-size vertex cover
of G iff vertex (w, 1) is in a ≤-MinEX for D |= (Q,Σ).

We obtain the other hardness results for MINEX-REL(≤,
UCQ,L) by inspection of Theorem 13’s proof, where {p()}
is the only ≤-MinEX, and we check whether p() is relevant.

We now analyze MINEX-REL(≤w,UCQ,L)’s hardness.
First, we can prove the ∆P

2 -hardness in the data complex-
ity. The reduction is from the lexicographically minimum
satisfying assignment problem (MSA) (Krentel 1988).

Theorem 17. MINEX-REL(≤w,UCQ,GF) is ∆P
2 -hard in

the data complexity.

Also, MINEX-REL(≤w,UCQ,L∅) can be shown to be
∆P

2 -hard in the fp-combined complexity. The reduction is
from the MSA problem (Krentel 1988).

Theorem 18. MINEX-REL(≤w,UCQ,L∅) is ∆P
2 -hard in

the fp-combined complexity.
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The other hardness results of MINEX-REL for ≤w follow
from the hardness of MINEX-REL for ≤.

We conclude with the hardness of MINEX-IRREL and
MINEX-NEC. Observe that MINEX-NEC can be reduced to
the complement of MINEX-IRREL: indeed, f is in every 4-
MinEX iff there is no 4-MinEX not containing {f}. Hence, it
suffices to show the hardness results only for MINEX-NEC.

MINEX-NEC(≤,UCQ,GF)’s ΘP
2 -hardness in the data

complexity is shown by Theorem 15’s proof, in which ei-
ther every ≤-MinEX contains a distinguished fact f or none.

As for the fp-combined complexity, we can show that
MINEX-NEC(≤,UCQ,L∅) is ΘP

2 -hard. The reduction is
from a variant of the problem of deciding whether a given
vertex is outside all cardinality-maximum independent sets
of a graph (Lopatenko and Bertossi 2016, Lemma 3.(2) and
Lemma 6); the construction is as in the proof of Theorem 16.

Theorem 19. MINEX-NEC(≤,UCQ,L∅) is ΘP
2 -hard in

the fp-combined complexity.

We derive the other hardness results for MINEX-NEC(≤,
UCQ,L) in Table 3 via Theorem 13’s proof, where {p()} is
the only ≤-MinEX, and we check whether p() is necessary.

For the hardness of MINEX-NEC(≤w,UCQ,L), in the
reductions proving Theorems 17 and 18, the ≤w-MinEX is
unique. So, these reductions also apply to MINEX-NEC(≤w,
UCQ,L), showing its ∆P

2 -hardness in Table 4.
The other hardness results of MINEX-NEC for ≤w follow

from the hardness of MINEX-NEC for ≤. Moreover, notice
that all hardness results for MINEX-NEC are for determinis-
tic classes, hence MINEX-IRREL’s hardness results follow.

Related Work
The literature on explanations under existential rules was
sparse until recently. We have introduced and studied a
wide range of problems, based on earlier work by Ceylan
et al. (2019), where an explanation is an inclusion-minimal
subset of the database, which, together with the program,
entails the query. Ceylan et al. (2019) focus on inclusion-
minimal explanations and do not consider other minimal-
ity criteria. This work investigates these problems under
cardinality- and weight-minimal explanations. Explanations
under existential rules have been studied for probabilistic
databases (Ceylan, Borgwardt, and Lukasiewicz 2017), which
is relative to a different (probabilistic) data model. Explana-
tions under existential rules have been also investigated under
inconsistency-tolerant semantics (Lukasiewicz, Malizia, and
Molinaro 2020) and in the case of negative query answers
(i.e., non-entailments) (Ceylan et al. 2020a). All these stud-
ies are technically different from the current study, as the
underlying frameworks and/or the tasks are different.

The DL literature on explanations is very rich. Expla-
nations are first considered in DLs by McGuinness and
Borgida (1995), which is then followed by Borgida, Fran-
coni, and Horrocks (2000). The main goal of these early
works is to explain the classical problem of concept sub-
sumption, and explanations are given in the form of proofs,
based on the underlying deductive calculi. Subsequent work
in DLs mostly focused on explanations, which are minimal
subsets of axioms in a logical theory instead of the specific

proofs (Schlobach and Cornet 2003). This approach is known
as axiom pinpointing (Kalyanpur et al. 2007; Baader and
Suntisrivaraporn 2008; Peñaloza and Sertkaya 2017), and
such explanations are called justifications in the DL litera-
ture (Horridge, Parsia, and Sattler 2008). This line of research
has resulted in a number of systems (Kalyanpur et al. 2007;
Sebastiani and Vescovi 2009). These works focus on explain-
ing classical reasoning tasks and not on query answering.

The problem of explaining OMQA has been investigated
for the DL-Lite family of languages (Borgida, Calvanese, and
Rodriguez-Muro 2008). Recently, explanations for OMQA
relative to a large class of DLs have been investigated (Ceylan
et al. 2020b), which also builds on the study given for existen-
tial rules (Ceylan et al. 2019). These works are closely related,
but they focus only on inclusion-minimal explanations. Note
that explanations for OMQA are also considered under differ-
ent minimality criteria in DLs by Bienvenu, Bourgaux, and
Goasdoué (2019), where the goal is to derive explanations
under inconsistency-tolerant semantics. Differently, we pro-
vide explanations under the standard semantics. Explanations
under inconsistency-tolerant semantics have also been inves-
tigated for existential rule languages in (Arioua, Tamani, and
Croitoru 2015; Arioua, Buche, and Croitoru 2017; Hecham
et al. 2017; Lukasiewicz, Malizia, and Molinaro 2020).

More generally, deriving explanations for query answers
can be seen as a form of logical abduction (Reiter 1987; Eiter
and Gottlob 1995; Eiter, Gottlob, and Leone 1997), which is
also widely investigated in DLs—see, e.g., (Klarman, Endriss,
and Schlobach 2011; Calvanese et al. 2013).

In that setting, the goal is to explain non-entailments (or
negative entailments), which makes these works very dif-
ferent, as then we are interested in adding a minimal set of
facts to the database (instead of considering subsets of the
database) to satisfy the entailment. Explanations have been
investigated also for logic programs under different seman-
tics, e.g., see (Damásio, Analyti, and Antoniou 2013; Pontelli,
Son, and El-Khatib 2009; Cabalar, Fandiño, and Fink 2014).

Conclusions
We studied explanations for OMQA under existential rules
under two different minimality criteria, namely, cardinality-
minimal and weight-minimal explanations, and provided a
thorough complexity analysis for several decision problems.
Our study provides a more complete picture for explanations
under existential rules, and also implies upper bounds for
many DLs, which can be embedded into existential rules.

An intriguing direction for future work is to investigate the
problem of explaining query entailment for non-monotone
queries. This poses different challenges, such as the definition
of an explanation itself, which has to take into account both
what in the database made the entailment hold and what not
in the database made the entailment hold.
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