
CMAX++ : Leveraging Experience in Planning and Execution using Inaccurate
Models

Anirudh Vemula1, J. Andrew Bagnell2, Maxim Likhachev1

1 Robotics Institute, Carnegie Mellon University
2 Aurora Innovation

vemula@cmu.edu, dbagnell@ri.cmu.edu, maxim@cs.cmu.edu

Abstract

Given access to accurate dynamical models, modern plan-
ning approaches are effective in computing feasible and op-
timal plans for repetitive robotic tasks. However, it is diffi-
cult to model the true dynamics of the real world before ex-
ecution, especially for tasks requiring interactions with ob-
jects whose parameters are unknown. A recent planning ap-
proach, CMAX, tackles this problem by adapting the planner
online during execution to bias the resulting plans away from
inaccurately modeled regions. CMAX, while being provably
guaranteed to reach the goal, requires strong assumptions on
the accuracy of the model used for planning and fails to im-
prove the quality of the solution over repetitions of the same
task. In this paper we propose CMAX++, an approach that
leverages real-world experience to improve the quality of re-
sulting plans over successive repetitions of a robotic task.
CMAX++ achieves this by integrating model-free learning
using acquired experience with model-based planning using
the potentially inaccurate model. We provide provable guar-
antees on the completeness and asymptotic convergence of
CMAX++ to the optimal path cost as the number of repeti-
tions increases. CMAX++ is also shown to outperform base-
lines in simulated robotic tasks including 3D mobile robot
navigation where the track friction is incorrectly modeled,
and a 7D pick-and-place task where the mass of the object is
unknown leading to discrepancy between true and modeled
dynamics.

Introduction
We often require robots to perform tasks that are highly
repetitive, such as picking and placing objects in assembly
tasks and navigating between locations in a warehouse. For
such tasks, robotic planning algorithms have been highly
effective in cases where system dynamics is easily speci-
fied by an efficient forward model (Berenson, Abbeel, and
Goldberg 2012). However, for tasks involving interactions
with objects, dynamics are very difficult to model without
complete knowledge of the parameters of the objects such
as mass and friction (Ji and Xiao 2001). Using inaccurate
models for planning can result in plans that are ineffective
and fail to complete the task (McConachie et al. 2020). In
addition for such repetitive tasks, we expect the robot’s task
performance to improve, leading to efficient plans in later

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (left) PR2 lifting a heavy dumbbell, that is mod-
eled as light, to a goal location that is higher than the start
location resulting in dynamics that are inaccurately mod-
eled (right) Mobile robot navigating around a track with
icy patches with unknown friction parameters leading to the
robot skidding. In both cases, any path to the goal needs to
contain a transition (pink) whose dynamics are not modeled
accurately.

repetitions. Thus, we need a planning approach that can use
potentially inaccurate models while leveraging experience
from past executions to complete the task in each repetition,
and improve performance across repetitions.

A recent planning approach, CMAX, introduced in (Vem-
ula et al. 2020) adapts its planning strategy online to account
for any inaccuracies in the forward model without requiring
any updates to the dynamics of the model. CMAX achieves
this online by inflating the cost of any transition that is found
to be incorrectly modeled and replanning, thus biasing the
resulting plans away from regions where the model is inac-
curate. It does so while maintaining guarantees on complet-
ing the task, without any resets, in a finite number of exe-
cutions. However, CMAX requires that there always exists
a path from the current state of the robot to the goal con-
taining only transitions that have not yet been found to be
incorrectly modeled. This is a strong assumption on the ac-
curacy of the model and can often be violated, especially in
the context of repetitive tasks.

For example, consider the task shown in Figure 1(left)
where a robotic arm needs to repeatedly pick a heavy ob-
ject, that is incorrectly modeled as light, and place it on top
of a taller table while avoiding an obstacle. As the object

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6147

is heavy, transitions that involve lifting the object will have
discrepancy between true and modeled dynamics. However,
any path from the start pose to the goal pose requires lift-
ing the object and thus, the resulting plan needs to contain
a transition that is incorrectly modeled. This violates the
aforementioned assumption of CMAX and it ends up inflat-
ing the cost of any transition that lifts the object, resulting in
plans that avoid lifting the object in future repetitions. Thus,
the quality of CMAX solution deteriorates across repetitions
and, in some cases, it even fails to complete the task. Fig-
ure 1(right) presents another example task where a mobile
robot is navigating around a track with icy patches that have
unknown friction parameters. Once the robot enters a patch,
any action executed results in the robot skidding, thus vi-
olating the assumption of CMAX because any path to the
goal from current state will have inaccurately modeled tran-
sitions. CMAX ends up inflating the cost of all actions exe-
cuted inside the icy patch, leading to the robot being unable
to find a path in future laps and failing to complete the task.
Thus, in both examples, we need a planning approach that
allows solutions to contain incorrectly modeled transitions
while ensuring that the robot reaches the goal.

In this paper we present CMAX++, an approach for inter-
leaving planning and execution that uses inaccurate models
and leverages experience from past executions to provably
complete the task in each repetition without any resets. Fur-
thermore, it improves the quality of solution across repeti-
tions. In contrast to CMAX, CMAX++ requires weaker con-
ditions to ensure task completeness, and is provably guaran-
teed to converge to a plan with optimal cost as the number
of repetitions increases. The key idea behind CMAX++ is
to combine the conservative behavior of CMAX that tries
to avoid incorrectly modeled regions with model-free Q-
learning that tries to estimate and follow the optimal cost-
to-goal value function with no regard for any discrepancies
between modeled and true dynamics. This enables CMAX++
to compute plans that utilize inaccurately modeled transi-
tions, unlike CMAX. Based on this idea, we present an algo-
rithm for small state spaces, where we can do exact planning,
and a practical algorithm for large state spaces using func-
tion approximation techniques. We also propose an adap-
tive version of CMAX++ that intelligently switches between
CMAX and CMAX++ to combine the advantages of both ap-
proaches, and exhibits goal-driven behavior in earlier repe-
titions and optimality in later repetitions. The proposed al-
gorithms are tested on simulated robotic tasks: 3D mobile
robot navigation where the track friction is incorrectly mod-
eled (Figure 1 right) and a 7D pick-and-place task where the
mass of the object is unknown (Figure 1 left).

Related Work
A typical approach to planning in tasks with unknown pa-
rameters is to use acquired experience from executions to
update the dynamics of the model and replan (Sutton 1991).
This works well in practice for tasks where the forward
model is flexible and can be updated efficiently. However
for real world tasks, the models used for planning cannot be
updated efficiently online (Todorov, Erez, and Tassa 2012)
and are often precomputed offline using expensive proce-

dures (Hauser et al. 2006). Approaches, such as (Ramos,
Possas, and Fox 2019), that estimate parameters of the dy-
namical model online can fail in cases where the uncertainty
cannot be accounted by any of the parameters. Another line
of works (Saveriano et al. 2017; Abbeel, Quigley, and Ng
2006) seek to learn a residual dynamical model to account
for the inaccuracies in the initial model. However, it can take
a prohibitively large number of executions to learn the true
dynamics, especially in domains like deformable manipula-
tion (Essahbi, Bouzgarrou, and Gogu 2012). This precludes
these approaches from demonstrating a goal-driven behavior
as we show in our experimental analysis.

Recent works such as CMAX (Vemula et al. 2020)
and (McConachie et al. 2020) pursue an alternative approach
which does not require updating the dynamics of the model
or learning a residual component. These approaches exhibit
goal-driven behavior by focusing on completing the task and
not on modeling the true dynamics accurately. While CMAX
achieves this by inflating the cost of any transition whose dy-
namics are inaccurately modeled, (McConachie et al. 2020)
present an approach that learns a binary classifier offline that
is used online to predict whether a transition is accurately
modeled or not. Although these methods work well in prac-
tice for goal-oriented tasks, they do not leverage experience
acquired online to improve the quality of solution when used
for repetitive tasks.

Our work is closely related to approaches that integrate
model-based planning with model-free learning. (Lee et al.
2020) use model-based planning in regions where the dy-
namics are accurately modeled and switch to a model-
free policy in regions with high uncertainty. However, they
mostly focus on perception uncertainty and require a coarse
estimate of the uncertain region prior to execution, which is
often not available for tasks with other modalities of uncer-
tainty like unknown inertial parameters. A very recent work
by (Lagrassa, Lee, and Kroemer 2020) uses a model-based
planner until a model inaccuracy is detected and switches
to a model-free policy to complete the task. Similar to our
approach, they deal with general modeling errors but rely on
expert demonstrations to learn the model-free policy. In con-
trast, our approach does not require any expert demonstra-
tions and only uses the experience acquired online to obtain
model-free value estimates that are used within planning.

Finally, our approach is also related to the field of real-
time heuristic search which tackles the problem of efficient
planning in large state spaces with bounded planning time.
In this work, we introduce a novel planner that is inspired
by LRTA* (Korf 1990) which limits the number of expan-
sions in the search procedure and interleaves execution with
planning. Crucially, our planner also interleaves planning
and execution but unlike these approaches, employs model-
free value estimates obtained from past experience within
the search.

Problem Setup
Following the notation of (Vemula et al. 2020), we consider
the deterministic shortest path problem that can be repre-
sented using the tuple M = (S,A,G, f, c) where S is the
state space, A is the action space, G ⊆ S is the non-empty

6148

set of goals, f : S × A → S is a deterministic dynamics
function, and c : S × A → R+ ∪ {0} is the cost function.
Crucially, our approach assumes that the action space A is
discrete, and any goal state g ∈ G is a cost-free termina-
tion state. The objective of the shortest path problem is to
find the least-cost path from a given start state s1 ∈ S to
any goal state g ∈ G in M . As is typical in shortest path
problems, we assume that there exists at least one path from
each state s ∈ S to one of the goal states, and that the cost
of any transition from a non-goal state is positive (Bertsekas
2005). We will use V (s) to denote the state value function
(a running estimate of cost-to-goal from state s,) andQ(s, a)
to denote the state-action value function (a running estimate
of the sum of transition cost and cost-to-goal from succes-
sor state,) for any state s and action a. Similarly, we will use
the notation V ∗(s) and Q∗(s, a) to denote the correspond-
ing optimal value functions. A value estimate is called ad-
missible if it underestimates the optimal value function at
all states and actions, and is called consistent if it satisfies
the triangle inequality, i.e. V (s) ≤ c(s, a) + V (f(s, a)) and
Q(s, a) ≤ c(s, a)+V (f(s, a)), and V (g) = 0 for all g ∈ G.

In this work, we focus on repetitive robotic tasks where
the true deterministic dynamics f are unknown but we have
access to an approximate model described using M̂ =

(S,A,G, f̂ , c) where f̂ approximates the true dynamics. In
each repetition of the task, the robot acts in the environment
M to acquire experience over a single trajectory and reach
the goal, without access to any resets. This rules out any
episodic approach. Since the true dynamics are unknown
and can only be discovered through executions, we consider
the online real-time planning setting where the robot has to
interleave planning and execution. In our motivating navi-
gation example (Figure 1 right,) the approximate model M̂
represents a track with no icy patches whereas the environ-
ment M contains icy patches. Thus, there is a discrepancy
between the modeled dynamics f̂ and true dynamics f . Fol-
lowing (Vemula et al. 2020), we will refer to state-action
pairs that have inaccurately modeled dynamics as “incor-
rect” transitions, and use the notation X ⊆ S× A to denote
the set of discovered incorrect transitions. The objective in
our work is for the robot to reach a goal in each repetition,
despite using an inaccurate model for planning while im-
proving performance, measured using the cost of executions,
across repetitions.

Approach
In this section, we will describe the proposed approach
CMAX++. First, we will present a novel planner used
in CMAX++ that can exploit incorrect transitions using
their model-free Q-value estimates. Second, we present
CMAX++ and its adaptive version for small state spaces, and
establish their guarantees. Finally, we describe a practical
instantiation of CMAX++ for large state spaces leveraging
function approximation techniques.

Hybrid Limited-Expansion Search Planner
During online execution, we want the robot to acquire expe-
rience and leverage it to compute better plans. This requires

Algorithm 1 Hybrid Limited-Expansion Search

1: procedure SEARCH(s, M̂ , V,Q,X ,K)
2: Initialize g(s) = 0, min-priority open list O, and

closed list C
3: Add s to open list O with priority p(s) = g(s)+V (s)
4: for i = 1, 2, · · · ,K do
5: Pop si from O
6: if si is a dummy state or si ∈ G then
7: Set sbest ← si and go to Line 22
8: for a ∈ A do . Expanding state si
9: if (si, a) ∈ X then . Incorrect transition

10: Add a dummy state s′ toO with priority p(s′) =
g(si) +Q(si, a)

11: continue
12: Get successor s′ = f̂(si, a)
13: If s′ ∈ C, continue
14: if s′ ∈ O and g(s′) > g(si) + c(si, a) then
15: Set g(s′) = g(si)+c(si, a) and recompute p(s′)
16: Reorder open list O
17: else if s′ /∈ O then
18: Set g(s′) = g(si) + c(si, a)
19: Add s′ to O with priority p(s′) = g(s′)+V (s′)

20: Add si to closed list C
21: Pop sbest from open list O
22: for s′ ∈ C do
23: Update V (s′)← p(sbest)− g(s′)
24: Backtrack from sbest to s, and set abest as the first ac-

tion on path from s to sbest in the search tree
return abest

a hybrid planner that is able to incorporate value estimates
obtained using past experience in addition to model-based
planning, and quickly compute the next action to execute. To
achieve this, we propose a real-time heuristic search-based
planner that performs a bounded number of expansions and
is able to utilize Q-value estimates for incorrect transitions.

The planner is presented in Algorithm 1. Given the cur-
rent state s, the planner constructs a lookahead search tree
using at most K state expansions. For each expanded state
si, if any outgoing transition has been flagged as incorrect
based on experience, i.e. (si, a) ∈ X , then the planner cre-
ates a dummy state with priority computed using the model-
free Q-value estimate of that transition (Line 10). Note that
we create a dummy state because the model M̂ does not
know the true successor of an incorrect transition. For the
transitions that are correct, we obtain successor states us-
ing the approximate model M̂ . This ensures that we rely on
the inaccurate model only for transitions that are not known
to be incorrect. At any stage, if a dummy state is expanded
then we need to terminate the search as the model M̂ does
not know any of its successors, in which case we set the
best state sbest as the dummy state (Line 7). Otherwise, we
choose sbest as the best state (lowest priority) among the
leaves of the search tree after K expansions (Line 21). Fi-
nally, the best action to execute at the current state s is
computed as the first action along the path from s to sbest

6149

Algorithm 2 CMAX++ (regular text) and A-CMAX++ (reg-
ular and italics text) in small state spaces

Require: Model M̂ , start state s, initial value estimates V ,
Q, number of expansions K, t ← 1, incorrect set X ←
{}, Number of repetitions N , Sequence {αi ≥ 1}Ni=1,
initial penalized value estimates Ṽ = V , penalized
model M̃ ← M̂

1: for each repetition i = 1, · · · , N do
2: t← 1, s1 ← s
3: while st /∈ G do
4: Compute at = SEARCH(st, M̂ , V,Q,X ,K)

5: Compute ãt = SEARCH(st, M̃ , Ṽ , Q, {},K)

6: If Ṽ (st) ≤ αiV (st), assign at = ãt
7: Execute at in environment to get st+1 = f(st, at)

8: if st+1 6= f̂(st, at) then
9: Add (st, at) to the set: X ← X ∪ {(st, at)}

10: Update: Q(st, at) = c(st, at) + V (st+1)

11: Update penalized model M̃ ← M̃X
12: t← t+ 1

in the search tree (Line 24). The planner also updates state
value estimates V of all expanded states using the priority of
the best state p(sbest) to make the estimates more accurate
(Lines 22 and 23) similar to RTAA* (Koenig and Likhachev
2006).

The ability of our planner to exploit incorrect transitions
using their model-free Q-value estimates, obtained from
past experience, distinguishes it from real-time search-based
planners such as LRTA* (Korf 1990) which cannot utilize
model-free value estimates during planning. This enables
CMAX++ to result in plans that utilize incorrect transitions
if they enable the robot to get to the goal with lower cost.

CMAX++ in Small State Spaces
CMAX++ in small state spaces is simple and easy-to-
implement as it is feasible to maintain value estimates in
a table for all states and actions and to explicitly maintain a
running set of incorrect transitions with fast lookup without
resorting to function approximation techniques.

The algorithm is presented in Algorithm 2 (only the reg-
ular text.) CMAX++ maintains a running estimate of the set
of incorrect transitions X , and updates the set whenever it
encounters an incorrect state-action pair during execution.
Crucially, unlike CMAX, it maintains a Q-value estimate for
the incorrect transition that is used during planning in Algo-
rithm 1, thereby enabling the planner to compute paths that
contain incorrect transitions. It is also important to note that,
like CMAX, CMAX++ never updates the dynamics of the
model. However, instead of using the penalized model for
planning as CMAX does, CMAX++ uses the initial model
M̂ , and utilizes both model-based planning and model-free
Q-value estimates to replan a path from the current state to
a goal.

The downside of CMAX++ is that estimating Q-values
from online executions can be inefficient as it might take
many executions before we obtain an accurate Q-value es-

timate for an incorrect transition. This has been extensively
studied in the past and is a major disadvantage of model-free
methods (Sun et al. 2019). As a result of this inefficiency,
CMAX++ lacks the goal-driven behavior of CMAX in early
repetitions of the task, despite achieving optimal behavior in
later repetitions. In the next section, we present an adaptive
version of CMAX++ (A-CMAX++) that combines the goal-
driven behavior of CMAX with the optimality of CMAX++.

Adaptive Version of CMAX++
Background on CMAX Before we describe A-CMAX++,
we will start by summarizing CMAX. For more details, re-
fer to (Vemula et al. 2020). At each time step t during ex-
ecution, CMAX maintains a running estimate of the incor-
rect set X , and constructs a penalized model specified by
the tuple M̃X = (S,A,G, f̂ , c̃X) where the cost function
c̃X (s, a) = |S| if (s, a) ∈ X , else c̃X (s, a) = c(s, a). In
other words, the cost of any transition found to be incorrect
is set high (or inflated) while the cost of other transitions are
the same as in M̂ . CMAX uses the penalized model M̃X to
plan a path from the current state st to a goal state. Subse-
quently, CMAX executes the first action at along the path
and observes if the true dynamics and model dynamics dif-
fer on the executed action. If so, the state-action pair (st, at)
is appended to the incorrect set X and the penalized model
M̃X is updated. CMAX continues to do this at every timestep
until the robot reaches a goal state.

Observe that the inflation of cost for any incorrect state-
action pair biases the planner to “explore” all other state-
action pairs that are not yet known to be incorrect before
it plans a path using an incorrect transition. This induces
a goal-driven behavior in the computed plan that enables
CMAX to quickly find an alternative path and not waste ex-
ecutions learning the true dynamics

A-CMAX++ A-CMAX++ is presented in Algorithm 2
(regular and italics text.) A-CMAX++ maintains a running
estimate of incorrect set X and constructs the penalized
model M̃ at each time step t, similar to CMAX. For any
state at time step t, we first compute the best action at based
on the approximate model M̂ and the model-free Q-value
estimates (Line 4.) In addition, we also compute the best
action ãt using the penalized model M̃ , similar to CMAX,
that inflates the cost of any incorrect transition (Line 5.)
The crucial step in A-CMAX++ is Line 6 where we com-
pare the penalized value Ṽ (st) (obtained using penalized
model M̃) and the non-penalized value V (st) (obtained us-
ing approximate model M̂ and Q-value estimates.) Given
a sequence {αi ≥ 1} for repetitions i = 1, · · · , N of the
task, if Ṽ (st) ≤ αiV (st), then we execute action ãt, else
we execute at. This implies that if the cost incurred by fol-
lowing CMAX actions in the future is within αi times the
cost incurred by following CMAX++ actions, then we prefer
to execute CMAX.

If the sequence {αi} is chosen to be non-increasing such
that α1 ≥ α2 · · · ≥ αN ≥ 1, then we can observe that
A-CMAX++ has the desired anytime-like behavior. It re-
mains goal-driven in early repetitions, by choosing CMAX

6150

actions, and converges to optimal behavior in later repe-
titions, by choosing CMAX++ actions. Further, the execu-
tions needed to obtain accurate Q-value estimates is dis-
tributed across repetitions ensuring that A-CMAX++ does
not have poor performance in any single repetition. Thus,
A-CMAX++ combines the advantages of both CMAX and
CMAX++.

Theoretical Guarantees
We will start with formally stating the assumption needed
by CMAX to ensure completeness:
Assumption 0.1 ((Vemula et al. 2020)). Given a penalized
model M̃Xt and the current state st at any time step t, there
always exists at least one path from st to a goal that does
not contain any state-action pairs (s, a) that are known to
be incorrect, i.e. (s, a) ∈ Xt.

Observe that the above assumption needs to be valid at
every time step t before the robot reaches a goal and thus,
can be hard to satisfy. Before we state the theoretical guar-
antees for CMAX++, we need the following assumption on
the approximate model M̂ that is used for planning:

Assumption 0.2. The optimal value function V̂ ∗ using the
dynamics of approximate model M̂ underestimates the opti-
mal value function V ∗ using the true dynamics of M at all
states, i.e. V̂ ∗(s) ≤ V ∗(s) for all s ∈ S.

In other words, if there exists a path from any state s to
a goal state in the environment M , then there exists a path
with the same or lower cost from s to a goal in the approxi-
mate model M̂ . In our motivating example of pick-and-place
(Figure 1 left,) this assumption is satisfied if the object is
modeled as light in M̂ , as the object being heavy in reality
can only increase the cost. This assumption was also consid-
ered in previous works such as (Jiang 2018) and is known as
the Optimistic Model Assumption. More discussion on this
assumption is given in Appendix C. We can now state the
following guarantees:
Theorem 0.1 (Completeness). Assume the initial value es-
timates V,Q are admissible and consistent. Then we have,

1. If Assumption 0.2 holds then using either CMAX++ or A-
CMAX++, the robot is guaranteed to reach a goal state in
at most |S|3 time steps in each repetition.

2. If Assumption 0.1 holds then (a) using A-CMAX++ with
a large enough αi in any repetition i (typically true for
early repetitions - more details in Appendix B) the robot
is guaranteed to reach a goal state in at most |S|2 time
steps, and (b) using CMAX++, it is guaranteed to reach a
goal state in at most |S|3 time steps in each repetition

Proof Sketch. The first part of theorem follows from the
analysis of Q-learning for systems with deterministic dy-
namics (Koenig and Simmons 1993). In the worst case, if
the model is incorrect everywhere and if Assumption 0.2
(or Assumption 0.1) holds then, Algorithm 2 reduces to Q-
learning, and hence we can borrow its worst case bounds.
The second part of the theorem concerning A-CMAX++ fol-
lows from the completeness proof of CMAX. �

Algorithm 3 CMAX++ in large state spaces

Require: Model M̂ , start state s, value function approxima-
tors Vθ, Qζ , number of expansions K, t ← 1, Discrep-
ancy threshold ξ, Radius of hypersphere δ, Set of hy-
perspheres X ξ ← {}, Number of repetitions N , Batch
size B, State buffer DS , Transition buffer DSA, Learn-
ing rate η, Number of updates U

1: for each repetition i = 1, · · · , N do
2: t← 1, s1 ← s
3: while st /∈ G do
4: Compute at = SEARCH(st, M̂ , Vθ, Qζ ,X ξ,K)
5: Execute at in environment to get st+1 = f(st, at)

6: if d(st+1, f̂(st, at)) > ξ then
7: Add hypersphere: X ξ ← X ξ∪{sphere(st, at, δ)}
8: Add st to DS , and (st, at, st+1) to DSA
9: for u = 1, · · · , U do . Approximator updates

10: Q UPDATE(Qζ , Vθ,DSA)
11: V UPDATE(Vθ, Qζ ,DS ,X ξ)
12: t← t+ 1
13: procedure Q UPDATE(Qζ , Vθ,DSA)
14: Sample B transitions from DSA with replacement
15: Construct training set XQ = {((si, ai), Q(si, ai))}

for each sampled transition (si, ai, s
′
i) and compute

Q(si, ai) = c(si, ai) + Vθ(s
′
i)

16: Update: ζ ← ζ − η∇ζLQ(Qζ ,XQ)
17: procedure V UPDATE(Vθ, Qζ ,DS ,X ξ)
18: Sample B states from DS with replacement
19: Call SEARCH(si, M̂ , Vθ, Qζ ,X ξ,K) for each sampled

si to get all states on closed list s′i and their corre-
sponding value updates V (s′i) to construct training set
XV = {(s′i, V (s′i)}

20: Update: θ ← θ − η∇θLV (Vθ,XV)

Theorem 0.2 (Asymptotic Convergence). Assume Assump-
tion 0.2 holds, and that the initial value estimates V,Q are
admissible and consistent. For sufficiently large number of
repetitions N , there exists an integer j ≤ N such that the
robot follows a path with the optimal cost to the goal using
CMAX++ in Algorithm 2 in repetitions i ≥ j.
Proof Sketch. The guarantee follows from the asymptotic
convergence of Q-learning (Koenig and Simmons 1993). �

It is important to note that the conditions required for The-
orem 0.1 are weaker than the conditions required for com-
pleteness of CMAX. Firstly, if either Assumption 0.1 or As-
sumption 0.2 holds then CMAX++ can be shown to be com-
plete, but CMAX is guaranteed to be complete only under
Assumption 0.1. Furthermore, Assumption 0.2 only needs
to hold for the approximate model M̂ we start with, whereas
Assumption 0.1 needs to be satisfied for every penalized
model M̃ constructed at any time step t during execution.

Large State Spaces
In this section, we present a practical instantiation of
CMAX++ for large state spaces where it is infeasible to
maintain tabular value estimates and the incorrect set X

6151

explicitly. Thus, we leverage function approximation tech-
niques to maintain these estimates. Assume that there exists
a metric d under which S is bounded. We relax the defini-
tion of incorrect set using this metric to define X ξ as the set
of all (s, a) pairs such that d(f(s, a), f̂(s, a)) > ξ where
ξ ≥ 0. Typically, we chose ξ to allow for small modeling
discrepancies that can be compensated by a low-level path
following controller.

CMAX++ in large state spaces is presented in Algo-
rithm 3. The algorithm closely follows CMAX for large
state spaces presented in (Vemula et al. 2020). The in-
correct set X ξ is maintained using sets of hyperspheres
with each set corresponding to a discrete action. When-
ever the agent executes an incorrect state-action (s, a),
CMAX++ adds a hypersphere centered at s with radius
δ, as measured using metric d, to the incorrect set corre-
sponding to action a. In future planning, any state-action
pair (s′, a′) is declared incorrect if s′ lies inside any of
the hyperspheres in the incorrect set corresponding to ac-
tion a′. After each execution, CMAX++ proceeds to up-
date the value function approximators (Line 9) by sam-
pling previously executed transitions and visited states
from buffers and performing gradient descent steps (Proce-
dures 13 and 17) using mean squared loss functions given by
LQ(Qζ ,XQ) = 1

2|XQ|
∑

(si,ai)∈XQ
(Q(si, ai)−Qζ(si, ai))2

and LV (Vθ,XV) = 1
2|XV |

∑
si∈XV

(V (si)− Vθ(si))2.
By using hyperspheres, CMAX++ “covers” the set of in-

correct transitions, and enables fast lookup using KD-Trees
in the state space. Like Algorithm 2, we never update the
approximate model M̂ used for planning. However, unlike
Algorithm 2, we update the value estimates for sampled pre-
vious transitions and states (Lines 14 and 18). This ensures
that the global function approximations used to maintain
value estimates Vθ, Qζ have good generalization beyond the
current state and action. Algorithm 3 can also be extended in
a similar fashion as Algorithm 2 to include A-CMAX++ by
maintaining a penalized value function approximation and
updating it using gradient descent.

Experiments
We test the efficiency of CMAX++ and A-CMAX++ on sim-
ulated robotic tasks emphasizing their performance in each
repetition of the task, and improvement across repetitions.
In each task, we start the next repetition only if the robot
reached a goal in previous repetition.

3D Mobile Robot Navigation with Icy Patches
In this experiment, the task is for a mobile robot with Reed-
Shepp dynamics (Reeds and Shepp 1990) to navigate around
a track M with icy patches (Figure 1 right.) This can be rep-
resented as a planning problem in 3D discrete state space
S with any state represented using the tuple (x, y, θ) where
(x, y) is the 2D position of the robot and θ describes its head-
ing. The XY-space is discretized into 100×100 grid and the
θ dimension is discretized into 16 cells. We construct a lat-
tice graph (Pivtoraiko, Knepper, and Kelly 2009) using 66
motion primitives that are pre-computed offline respecting
the differential constraints on the motion of the robot. The

1 20 40 60 80 100 120 140 160 180 200
Lap

102

103

104

A
ve
ra
ge

nu
m
b
er

of
st
ep
s
ta
ke
n
to

fin
is
h
la
p

10

9

6

5 4 4 4
2 2 2 2

10

10 10
10

10 10
10

10
10 10 10

10

10
10

10
10 10 10

10 10 10 10

3D Mobile Robot Navigation Experiment

Cmax

Cmax++

A-Cmax++

Figure 2: Number of steps taken to finish a lap averaged
across 10 instances each with 5 icy patches placed randomly
around the track. The number above each bar reports the
number of instances in which the robot was successful in
finishing the respective lap within 10000 time steps.

model M̂ used for planning contains the same track as M
but without any icy patches, thus the robot discovers transi-
tions affected by icy patches only through executions.

Since the state space is small, we use Algorithm 2 for
CMAX++ and A-CMAX++. For A-CMAX++, we use a non-
increasing sequence with αi = 1 + βi where β1 = 100
and βi is decreased by 2.5 after every 5 repetitions (See
Appendix A for more details on choosing the sequence.)
We compare both algorithms with CMAX. For all the ap-
proaches, we perform K = 100 expansions. Since the mo-
tion primitives are computed offline using an expensive pro-
cedure, it is not feasible to update the dynamics of model M̂
online and hence, we do not compare with any model learn-
ing baselines. We also conducted several experiments with
model-free Q-learning, and found that it performed poorly
requiring a very large number of executions and finishing
only 10 laps in the best case. Hence, we do not include it in
our results shown in Figure 2.

CMAX performs well in the early laps computing paths
with lower costs compared to CMAX++. However, after a
few laps the robot using CMAX gets stuck within an icy
patch and does not make any more progress. Observe that
when the robot is inside the icy patch, Assumption 0.1 is vi-
olated and CMAX ends up inflating all transitions that take
the robot out of the patch leading to the robot finishing 200
laps in 2 out of 10 instances. CMAX++, on the other hand,
is suboptimal in the initial laps, but converges to paths with
lower costs in later laps. More importantly, the robot using
CMAX++ manages to finish 200 laps in all 10 instances. A-
CMAX++ also successfully finishes 200 laps in all 10 in-
stances. However, it outperforms both CMAX and CMAX++
in all laps by intelligently switching between them achiev-
ing goal-driven behavior in early laps and optimal behavior
in later laps. Thus, A-CMAX++ combines the advantages of
CMAX and CMAX++.

7D Pick-and-Place with a Heavy Object
The task in this experiment is to pick and place a heavy ob-
ject from a shorter table, using a 7 degree-of-freedom (DOF)

6152

Repetition→ 1 5 10 15 20
Steps Success Steps Success Steps Success Steps Success Steps Success

CMAX 17.8± 3.4 100% 13.6± 0.5 60% 18± 0 20% 15± 0 20% 15± 0 20%
CMAX++ 17± 4.9 100% 14.2± 3.3 100% 10.6± 0.3 100% 11± 0 100% 10.8± 0.1 100%

A-CMAX++ 17.8± 3.4 100% 11.6± 0.7 100% 17± 6 100% 10.4± 0.3 100% 10.6± 0.4 100%
Model KNN 40.6± 7.3 100% 12.8± 1.3 100% 29.6± 16.1 100% 15.8± 2.9 100% 12.4± 1.4 100%
Model NN 56± 16.2 100% 208.2± 92.1 80% 124.5± 81.6 40% 28± 7.7 40% 37.5± 20.1 40%
Q-learning 172.4± 75 100% 23.2± 10.3 80% 26.5± 6.7 80% 18± 2.8 80% 10.2± 0.6 80%

Table 1: Number of steps taken to reach the goal in 7D pick-and-place experiment for 5 instances, each with random start and
obstacle locations. We report mean and standard error only among successful instances in which the robot reached the goal
within 500 timesteps. The success subcolumn indicates percentage of successful instances.

robotic arm (Figure 1 left) to a goal pose on a taller table,
while avoiding an obstacle. As the object is heavy, the arm
cannot generate the required force in certain configurations
and can only lift the object to small heights. The problem
is represented as planning in 7D discrete statespace where
the first 6 dimensions describe the 6 DOF pose of the arm
end-effector, and the last dimension corresponds to the re-
dundant DOF in the arm. The action space A is a discrete set
of 14 actions corresponding to moving in each dimension by
a fixed offset in the positive or negative direction. The model
M̂ used for planning models the object as light, and hence
does not capture the dynamics of the arm correctly when it
tries to lift the heavy object. The state space is discretized
into 10 cells in each dimension resulting in a total of 107

states. Thus, we need to use Algorithm 3 for CMAX++ and
A-CMAX++. The goal is to pick and place the object for 20
repetitions where at the start of each repetition the object is
in the start pose and needs to reach the goal pose by the end
of repetition.

We compare with CMAX for large state spaces, model-
free Q-learning (van Hasselt, Guez, and Silver 2016), and
residual model learning baselines (Saveriano et al. 2017).
We chose two kinds of function approximators for the
learned residual dynamics: global function approximators
such as Neural Networks (NN) and local memory-based
function approximators such as K-Nearest Neighbors re-
gression (KNN.) Q-learning baseline uses Q-values that are
cleverly initialized using the model M̂ making it a strong
model-free baseline. We use the same neural network func-
tion approximators for maintaining value estimates for all
approaches and perform K = 5 expansions. We chose the
metric d as the manhattan metric and use ξ = 0 for this ex-
periment. We use a radius of δ = 3 for the hyperspheres
introduced in the 7D discrete state space, and to ensure fair
comparison use the same radius for KNN regression. These
values are chosen to reflect the discrepancies observed when
the arm tries to lift the object. All approaches use the same
initial value estimates obtained through planning in M̂ . A-
CMAX++ uses a non-increasing sequence αi = 1+βi where
β1 = 4 and βi+1 = 0.5βi.

The results are presented in Table 1. Model-free Q-
learning takes a large number of executions in the initial rep-
etitions to estimate accurate Q-value estimates but in later
repetitions computes paths with lower costs managing to fin-
ish all repetitions in 4 out of 5 instances. Among the residual

model learning baselines, the KNN approximator is success-
ful in all instances but takes a large number of executions to
learn the true dynamics, while the NN approximator finishes
all repetitions in only 2 instances. CMAX performs well in
the initial repetitions but quickly gets stuck due to inflated
costs and manages to complete the task for 20 repetitions
in only 1 instance. CMAX++ is successful in finishing the
task in all instances and repetitions, while improving perfor-
mance across repetitions. Finally as expected, A-CMAX++
also finishes all repetitions, sometimes even having better
performance than CMAX and CMAX++.

Discussion and Future Work
A major advantage of CMAX++ is that, unlike previous ap-
proaches that deal with inaccurate models, it can exploit in-
accurately modeled transitions without wasting online exe-
cutions to learn the true dynamics. It estimates the Q-value
of incorrect transitions leveraging past experience and en-
ables the planner to compute solutions containing such tran-
sitions. Thus, CMAX++ is especially useful in robotic do-
mains with repetitive tasks where the true dynamics are in-
tractable to model, such as deformable manipulation, or vary
over time due to reasons such as wear and tear. Furthermore,
the optimistic model assumption is easier to satisfy, when
compared to assumptions used by previous approaches like
CMAX, and performance of CMAX++ degrades gracefully
with the accuracy of the model reducing to Q-learning in the
case where the model is inaccurate everywhere. Limitations
of CMAX++ and A-CMAX++ include hyperparameters such
as the radius δ and the sequence {αi}, which might need
to be tuned for the task. However, from our sensitivity ex-
periments (see Appendix A) we observe that A-CMAX++
performance is robust to the choice of sequence {αi} as
long as it is non-increasing. Note that Assumption 0.2 can
be restrictive for tasks where designing an initial optimistic
model requires extensive domain knowledge. However, it is
infeasible to relax this assumption further without resorting
to global undirected exploration techniques (Thrun 1992),
which are highly sample inefficient, to ensure completeness.

An interesting future direction is to interleave model iden-
tification with CMAX++ to combine the best of approaches
that learn the true dynamics and CMAX++. For instance,
given a set of plausible forward models we seek to quickly
identify the best model while ensuring efficient performance
in each repetition.

6153

Acknowledgements
This work was supported by ONR grant N00014-18-1-2775
and ARL grant W911NF-18-2-0218. AV would like to thank
Jacky Liang, Fahad Islam, Ankit Bhatia, Allie Del Giorno,
Dhruv Saxena and Pragna Mannam for their help in review-
ing the draft. AV is supported by the CMU presidential fel-
lowship endowed by TCS. Finally, AV would like to thank
Caelan Garrett for developing and maintaining the wonder-
ful ss-pybullet library.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inaccu-
rate models in reinforcement learning. In Cohen, W. W.;
and Moore, A. W., eds., Machine Learning, Proceedings
of the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume
148 of ACM International Conference Proceeding Series,
1–8. ACM. doi:10.1145/1143844.1143845. URL https:
//doi.org/10.1145/1143844.1143845.

Berenson, D.; Abbeel, P.; and Goldberg, K. 2012. A robot
path planning framework that learns from experience. In
IEEE International Conference on Robotics and Automa-
tion, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota,
USA, 3671–3678. IEEE. doi:10.1109/ICRA.2012.6224742.
URL https://doi.org/10.1109/ICRA.2012.6224742.

Bertsekas, D. P. 2005. Dynamic programming and optimal
control, 3rd Edition. Athena Scientific. ISBN 1886529264.
URL https://www.worldcat.org/oclc/314894080.

Essahbi, N.; Bouzgarrou, B. C.; and Gogu, G. 2012. Soft
Material Modeling for Robotic Manipulation. In Mecha-
nisms, Mechanical Transmissions and Robotics, volume 162
of Applied Mechanics and Materials, 184–193. Trans Tech
Publications Ltd. doi:10.4028/www.scientific.net/AMM.
162.184.

Hauser, K. K.; Bretl, T.; Harada, K.; and Latombe, J.
2006. Using Motion Primitives in Probabilistic Sample-
Based Planning for Humanoid Robots. In Akella, S.; Am-
ato, N. M.; Huang, W. H.; and Mishra, B., eds., Algo-
rithmic Foundation of Robotics VII, Selected Contributions
of the Seventh International Workshop on the Algorithmic
Foundations of Robotics, WAFR 2006, July 16-18, 2006,
New York, NY, USA, volume 47 of Springer Tracts in Ad-
vanced Robotics, 507–522. Springer. doi:10.1007/978-3-
540-68405-3\ 32. URL https://doi.org/10.1007/978-3-540-
68405-3\ 32.

Ji, X.; and Xiao, J. 2001. Planning Motions Compliant to
Complex Contact States. IJ Robotics Res. 20(6): 446–465.
doi:10.1177/02783640122067480. URL https://doi.org/10.
1177/02783640122067480.

Jiang, N. 2018. PAC Reinforcement Learning With an Im-
perfect Model. In McIlraith, S. A.; and Weinberger, K. Q.,
eds., Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA, Febru-

ary 2-7, 2018, 3334–3341. AAAI Press. URL https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16052.
Koenig, S.; and Likhachev, M. 2006. Real-time adaptive
A*. In Nakashima, H.; Wellman, M. P.; Weiss, G.; and
Stone, P., eds., 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006),
Hakodate, Japan, May 8-12, 2006, 281–288. ACM. doi:
10.1145/1160633.1160682. URL https://doi.org/10.1145/
1160633.1160682.
Koenig, S.; and Simmons, R. G. 1993. Complexity Anal-
ysis of Real-Time Reinforcement Learning. In Fikes, R.;
and Lehnert, W. G., eds., Proceedings of the 11th Na-
tional Conference on Artificial Intelligence. Washington,
DC, USA, July 11-15, 1993, 99–107. AAAI Press / The
MIT Press. URL http://www.aaai.org/Library/AAAI/1993/
aaai93-016.php.
Korf, R. E. 1990. Real-Time Heuristic Search. Artif. In-
tell. 42(2-3): 189–211. doi:10.1016/0004-3702(90)90054-4.
URL https://doi.org/10.1016/0004-3702(90)90054-4.
Lagrassa, A.; Lee, S.; and Kroemer, O. 2020. Learning skills
to patch plans based on inaccurate models. In 2020 IEEE
International Conference on Intelligent Robots and Systems
(IROS).
Lee, M. A.; Florensa, C.; Tremblay, J.; Ratliff, N. D.; Garg,
A.; Ramos, F.; and Fox, D. 2020. Guided Uncertainty-Aware
Policy Optimization: Combining Learning and Model-
Based Strategies for Sample-Efficient Policy Learning.
CoRR abs/2005.10872. URL https://arxiv.org/abs/2005.
10872.
McConachie, D.; Power, T.; Mitrano, P.; and Berenson, D.
2020. Learning When to Trust a Dynamics Model for Plan-
ning in Reduced State Spaces. IEEE Robotics Autom. Lett.
5(2): 3540–3547. doi:10.1109/LRA.2020.2972858. URL
https://doi.org/10.1109/LRA.2020.2972858.
Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. J. Field Robotics 26(3): 308–333. doi:10.1002/rob.
20285. URL https://doi.org/10.1002/rob.20285.
Ramos, F.; Possas, R.; and Fox, D. 2019. BayesSim: Adap-
tive Domain Randomization Via Probabilistic Inference for
Robotics Simulators. In Bicchi, A.; Kress-Gazit, H.; and
Hutchinson, S., eds., Robotics: Science and Systems XV,
University of Freiburg, Freiburg im Breisgau, Germany,
June 22-26, 2019. doi:10.15607/RSS.2019.XV.029. URL
https://doi.org/10.15607/RSS.2019.XV.029.
Reeds, J. A.; and Shepp, L. A. 1990. Optimal paths for a
car that goes both forwards and backwards. Pacific J. Math.
145(2): 367–393. URL https://projecteuclid.org:443/euclid.
pjm/1102645450.
Saveriano, M.; Yin, Y.; Falco, P.; and Lee, D. 2017. Data-
efficient control policy search using residual dynamics
learning. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2017, Vancouver, BC,
Canada, September 24-28, 2017, 4709–4715. IEEE. doi:
10.1109/IROS.2017.8206343. URL https://doi.org/10.1109/
IROS.2017.8206343.

6154

Sun, W.; Jiang, N.; Krishnamurthy, A.; Agarwal, A.; and
Langford, J. 2019. Model-based RL in Contextual Deci-
sion Processes: PAC bounds and Exponential Improvements
over Model-free Approaches. In Beygelzimer, A.; and Hsu,
D., eds., Conference on Learning Theory, COLT 2019, 25-
28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings
of Machine Learning Research, 2898–2933. PMLR. URL
http://proceedings.mlr.press/v99/sun19a.html.
Sutton, R. S. 1991. Dyna, an Integrated Architecture for
Learning, Planning, and Reacting. SIGART Bull. 2(4): 160–
163. doi:10.1145/122344.122377. URL https://doi.org/10.
1145/122344.122377.
Thrun, S. 1992. Efficient Exploration In Reinforcement
Learning. Technical Report CMU-CS-92-102, Carnegie
Mellon University, Pittsburgh, PA.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IROS 2012, Vilamoura, Algarve, Portugal, October 7-12,
2012, 5026–5033. IEEE. doi:10.1109/IROS.2012.6386109.
URL https://doi.org/10.1109/IROS.2012.6386109.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Re-
inforcement Learning with Double Q-Learning. In Schu-
urmans, D.; and Wellman, M. P., eds., Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, 2094–
2100. AAAI Press. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI16/paper/view/12389.
Vemula, A.; Oza, Y.; Bagnell, J.; and Likhachev, M. 2020.
Planning and Execution using Inaccurate Models with Prov-
able Guarantees. In Proceedings of Robotics: Science and
Systems. Corvalis, Oregon, USA. doi:10.15607/RSS.2020.
XVI.001.

6155

