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Abstract
3D object classification has attracted appealing attentions in
academic researches and industrial applications. However,
most existing methods need to access the training data of past
3D object classes when facing the common real-world sce-
nario: new classes of 3D objects arrive in a sequence. More-
over, the performance of advanced approaches degrades dra-
matically for past learned classes (i.e., catastrophic forget-
ting), due to the irregular and redundant geometric structures
of 3D point cloud data. To address these challenges, we pro-
pose a new Incremental 3D Object Learning (i.e., I3DOL)
model, which is the first exploration to learn new classes
of 3D object continually. Specifically, an adaptive-geometric
centroid module is designed to construct discriminative local
geometric structures, which can better characterize the irreg-
ular point cloud representation for 3D object. Afterwards, to
prevent the catastrophic forgetting brought by redundant ge-
ometric information, a geometric-aware attention mechanism
is developed to quantify the contributions of local geomet-
ric structures, and explore unique 3D geometric characteris-
tics with high contributions for classes incremental learning.
Meanwhile, a score fairness compensation strategy is pro-
posed to further alleviate the catastrophic forgetting caused
by unbalanced data between past and new classes of 3D ob-
ject, by compensating biased prediction for new classes in the
validation phase. Experiments on 3D representative datasets
validate the superiority of our I3DOL framework.

Introduction
Object recognition technology has achieved remarkable

developments in great quantifies of research fields, e.g., au-
tonomous driving (Behl et al. 2017; Li et al. 2020), intelli-
gent robotics (Stria and Hlavc 2018; Wei, Deng, and Yang
2020; Chen et al. 2020), object clustering (Yang et al. 2020;
Zhang et al. 2020a, 2021), medical diagnosis (Dong et al.
2019, 2020b), transfer learning (Dong et al. 2020a; Fang
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tional Nature Science Foundation of China under Grant (61722311,
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Figure 1: Demonstration of our I3DOL model to learn new
classes of 3D objects consecutively.

et al. 2020; Zhang et al. 2020b,c; Zhong et al. 2020) and
federated learning (Wang et al. 2019a, 2020). When com-
pared with 2D vision, the unordered 3D point cloud repre-
sentation collected by depth cameras or LiDAR system is
more difficult for object recognition to characterize the 3D
geometric information. To this end, various deep neural net-
works capable of reasoning about 3D geometric layout and
structure (Qi et al. 2017a,b) are proposed to explore the task-
specific semantic content. Intuitively, the advent of convolu-
tional architectures (Li et al. 2018; Li, Chen, and Hee Lee
2018; Wang et al. 2019b) has dramatically boosted the per-
formance of 3D object classification for point cloud repre-
sentation.

However, these existing methods are trained on a pre-
pared well-labeled dataset, whose the number of 3D ob-
ject categories is fixed in advance. This setup significantly
limits their application promotion in the real-world scenar-
ios where new classes of 3D object arrive continually in
a streaming manner, as shown in Figure 1. For example,
housekeeping robots (She et al. 2019) working for indoor
tasks cannot perform well in outdoor scenes, due to the lack
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of continual learning capacity for new 3D objects. A triv-
ial solution to address this is to access all the training data
of past learned indoor object classes, when long delay is al-
lowed for updating the current model. Nevertheless, it can
inevitably result in high computational power and storage
(e.g., large infrastructures), which are not satisfied in real-
world scenarios. Besides, the straightforward way is to apply
current classes incremental models (Rebuffi et al. 2017; Cas-
tro et al. 2018; Wu et al. 2019; Ostapenko et al. 2019) in 2D
vision equipped with a 3D point cloud feature extractor (Qi
et al. 2017b,a) into learning new classes of 3D object. How-
ever, these existing methods cannot explore unique and in-
formative 3D geometric characteristics for classes incremen-
tal learning and further cause catastrophic forgetting, due to
the irregular and redundant geometric structures within 3D
point cloud (Qi et al. 2017b) (e.g., tables with missed legs or
deformable permutations). Therefore, learning new classes
incrementally for 3D objects without retaining the training
data of past classes is a crucial real-world challenge.

To tackle this challenge, we develop a new Incremental
3D Object Learning (i.e., I3DOL) model, which intends to
alleviate catastrophic forgetting for point cloud representa-
tion of past classes when learning new classes continually, as
shown in Figure 2. Specifically, by constructing discrimina-
tive local geometric structures of point cloud, an adaptive-
geometric centroid module associated with an adaptive re-
ceptive field is developed to characterize the irregular point
cloud representation. Meanwhile, a geometric-aware atten-
tion mechanism is designed to capture the intrinsic relation-
ships between local geometric structures by quantifying the
contributions of each local geometric structures for class in-
cremental learning. In other words, it pays more attention
on unique and informative local geometric structures to pre-
vent the catastrophic forgetting while neglecting redundant
geometric information in point cloud representation. To fur-
ther alleviate the catastrophic forgetting for past learned 3D
object classes, a score fairness compensation strategy is pro-
posed to address the unbalanced training data between past
learned and new classes of 3D object, which corrects the bi-
ased prediction for past classes via adaptive compensation in
the validation phase. Experiments on several 3D benchmark
classification tasks strongly demonstrate the effectiveness of
our I3DOL model. In summary, the main contributions of
this work are presented as follows:

• A new Incremental 3D Object Learning (I3DOL) model
for point cloud representation is designed to learn new
classes of 3D object continually while alleviating the
catastrophic forgetting for past classes. To our best knowl-
edge, this is the first exploration about classes incremental
learning in the 3D object recognition field.

• We develop an adaptive-geometric centroid module to
better characterize the irregular point cloud representa-
tion, which could construct several discriminative local
geometric structures with an adaptive receptive field for
each point cloud.

• To prevent the catastrophic forgetting, a geometric-aware
attention mechanism is designed to highlight beneficial
3D geometric characteristics with high contributions for

classes incremental learning, while a score fairness com-
pensation strategy is developed to compensate the biased
score prediction in the validation stage.

Related Work
This section reviews some related researches about 3D

object classification and classes incremental learning.

3D Object Classification
Although enormous shape descriptors (Pauwels et al.

2013; Al-Osaimi 2016; Buch, Kiforenko, and Kraft 2017;
Rusu et al. 2008; Sun, Ovsjanikov, and Guibas 2009) are
handcrafted by domain experts for point cloud representa-
tion, they are invariant to the specific transformations, and
cannot generalize well to 3D objects recognition with vari-
ous categories. After Qi et al. propose a pioneer work Point-
Net (Qi et al. 2017a) to directly process point cloud data, the
advent of deep network architecture has achieved impres-
sive successes in 3D object classification due to its power-
ful characterization capacity. PointNet++ (Qi et al. 2017b)
encodes multi-scale hierarchical semantic context of point
cloud. Moreover, some permutation invariant architectures
(Li, Chen, and Hee Lee 2018; Li et al. 2018) are devel-
oped for deep learning with orderless point clouds, which
explore the spatially-local correlations about data distribu-
tion. (Wang et al. 2019b) focus on capturing topology infor-
mation to enrich the characterization power of point cloud
by incorporating with the dynamical graph. However, these
approaches cannot be directly applied into practical applica-
tions where new classes of 3D object arrive continuously in
a streaming manner.

Classes Incremental Learning
Generally, depending on whether nothing or synthetic

data or real data from the past classes is available, the
existing methods about classes incremental learning (Li
and Hoiem 2016; Kirkpatrick et al. 2017; Wu et al. 2018;
Ostapenko et al. 2019; Wu et al. 2019; Rajasegaran et al.
2019) in 2D vision contain threefold division. Specifically,
(Li and Hoiem 2016; Shmelkov, Schmid, and Alahari 2017)
employ knowledge distillation to prevent catastrophic for-
getting for past classes without accessing their training data.
(Kirkpatrick et al. 2017) constrain the architecture weights
of new tasks to maintain the better performance on past
tasks. Furthermore, (Ostapenko et al. 2019; Shin et al. 2017;
Seff et al. 2017; Wu et al. 2018) highly depend on the ca-
pability of generative adversarial networks to replay syn-
thetic data for past classes. When a small number of ex-
emplars from each old class are selected for training, (Re-
buffi et al. 2017; Castro et al. 2018; Belouadah and Popescu
2018) focus on alleviating the effect of unbalanced training
samples between the past and new categories. (Belouadah
and Popescu 2019) design an additional memory with neg-
ligible added cost to record past classes statistics. (Xiao
et al. 2014; Rusu et al. 2016) propose to expand the net-
work progressively as new training data arrives. (Wu et al.
2019) correct the bias towards new classes brought by fully-
connected layer for large-scale incremental learning. (Ra-
jasegaran et al. 2019) develop a random path selection to
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Figure 2: Overview of our I3DOL model, which mainly consists of the adaptive-geometric centroid construction to explore
several local geometric structures, the geometric-aware attention mechanism to capture informative 3D geometric characteris-
tics in local geometric structures with high contributions for classes incremental learning, and the score fairness compensation
to further alleviate the catastrophic forgetting brought by unbalanced training samples.

choose optimal paths for new tasks. However, these meth-
ods in 2D vision cannot be successfully applied into 3D ob-
ject recognition, since the irregular and redundant geometric
structures of point cloud representation make them difficult
to explore unique 3D geometric characteristics that are ben-
eficial for classes incremental learning.

Our Proposed I3DOL Model
Problem Definition and Overview

For classes incremental learning of 3D object, we follow
the general experimental configuration in 2D vision (Re-
buffi et al. 2017; Castro et al. 2018; Wu et al. 2019; Ra-
jasegaran et al. 2019). There are total S incremental states
and the training data D is denoted as D = {Ds}Ss=1, where
Ds = {xsi , ysi }

ns
i=1 represents ns point cloud data in the

s-th incremental state. xsi ∈ RU×3 and ysi denote the i-th
point cloud data with 3 dimensional coordinates and its cor-
responding label, and U is the number of sampling points
for each 3D object. In the s-th incremental state, the labels
in Ds consist of cs new classes, which are different from
cp =

∑s−1
i=1 ci past classes in the previous s− 1 incremental

states. Similar to (Rebuffi et al. 2017; Wu et al. 2019; Ra-
jasegaran et al. 2019), our goal is to make predictions for
both cs new classes and cp past classes in the s-th incre-
mental state, when the new coming data Ds and the selected
exemplars set M from past classes are available. Note that
|M | is a small value when compared with ns, and it satisfies
|M |/cp � ns/cs in our experiments.

The overview framework of our I3DOL model is depicted
in Figure 2. Specifically, the point cloud data of new classes
in the s-th incremental state is first forwarded into encoder
E to extract mid-level features. Then the adaptive-geometric
centroid module constructs several discriminative local ge-
ometric structures to better characterize the irregular point
cloud representation. Meanwhile, the geometric-aware at-
tention module explores the unique and informative 3D ge-
ometric characteristics in local geometric structures with
high contritions to alleviate catastrophic forgetting while

neglecting the redundant information. Furthermore, we de-
velop the score fairness compensation strategy to correct bi-
ased score prediction for new classes, which further prevent
catastrophic forgetting caused by unbalanced data between
past and new classes of 3D object.

Adaptive-Geometric Centroid Construction
Suppose that each point cloud is composed of L local

geometric structures, which are regarded as L point sets{
Gl|Gl = {p̂l, pl1, · · · , plk ∈ R3}

}L
l=1

. The l-th geomet-
ric region Gl consists of a structural centroid p̂l and its
corresponding k nearest neighbor points {pl1, · · · , plk} sur-
rounded around p̂l. Note that the location of p̂l determines
where the local geometric structure is and what the k near-
est neighbor points are included. To extract local discrimi-
native features, most previous methods (Qi et al. 2017b; Li
et al. 2018) directly utilize the farthest point sampling or
random sampling to obtain the structural centroids for lo-
cal geometric structures. Although these strategies can fully
cover over the whole point cloud, the selected centroids can-
not cover the structures with unique 3D geometric character-
istics for both past and new classes, and neglect the common
useless characteristics in classes incremental learning. Intu-
itively, the local geometric structures sharing common char-
acteristics could result in the catastrophic forgetting for past
classes, while the unique object components and geometric
layouts promote to overcome it effectively.

Consequently, as depicted in Figure 2, the adaptive-
geometric centroid module with adaptive receptive field is
developed to construct local geometric structures, which ad-
justs the selected structural centroids adaptively via geo-
metric offset prediction along the training process. Different
from deformable convolution (Dai et al. 2017) which utilizes
semantic features for offset prediction in 2D images, we con-
sider the local edge vector of each geometric structure as a
guidance for training. Specifically, the semantic knowledge
of each edge is first transformed into the weight of edge vec-
tor, and then the weighted edge vectors are aggregated to-
gether to predict offset direction of the structural centroid.
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Generally, the learned offset is adaptively determined by the
voting of surrounding edge vectors with different signifi-
cances. After initializing the locations of L structural cen-
troids via the farthest point sampling (Qi et al. 2017b; Li
et al. 2018) over the point cloud, we collect the correspond-
ing k nearest neighbor points around each structural centroid
to construct L geometric structures. The offset prediction
4p̂l for the l-th centroid p̂l is:

4p̂l =
1

k

k∑
i=1

(
Tp((f̂l − fli); θTp

) · (p̂l − pli)
)
, (1)

where Tp denotes a convolutional layer with parameter as
θTp

, which adaptively transforms the semantic information
into the weight of edge vector. p̂l and {pli}ki=1 denote the lo-
cation of the l-th centroid and its k nearest neighbor points,
respectively. f̂l and {fli}ki=1 are the semantic features of p̂l
and {pli}ki=1, which are extracted by the encoder E in Fig-
ure 2. (p̂l− pli) is the direction of local edge vector with re-
spect to the l-th centroid p̂l. With the offset prediction 4p̂l
in Eq. (1), we can update the l-th structural centroid p̂l by
adding the offset4p̂l back to p̂l, and reconstruct the l-th lo-
cal geometric structure by searching k new nearest neighbor
points {pl1, · · · , plk} around the new updated p̂l, i.e.,

p̂l = p̂l +4p̂l,
{pl1, · · · , plk} = kNN(p̂l|pj ∈ R3, j = 1, · · · , U),

(2)

where kNN(·) collects k nearest neighbor points around the
new updated centroid p̂l by searching all points {pj}Uj=1
over the whole point cloud. Therefore, the semantic feature
f̂l of the l-th updated centroid p̂l can be computed by gather-
ing all points features inside the l-th updated local geometric
structures, i.e.,

f̂l = max
i=1,2,··· ,k

Tg(fli; θTg
), (3)

where {fli}ki=1 represent the features of the updated k near-
est neighbor points. Tg denotes a convolutional block to
gather all points features, and the network weight is θTg .
Similar to the concatenation strategy in (Qi et al. 2017b),
we concatenate all centroids features {f̂l}Ll=1 from L lo-
cal geometric structures as the ultimate extracted features
fg ∈ RL×d over the whole point cloud, where d is the
feature dimension of each local geometric structure. fg is
then forwarded into the geometric-aware attention module,
as presented in Figure 2.

Geometric-Aware Attention Mechanism
Although our adaptive-geometric centroid construction

module could explore L accurate structural centroids
{p̂l}Ll=1 with discriminative features {f̂l}Ll=1, each centroid
cannot contribute equally to explore informative 3D geomet-
ric characteristics for both past and new classes. In other
words, some local geometric structures covering common
characteristics can promote catastrophic forgetting for past
learned classes, and the others with unique 3D characteris-
tics prevent it efficiently. To this end, as shown in Figure 2,

Algorithm 1 Optimization Framework of I3DOL Model.

1: Input: The training data D = {Ds}Ss=1 and the number
of examples |M |.

2: Initialize: {θDs
}Ss=1;

3: For s = 1, · · · , S do
4: Update exemplars set M ;
5: While not converged do
6: Randomly sample a batch of examples from the

new coming data Ds and the exemplars set M ;
7: Update θDs via Eq. (6);
8: End
9: Store data statistics for score fairness compensation

of Eq. (5) in the validation phase;
10: End
11: Return {θDs

}Ss=1;

we design the geometric-aware attention module to high-
light unique 3D geometric characteristics that are beneficial
for incremental learning, while preventing catastrophic for-
getting caused by common characteristics. To be specific,
it quantifies the contributions of different local geometric
structures {Gl}Ll=1 for classes incremental learning of 3D
objects, and highlights those unique local geometric struc-
tures with high contributions to alleviate the catastrophic
forgetting of past learned classes.

Motivated by the channel attention on feature responses
(Zhang et al. 2018) in 2D vision, we integrate a residual
mechanism into the geometric-aware attention module to
quantify the significance of local geometric structure. Then
the ultimate semantic feature fp ∈ RL×d over whole point
cloud is:

fp = Ag · fg + fg

= Φ1

(
Tu(Φ2(Td(fg; θTd

)); θTu)
)
· fg + fg,

(4)

where Ag = Φ1

(
Tu(Φ2(Td(fg; θTd

)); θTu
)
)
∈ RL×d de-

notes the learned geometric-aware attention, i.e., quantified
contribution of each local geometric structure. Φ1 and Φ2

represent the sigmoid and ReLU activation functions, re-
spectively. Td is a channel-downscaling convolutional block
with the reduction rate as r, and Tu is channel-upscaling
convolutional layer with the increase ratio as r. θTu and θTd

are the network parameters of Tu and Td. Note that we then
utilize max pooling operation on fp to obtain the global fea-
ture fc ∈ Rd, before forwarding it into the classifier C for
performance prediction, as shown in Figure 2.

Score Fairness Compensation
Even though the discriminative features of local geomet-

ric structures are extracted via above subsections, the classi-
fier C is prone to the catastrophic forgetting due to the un-
balanced data distributions between the past and new classes
of 3D objects. Most existing models (Castro et al. 2018; Re-
buffi et al. 2017; Wu et al. 2019; Rajasegaran et al. 2019) in
2D vision utilize the knowledge distillation to address this
challenge. However, they cannot alleviate the problem that
classifier C tends to predict past 3D objects as new classes.

6069



Comparison Methods 4 8 12 16 20 24 28 32 36 40 Avg
LwF (Li and Hoiem 2016) 96.5 87.2 77.5 70.6 62.3 56.8 44.7 39.4 36.1 31.5 60.3
iCaRL (Rebuffi et al. 2017) 96.8 90.4 83.6 78.3 72.5 67.3 59.6 53.1 47.8 39.6 68.9

DeeSIL (Belouadah and Popescu 2018) 97.7 91.5 85.4 80.5 74.4 71.8 65.3 58.7 52.4 43.7 72.1
EEIL (Castro et al. 2018) 97.6 93.8 87.5 81.6 78.2 74.7 69.2 62.4 56.8 48.1 75.0

IL2M (Belouadah and Popescu 2019) 97.8 95.1 89.4 85.7 83.8 82.2 78.4 72.8 67.9 57.6 81.1
DGMw (Ostapenko et al. 2019) 97.5 93.2 86.4 82.5 80.1 78.4 73.6 65.3 61.5 53.4 77.2
DGMa (Ostapenko et al. 2019) 97.5 93.4 84.7 81.8 79.5 77.8 74.1 67.4 60.8 51.5 76.8

BiC (Wu et al. 2019) 97.8 95.5 88.5 86.9 84.3 83.1 79.3 74.2 70.7 59.2 82.0
RPS-Net (Rajasegaran et al. 2019) 97.7 94.6 90.3 88.2 86.7 82.5 78.0 73.6 68.4 58.3 81.7

Ours-w/oAG 97.8 94.3 90.1 87.5 84.2 81.7 77.9 73.5 68.4 59.1 81.5
Ours-w/oGA 98.1 96.0 92.4 89.7 88.2 84.5 81.3 74.0 71.7 60.3 83.6
Ours-w/oSF 98.2 96.1 92.0 90.3 88.9 85.4 80.7 75.8 72.4 60.8 84.1

Ours 98.1 97.0 93.4 91.1 89.7 88.2 83.5 77.8 73.1 61.5 85.3

Table 1: Quantitative comparisons on ModelNet dataset (Zhirong Wu et al. 2015) with an increment of 4 classes.

Particularly, the classifier C has higher preference for great
quantities of new 3D objects classes. Obviously, the impor-
tant factor causing catastrophic forgetting for past 3D ob-
jects is the highly biased probability prediction in the last
layer of classifier C. To tackle this issue, the score fairness
compensation strategy is developed to maintain fairness be-
tween past and new classes of 3D objects in classifier C by
compensating biased prediction for new 3D objects in the
validation phase.

The prediction bias for new classes of 3D objects appears
during the inference stage, due to the unbalanced training
samples. To this end, in the validation phase, we correct the
prediction probability bias of past classes by incorporating
with the initial data statistics of past classes obtained when
they were initially learned in the training stage. The intuitive
explanation is that prediction model is more confident when
all training data of past 3D objects is available. Moreover,
the initial data statistics are available across all incremental
states, and the memory storage for them can be negligibly
small. Concretely, for the t-th past learned class, the pre-
dicted probability via classifier C is rectified by:

Cs(fc; θC)t =

C(fc; θC)t · ψsi(t)
ψs(t)

· ψ(s)

ψ(si)
, if new classes,

C(fc; θC)t, otherwise,
(5)

where Cs(fc; θC)t and C(fc; θC)t represent the probabil-
ities of the t-th classes with the fairness compensation in
validation stage or not. ψsi(t) and ψs(t) denote the average
classification scores predicted as the t-th class in the initial
state si and current incremental state s. Note that all training
data of the t-th past 3D object class first appears in the ini-
tial state si. ψ(si) and ψ(s) are the mean prediction scores
for all new coming classes of 3D objects in the states si and
s. Moreover, Eq. (5) applies the probability rectification into
the past classes predictions only when the point cloud is ini-
tially predicted as the new classes. Obviously, by rescaling
the predicted probabilities of past 3D objects classes with an
adaptive statistic coefficient ψsi

(t)

ψs(t)
· ψ(s)ψ(si)

, Eq. (5) facilitates
the inference fairness between the past and new classes of
3D objects.

Figure 3: Effect investigation about different number of ex-
emplars on ModelNet dataset.

Implementation Details
For the configuration of network architecture, we employ

PointNet (Qi et al. 2017a) as the backbone framework of
encoder E, and apply four-layer multi-layer perception as
classifier C. Furthermore, we utilize the Adam optimizer
for model optimization, where the learning rate and weight
decay are initialized as 0.0025 and 0.0005. The number of
constructed local geometric structures is set as 64, and their
features are extracted from the third convolutional block in
encoder E. The optimization objective of our model in the
s-th incremental state is formally formulated as follows:

min
θDs

Lsobj = E(xs
i ,y

s
i )∈Ds

[−
cp+cs∑
t=1

(ysi )
tlog(C(fc; θC)t)],

(6)
where C(fc; θC)t and (ysi )

t denote the probability predicted
as the t-th class in the training phase and its corresponding
one-hot label, respectively. θDs

represents all network pa-
rameters of our I3DOL model for simplification, which is
composed of θE , θC , θTp

, θTg
, θTu

and θTd
. Moreover, Al-

gorithm 1 summarizes the whole optimization framework
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Comparison Methods 6 12 18 24 30 36 42 48 53 Avg
LwF (Li and Hoiem 2016) 96.3 86.8 78.5 68.3 60.7 52.4 45.1 42.6 39.5 63.4
iCaRL (Rebuffi et al. 2017) 96.7 88.4 82.1 74.9 68.5 62.3 56.9 51.3 44.6 69.5

DeeSIL (Belouadah and Popescu 2018) 97.1 90.2 84.3 76.5 73.7 65.6 57.3 53.6 47.2 71.7
EEIL (Castro et al. 2018) 97.3 91.8 86.4 79.5 73.1 67.3 63.4 57.1 51.6 74.2

IL2M (Belouadah and Popescu 2019) 97.5 91.4 86.7 79.8 75.6 71.8 69.1 64.8 61.4 77.6
DGMw (Ostapenko et al. 2019) 97.2 90.8 85.9 78.3 74.4 69.5 62.4 56.3 49.2 73.8
DGMa (Ostapenko et al. 2019) 97.2 91.6 85.1 77.9 73.2 68.5 62.8 55.4 48.7 73.4

BiC (Wu et al. 2019) 97.4 92.1 86.7 81.5 76.4 73.7 69.8 67.6 64.2 78.8
RPS-Net (Rajasegaran et al. 2019) 97.6 92.5 87.4 80.1 77.4 72.3 68.4 66.5 63.5 78.4

Ours-w/oAG 97.3 92.1 87.5 80.4 76.6 72.7 69.8 65.2 62.3 78.2
Ours-w/oGA 97.4 92.8 88.1 82.0 77.3 74.8 71.4 68.7 65.4 79.8
Ours-w/oSF 96.6 93.8 89.1 82.8 78.0 75.6 72.8 69.5 66.4 80.5

Ours 97.5 94.4 90.2 84.3 80.5 76.1 73.5 70.8 67.3 81.6

Table 2: Quantitative comparisons on ShapeNet dataset (Chang et al. 2015) with an increment of 6 classes.

of our proposed I3DOL model.

Experiments
In this section, all advanced comparison approaches uti-

lize PointNet (Qi et al. 2017a) as baseline feature extractor,
and also perform data augmentation for point cloud in the
training phase.

Datasets and Evaluation
Generally, three representative point cloud datasets, i.e.,

ModelNet (Zhirong Wu et al. 2015), ShapeNet (Chang et al.
2015) and ScanNet (Dai et al. 2017) are employed to vali-
date the superiority of our I3DOL model. ModelNet (Chang
et al. 2015) consists of 9843 training samples and 2468
testing samples, which are clean 3D CAD models from 40
classes. We select 800 samples as the exemplars set M , and
set the total incremental states S as 10. ShapeNet (Chang
et al. 2015) contains 35037 training examples and 5053 val-
idation examples. In our experiments, we utilize 53 cate-
gories of 3D CAD models that are gathered from online
repositories. 1000 samples are stored as the exemplars M
and S is set as 9. ScanNet (Dai et al. 2017) with 17 cate-
gories is composed of scanned and reconstructed real-world
indoor scenes, where the training and validation samples are
12060 and 3416, respectively. We set M = 600 and S = 9.
For performance evaluation, top-1 classification accuracy is
employed as basic metric.

Experiments on ModelNet Dataset
Performance Comparisons We present the comparison
performance on ModelNet dataset (Zhirong Wu et al. 2015)
in Table 1, with an increment of 4 classes for each incre-
mental state. Some key observations from the results in
Table 1 can be summarized as follows: 1) Our proposed
I3DOL model significantly outperforms all advanced com-
parison approaches (Rebuffi et al. 2017; Castro et al. 2018;
Belouadah and Popescu 2019; Ostapenko et al. 2019; Wu
et al. 2019; Li and Hoiem 2016; Rajasegaran et al. 2019) in
2D vision about 3.6%∼25.2% in terms of average accuracy,
which illustrates the superiority of our I3DOL model. 2) For

Figure 4: Effect investigation about different number of total
incremental states on ModelNet dataset.

classes incremental learning of 3D objects, our model effec-
tively alleviates the catastrophic forgetting for past classes
of 3D objects when comparing with other competing ap-
proaches (Rebuffi et al. 2017; Castro et al. 2018; Belouadah
and Popescu 2019; Ostapenko et al. 2019; Wu et al. 2019;
Rajasegaran et al. 2019). 3) The irregular point cloud repre-
sentation can be characterized well via our I3DOL model to
promote the classification performance.

Ablation Studies As the gray part presented in Table 1,
empirical variant experiments on ModelNet dataset are pre-
pared to illustrate the effectiveness of different components
in our I3DOL model. Moreover, we respectively denote our
proposed I3DOL model without only adaptive-geometric
centroid construction, geometric-aware attention mecha-
nism and score fairness compensation as Ours-w/oAG,
Ours-w/oGA and Ours-w/oSF. The average prediction ac-
curacy degrades 1.2%∼3.8% when any component is aban-
doned from our proposed I3DOL model. Furthermore, it
demonstrates that all proposed modules play an indispens-
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Comparison Methods 2 4 6 8 10 12 14 16 17 Avg
LwF (Li and Hoiem 2016) 92.2 74.8 60.3 48.2 41.6 37.3 35.7 33.5 31.8 53.1
iCaRL (Rebuffi et al. 2017) 92.4 78.7 67.4 59.7 52.5 48.2 43.5 39.9 36.3 56.0

DeeSIL (Belouadah and Popescu 2018) 92.6 80.1 71.5 63.3 57.3 52.8 48.6 45.2 43.7 63.1
EEIL (Castro et al. 2018) 92.7 83.4 75.6 72.6 58.7 55.4 52.3 49.4 45.7 65.1

IL2M (Belouadah and Popescu 2019) 92.9 84.4 77.3 70.1 60.8 56.7 54.1 52.6 48.3 66.7
DGMw (Ostapenko et al. 2019) 92.5 82.6 67.1 61.8 56.3 53.2 50.8 47.5 43.8 63.6
DGMa (Ostapenko et al. 2019) 92.5 82.2 67.8 60.2 56.6 52.7 50.4 48.1 44.7 63.7

BiC (Wu et al. 2019) 92.8 84.2 77.5 70.3 60.6 57.2 54.3 52.4 48.5 66.8
RPS-Net (Rajasegaran et al. 2019) 92.9 84.8 77.1 70.7 61.2 57.6 55.4 53.3 49.1 67.3

Ours-w/oAG 92.9 83.7 76.8 73.6 60.2 56.7 54.0 51.8 47.5 66.4
Ours-w/oGA 93.2 85.5 77.9 75.6 62.1 58.3 56.4 53.9 51.0 68.2
Ours-w/oSF 93.3 86.1 78.5 76.0 62.6 59.1 56.3 54.8 51.5 68.7

Ours 93.2 87.2 80.5 77.8 64.3 61.9 58.2 56.8 52.1 70.2

Table 3: Quantitative comparisons on ScanNet dataset (Dai et al. 2017) with an increment of 2 classes.

Figure 5: Convergence investigation about all incremental
states on ModelNet dataset when S = 10.

able role in highlighting unique and informative 3D geomet-
ric characteristics with high contributions for classes incre-
mental learning of 3D objects.

Effects of Exemplars and Incremental States As shown
in Figure 3 and Figure 4, this subsection investigates the ef-
fects of different exemplars and incremental states on Mod-
elNet dataset by setting different values of |M | and S.
Specifically, some essential conclusions drawn from the re-
sults in Figure 3 and Figure 4 are summarized as follows: 1)
Our proposed I3DOL model could better prevent the catas-
trophic forgetting for past classes of 3D objects in different
settings of exemplars and incremental states. 2) More se-
lected exemplars encourage our I3DOL model to better alle-
viate the catastrophic forgetting for past learned 3D classes
brought by redundant 3D geometric characteristics and un-
balanced training samples.

Convergence Analysis Figure 5 investigates the conver-
gence stability of our model on ModelNet dataset. Specifi-

cally, our proposed I3DOL model presents the stable perfor-
mance when the iterative training epoch is about 140. More-
over, our I3DOL model could achieve efficient convergence
across all incremental states.

Experiments on ShapeNet and ScanNet Datasets

As shown in Table 2 and Table 3, this subsection intro-
duces extensive quantitative comparisons and ablation stud-
ies on ShapeNet (Chang et al. 2015) and ScanNet (Dai et al.
2017). Some conclusions can be drawn from the presented
comparison performance: 1) When compared with other ad-
vanced comparison approaches such as (Rebuffi et al. 2017;
Castro et al. 2018; Wu et al. 2019; Rajasegaran et al. 2019;
Li and Hoiem 2016), our I3DOL model achieves better
performance to alleviate catastrophic forgetting, which im-
proves 2.8%∼18.2% in terms of average accuracy. 2) Abla-
tion studies verify that each component of our I3DOL model
is designed effectively to facilitate classes incremental learn-
ing of 3D objects. 3) Our I3DOL model could better explore
unique and informative 3D geometric characteristic, and ad-
dress the unbalanced data distributions to alleviate catas-
trophic forgetting for past learned classes of 3D objects.

Conclusion

In this paper, we develop a new Incremental 3D Object
Learning (i.e., I3DOL) model to continually explore new
classes of 3D objects via alleviating catastrophic forgetting
for past classes. Specifically, the adaptive-geometric cen-
troid module is used to construct several discriminative lo-
cal geometric structures to characterize the irregular point
cloud representation. Meanwhile, the geometric-aware at-
tention mechanism highlights unique and informative 3D
geometric characteristics with high contributions for classes
incremental learning of 3D objects. Moreover, we propose
the score fairness compensation strategy to correct biased
score prediction, which effectively prevents the catastrophic
forgetting of past classes. The effectiveness of our I3DOL
model is justified well via extensive experiments.
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