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Abstract

Is chatbot able to completely replace the human agent? The
short answer could be – “it depends...”. For some challeng-
ing cases, e.g., dialogue’s topical spectrum spreads beyond
the training corpus coverage, the chatbot may malfunction
and return unsatisfied utterances. This problem can be ad-
dressed by introducing the Machine-Human Chatting Hand-
off (MHCH) which enables human-algorithm collaboration.
To detect the normal/transferable utterances, we propose a
Difficulty-Assisted Matching Inference (DAMI) network, uti-
lizing difficulty-assisted encoding to enhance the representa-
tions of utterances. Moreover, a matching inference mecha-
nism is introduced to capture the contextual matching fea-
tures. A new evaluation metric, Golden Transfer within Tol-
erance (GT-T), is proposed to assess the performance by con-
sidering the tolerance property of the MHCH. To provide in-
sights into the task and validate the proposed model, we col-
lect two new datasets. Extensive experimental results are pre-
sented and contrasted against a series of baseline models to
demonstrate the efficacy of our model on MHCH.

Introduction
Chatbot, as one of the recent successful applications in ar-
tificial intelligence, makes many people believe that it will
be able to replace the human agent in the foreseeable future.
Deep learning efforts from industry and academia boost the
development of chatbot and have rewarded many inspiring
accomplishments (High 2012; Zhou et al. 2020; Liu et al.
2020). However, Morar Consulting’s study1 suggests that
only 21% respondents said they would like to be able to pur-
chase goods and services from chatbots. Besides, due to the
complexity of human conversation, automatic chatbots are
not yet able to meet all the needs of users. The unsatisfied
responses from algorithms may deteriorate user experience
and cause business failure (Radziwill and Benton 2017).
While scholars can consistently explore new models to fur-
ther enhance the performance, in this study, we try to solve
this problem from a perspective by combing chatbots with
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1https://www.mycustomer.com/service/channels/could-
chatbots-ever-completely-replace-human-agents
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Figure 1: A dialogue example in sales customer service,
where orange transferable label denotes this dialogue ses-
sion needs handoff from chatbot to human agent.

human agents. Specifically, we target the Machine-Human
Chatting Handoff (MHCH), which aims to enable smooth
and timely handoff from chatbot to human agent.

Figure 1 depicts an exemplar MHCH case of customer
service for online sales in an E-commerce ecosystem. While
chatbot successfully answers the first question from user
(utter1 and utter2), unfortunately, it fails to address the sec-
ond one decently (utter3 and utter4). In the MHCH task, the
model should consistently monitor the progress of conver-
sations, be able to predict the chatbot failures (potential al-
gorithm failures, negative emotions from the user, etc.), and
transfer the conversations to the human agent (a.k.a handoff)
to ensure the smooth dialogue. Recently, there are already
several works focus on the human-machine cooperation for
chatbots. For instance, Huang, Chang, and Bigham (2018)
integrated crowds with multiple chatbots and voting sys-
tems. Rajendran, Ganhotra, and Polymenakos (2019) paid
attention to transfer conversations to human agents once en-
countered new user behaviors. Different from these prior
tasks, the MHCH task aims to sequentially label each utter-
ance in the dialogue as normal or transferable based on the
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dialogue content and its contextual information. The MHCH
task can improve the ability of chatbot from two aspects.
First, it can predict the potential risks of the dialogue and im-
prove user satisfaction. Second, it helps to optimize the hu-
man agent resource allocation and reduce the business cost.

In this study, we propose a novel Difficulty-Assisted
Matching Inference (DAMI) model for the MHCH task.
The DAMI model is a hierarchical network that mainly
consists of a difficulty-assisted encoding module and a
matching inference mechanism. Considering the difficulty
of the utterances affects the chance of handoff, we propose
the difficulty-assisted encoding module. Besides the lexical
and semantic information, it encapsulates lengths, part-of-
speech tags, and term frequencies to learn and generate com-
prehensive representations of utterances. The matching in-
ference module utilizes the contextual interaction to capture
irrelevant or repeated utterances that may deteriorate user
experience. The classification is based on the contextual rep-
resentations and the integration of the utterance representa-
tions and matching features.

As for validating model performance for the MHCH task,
none of the existing evaluation metrics seem to be very suit-
able because of the following reasons. Imbalance: The por-
tion of normal utterances and transferable utterances is quite
imbalanced. Conventional metrics, such as accuracy, will
be problematic (Soda 2011). Comprehensiveness: Correct-
ness of detecting the transferable utterances and coverage of
transferable utterances are both important. Neither precision
nor recall can meet this requirement. Moreover, the contri-
bution of prediction correctness for the dialogues without
handoff cannot be ignored. Tolerance: Although F score,
AUC, and other similar metrics are designed for the compre-
hensive evaluation, they can be too rigid for this task. For
instance, a slightly earlier handoff is acceptable and could
not be considered as a complete mistake. Inspired by the
Three-Sigma Rule (Pukelsheim 1994), we propose a novel
evaluation metric Golden Transfer within Tolerance (GT-
T) for the MHCH task, which takes the imbalance, compre-
hensiveness, and tolerance into consideration.

To summarise, our main contributions are three folds: (1)
We propose a novel DAMI model utilizing difficulty-related
and matching information for the MHCH task; (2) We pro-
pose a new evaluation metric GT-T to cope with the im-
balance, comprehensiveness, and tolerance problem in the
MHCH task; (3) To assist other scholars in reproducing the
experiment outcomes and further investigating this novel
but important problem, two real-world customer service di-
alogue datasets are collected, labeled2. The experimental re-
sults demonstrate the superiority of our approach.

Related Works
In MHCH, a transferable or normal label is sequentially
assigned to each utterance in a dialogue. To this end, the
MHCH task can be defined as a supervised problem such as
a classification problem or a sequence labeling problem.

Classic classification algorithms, such as LSTM (Hochre-
iter and Schmidhuber 1997) and TextCNN (Kim 2014),

2https://github.com/WeijiaLau/MHCH-DAMI

learn the representation of each utterance and predict the
label straightforwardly. Recently, pre-trained language rep-
resentations, such as BERT (Devlin et al. 2019), have im-
proved many NLP downstream tasks by providing rich se-
mantic features. However, for instance, in a customer service
scenario, customer’s satisfaction can change gently with the
dialogue moving forward. A decent model for the MHCH
task should be able to sense user’s emotional change or
dissatisfaction in the earliest step, and a delayed handoff
may cause user’s impatience and abandonment. Compared
to classic text classification methods, Yang et al. (2016),
Chen et al. (2018), Raheja et al. (2019), and Dai et al. (2020)
proposed different attention mechanisms to capture contex-
tual information or dependencies among labels. Besides at-
tention mechanisms, Yu et al. (2019) presented an adapted
convolutional recurrent neural network that models the inter-
actions between utterances of long-range context. Majumder
et al. (2019) proposed a method based on recurrent neu-
ral networks that keeps track of the individual party states
throughout the conversation and uses this information for
emotion classification.

The mismatched or even irrelevant answers in some cases
deteriorate the customer experience (Radziwill and Benton
2017). How to capture the matched or mismatched infor-
mation have been widely studied in response selection of
IR-based chatbots or sentiment analysis (Chen et al. 2017;
Liu et al. 2018; Shen et al. 2018; Mao et al. 2019). Be-
sides users’ emotions, text difficulty or readability affects the
chance of handoff. There are a large number of researches
based on machine learning methods to evaluate text diffi-
culty (Collins-Thompson and Callan 2004; Hancke, Vajjala,
and Meurers 2012; Jiang et al. 2018). Generally speaking, it
is mainly related to the word (frequency, length, etc.), gram-
mar, syntax, sentence length, etc. (Nelson et al. 2012; Ben-
jamin 2012). Liao, Srivastava, and Kapanipathi (2017) pro-
posed a data-driven method to calculate the dialogue com-
plexity and optimize the dispatching of human agents.

Since fully-automated chatbots still have limitations in
the foreseeable future, a promising direction is to combine
chatbots with human agents. Earlier research, the crowd-
powered conversational assist architecture, Evorus (Huang,
Chang, and Bigham 2018), integrated crowds with multi-
ple chatbots and voting systems. Rajendran, Ganhotra, and
Polymenakos (2019) paid attention to transfer dialogues to
human agents once encountered new user behaviors. After
a period of deployment, they could automate itself with de-
cent conversation quality. Different from them, we mainly
focus on detecting transferable utterances which are one of
the keys to improve the user satisfaction and optimize the
human agent resource allocation.

Methodology
Our Model
Formally, we assume that a dialogue D is composed of a
sequence of utterances [u1, ..., ut, ..., uL] with correspond-
ing handoff labels [y1, ..., yt, ..., yL], where yt ∈ Y . Y is the
set of handoff labels (normal and transferable). Transferable
indicates the dialogue should be transferred to the human
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Figure 2: Overall architecture of Difficulty-Assisted Matching Inference (DAMI) network.

agent, whereas normal indicates there is no need to transfer.
As shown in Figure 2, our model mainly consists of three
components: Difficulty-Assisted Encoding, Matching Infer-
ence Mechanism, and Utterance Labeling Layer.

Difficulty-Assisted Encoding: The difficulty of the utter-
ance affects the chance of handoff. On the one hand, the
chatbot may have difficulty to understand and answer the
questions raised by customers. On the other hand, customers
may have difficulty to understand or capture the useful in-
formation of the compound or lengthy responses given by
the chatbot. Remarkably, the difficulty or readability of the
text is related to the word (frequency, length, etc.), grammar,
syntax, sentence length, etc. (Benjamin 2012). Thus, besides
the lexical and semantic information, we make use of posi-
tions, term frequencies, and part-of-speech tags to enhance
the representation of utterance difficulty.

Suppose ut = [w1, ..., w|ut|] represents a sequence of
words in ut. These words are mapped into corresponding
word embeddings Ew

ut
∈ Rd×|ut|, where d is the word em-

bedding dimension. Positional embedding (Vaswani et al.
2017), which can encode order dependencies, is utilized to
represent the increasing length information. Ep

1 ∈ Rd is the
positional embedding of w1 and Ep

ut
∈ Rd×|ut| is the po-

sitional embeddings list of words in ut. The one-hot repre-
sentations of part-of-speech tags Es

ut
∈ Rn×|ut| of words

in ut are also generated. Note that n is the number of
part-of-speech tag categories. Hence, the overall embedding
Eut
∈ R(2d+n)×|ut| of ut is:

Eut
= Ew

ut
⊕Ep

ut
⊕Es

ut
(1)

where ⊕ denotes concatenation operation. We utilize a bidi-
rectional LSTM (BiLSTM) for obtaining the output of every
time step ot ∈ R2k×|ut| and the last state concatenation of
forward and backward st ∈ R2k, where k is the number of
hidden units of LSTM cell. Briefly, we have:

ot, st = BiLSTM(Eut
) (2)

In sales customer service dialogue, the roles of differ-
ent participants would exhibit different characteristics (Song
et al. 2019). Customers tend to use more succinct phrases,
whereas agents tend to use more elaborated sentences (Liao,
Srivastava, and Kapanipathi 2017). Thus, we use different
vectors to capture different roles’ difficulty features:

Wr
ω = rtWc

ω + (1− rt)Wa
ω (3)

brω = rtb
c
ω + (1− rt)baω (4)

grω = rtgcω + (1− rt)gaω (5)

where W{a,c}ω ∈ Rz×d, b{a,c}ω ∈ Rz and g{a,c}ω ∈ Rz×|ut|

are trainable parameters shared across utterances of agents
and customers, respectively. z is the attention size. Since
there are two roles in the MHCH task, we use rt ∈ {0, 1}
represents the role of utterance ut. Intuitively, the word fre-
quency can also reflect the text difficulty: rarely used words
(low word frequency) usually increase the understanding
difficulty (Chen and Meurers 2018). Thus, we employ a
term-frequency-adjusted attention mechanism to further en-
hance the difficulty-assisted representation at ∈ R2k:

gut
= tanh(Wr

ωEut
+ brω) (6)

αut
= softmax((1− tfut

) · g>ut
· grω) (7)

at =
∑|ut|

t=1
ot ·αut

(8)

where gut
∈ Rz×|ut| is the hidden representations and en-

coded by a fully connected layer. Then we compute the nor-
malized difficulty weights αut

with a local vector grω and
normalized term frequencies tfut

∈ [0, 1] of utterance ut.
Meanwhile, the customer’s emotion is an indicator of ser-

vice quality, which is potentially helpful for the handoff
judgment. Hence, we also calculate an emotional polarity
score et ∈ R for utterance ut by SnowNLP3.

3https://github.com/isnowfy/snownlp
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Finally, we get the utterance representation vector vt ∈
RK (K = 4k + 1) of ut as follow:

vt = st ⊕ at ⊕ et (9)

Matching Inference Mechanism: The customer tends
to turn to a human agent for help when the chatbot gives
an unsatisfactory or irrelevant response. Practically, it is
very difficult and paradoxical to directly judge whether the
given answer is satisfactory. Nevertheless, the repeated ut-
terances (the same responses or semantically similar ques-
tions) would increase customer’s dissatisfaction. Based on
this observation, we make the present utterance interact with
preceding utterances to get the contextual matching features.
For utterance ut, we calculate its matching features mt by:

mt = v>t [v1, v2, ..., vt−1] (10)

By masking out the future information of current utter-
ance, the matching features of dialogue D can be repre-
sented as V M = [m1, ...,mt, ...,mL], where V M ∈ RL×L
is a lower triangular matrix with the diagonal value removed.
Then we use a fully connected layer to further integrate the
matching features with utterance vector v̂t ∈ Rk:

v̂t = ReLU(Wτ (mt ⊕ vt) + bτ ) (11)

where Wτ ∈ Rk×(K+T ) and bτ ∈ Rk. ReLU denotes the
rectified linear unit activation (Nair and Hinton 2010).

Utterances Labeling: The tendency of handoff also de-
pends on the dialogue context. Thus, to connect the infor-
mation flow in the dialogue, we feed the integrated repre-
sentations into an LSTM:

ht = LSTM(v̂t, ht−1, ct−1) (12)

where ht ∈ Rk is the hidden state of LSTM for the utterance
ut and ct−1 is the memory cell state at time-step t− 1.

Furthermore, to estimate a long-range dependency, we
employ an attention mechanism (Majumder et al. 2019) to
compute the context representation ĉt ∈ Rk of utterance ut:

αt = softmax(h>t Wα[h1, h2, ..., ht−1]) (13)

ĉt = αt[h1, h2, ..., ht−1]> (14)

where [h1, h2, ..., ht−1] are the hidden states for the preced-
ing utterances of utterance ut and Wα ∈ Rk×k. Then we
utilize a fully connected layer to get the context-aware rep-
resentation ĥt ∈ Rk:

ĥt = ReLU(Wς(ht ⊕ ĉt) + bς) (15)

where Wς ∈ Rk×2k and bς ∈ Rk.
Since there are no dependencies among labels, we simply

use a softmax classifier for performing handoff prediction:

pt = softmax(Wγ ĥt + bγ) (16)

where Wγ ∈ R2×k and bγ ∈ R2. pt ∈ R2 is the predicted
handoff probability distribution of ut.

End-to-End Training: We use categorical cross-entropy
as the measure of loss (L) during training:

L = −1

I

I∑
i=1

L∑
t=1

log pi,t(yi,t|Di,Θ) + δ ‖Θ‖22 (17)

where I is the number of dialogues, Di is the i-th dialogue,
pi,t is the probability distribution of handoff label of t-th ut-
terance ofDi, yi,t is the expected class label of t-th utterance
of Di, δ denotes the L2 regularization weight and Θ denotes
all the trainable parameters of model. We use backpropaga-
tion to compute the gradients of the parameters, and update
them with Adam (Kingma and Ba 2014) optimizer.

Golden Transfer within Tolerance
For the MHCH task, it is vital to detect all of the transfer-
able utterances. Meanwhile, predicting normal utterances as
transferable will also cause a waste of human resources. In
order to comprehensively measure the model performance
for predicting the transferable or normal label of an utter-
ance, we adopt F1, Macro F1, and AUC. However, the evalu-
ation metrics like F1, Macro F1, and AUC have several lim-
itations. First, if the predicted transferable utterance is not
the true transferable utterance, these metrics will treat it as
an error, no matter how close these two utterances are. This
characteristic can be too rigid for the MHCH task. Second,
F1 and AUC have no reward for the correct prediction of the
dialogues without handoff.

To address above problems, we propose a new evaluation
metric, namely Golden Transfer within Tolerance (GT-T).
Inspired by the Three-Sigma Rule (Pukelsheim 1994), the
proposed GT-T allows a “biased” prediction within the tol-
erance range T ∈ N. Specifically, in this paper, we set T to
range from 1 to 3 corresponding to GT-I, GT-II, and GT-III.

Suppose a dialogue session contains L ∈ N utterances
and N ∈ N true transferable utterances, where N ≤ L.
The number of predicted transferable utterances is M ∈ N,
where M ≤ L. The set of true transferable utterances’
positions is Q = {q1, q2, ..., qN}, where 0 ≤ qj ≤ L− 1
and j ∈ {1, 2, ..., N}. The set of predicted transfer-
able utterances’ positions is P = {p1, p2, ..., pM}, where
0 ≤ pi ≤ L− 1 and i ∈ {1, 2, ...,M}. We compute this ses-
sion’s GT-T score as:

0, if N = 0,M > 0 or N > 0,M = 0

1, if N = 0,M = 0

1
M

M∑
i=1

max
1≤j≤N

exp
(

1
λ·sgn(∆ij)−1 ·

∆2
ij

2(T+ε)2

)
, others

(18)
Note that ε is an infinitesimal, sgn represents the signum
function and ∆ij = pi − qj . λ ∈ (−1, 1) is an adjustment
coefficient for the early handoff and the delayed handoff.
An early handoff may improve the user experience but exac-
erbate the human agent resource scarcity. In turn, a delayed
handoff may mitigate the human agent resource scarcity but
sacrifice the user experience. λ > 0 means that the user ex-
perience is more important than the human agent resource.
λ < 0 means that the human agent resource is more impor-
tant than the user experience.

There are three advantages of the proposed GT-T metric:
(1) Focusing on handoff. Since the transferable utterances
are a minority in the dialogue with handoff (refer to Table 1),
conventional metrics, such as accuracy, will be problematic
as the Imbalance of classes. Contrarily, GT-T mainly fo-
cuses on transferable. Thus it will not be affected by normal
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utterances. (2) Comprehensiveness. For the MHCH task,
the correctness of detecting the transferable utterances and
coverage of all transferable utterances are both important.
Moreover, handoff does not necessarily happen in all cases,
which means the correct judgment of the dialogues with-
out handoff should be rewarded. (3) Tolerance. Although F
score, AUC, and other similar metrics are designed to com-
prehensively measure the model, they can be too rigid for
the MHCH task. For example, if there is a dialogue with true
labels sequencesQ0 = [0, 0, 0, 0, 0, 1], it means that the dia-
logue needs to be transferred to the human agent at the sixth
round. The F1, Macro-F1, AUC, GT-I, GT-II, and GT-III
all scored 1 for prediction P1 = [0, 0, 0, 0, 0, 1]. If there are
enough human agents resources or the customer’s patience
is poor, the prediction, P2 = [0, 0, 0, 0, 1, 0], can be accept-
able and shouldn’t be considered as a complete mistake. In
such situation, GT-I, GT-II, and GT-III scores (λ = 0) of P2

are 0.61, 0.88, and 0.95, while the F1, Macro-F1, and AUC
scores of P2 are 0, 0.4, and 0.4. Obviously, GT-T is more
suitable for MHCH task.

Datasets
To the best of our knowledge, there is no publicly avail-
able dataset for the MHCH task. To address this problem,
we propose two Chinese sales customer service dialogue
datasets, namely Clothing and Makeup, which are collected
from Taobao4, one of the largest decentralized E-commerce
platforms in the world. Clothing is a corpus with 3,500 dia-
logues in the clothing domain and Makeup is a corpus with
4,000 dialogues in the makeup domain. User information is
removed from both datasets. Each dialogue was annotated
by an expert, and at least half of the dialogues were checked
randomly by another expert. Five experts participated in the
annotation work. Every utterance of the dialogue was as-
signed a transferable or normal label precisely without con-
sidering early or delayed handoff. Since the human agent is
not involved in the dialogue, there may be multiple trans-
ferable utterances in each dialogue. Besides the explicit de-
mand for human agent from the customer, an utterance will
also be annotated as transferable if the customer receives
an unsatisfactory answer or expresses negative emotions.
When the customer or chatbot repeats semantically similar
utterances, the repeated utterance may also be annotated
as transferable.

A summary of statistics, including Kappa value (Snow
et al. 2008) and inner annotator agreement measured by F-
score for both datasets, are shown in Table 1. From the Ta-
ble 1, we can see that the datasets are highly imbalanced in
terms of label distributions and the normal utterances oc-
cupy the largest proportion. Meanwhile, the length of the
utterances content varies greatly. What’s more, the distribu-
tions of transferable utterances’ relative locations in the di-
alogue between the two datasets are significantly different
(p < 0.001 by two-tailed Mann-Whitney U test). From the
above observations, it is clear that these two datasets are very
challenging for the MHCH task.

4https://www.taobao.com/

Statistics items Clothing Makeup

# Dialogues 3,500 4,000
# Normal dialogues 274 255
# Dialogues with handoff 3,226 3,745
# Utterances 35,614 39,934
# Normal utterances 28,901 32,488
# Transferable utterances 6,713 7,446
Avg# Utterances per dialogue 10.18 9.98
Avg# Tokens per utterance 17.71 21.45
Std# Tokens of utterances 5.31 5.29

Kappa 0.92 0.89
Agreement 93.66 91.64

Table 1: Statistics of the datasets we collected

Experiments and Results
Experimental Settings
All of the tokenization and part-of-speech tagging are per-
formed by a popular Chinese word segmentation utility
called jieba5. After preprocessing, the datasets are parti-
tioned for training, validation and test with an 80/10/10
split. The word vectors are initially trained on Clothing and
Makeup corpora by using CBOW (Mikolov et al. 2013).
The dimension of word embedding is set as 200 and the
vocabulary size is 19.5K. Other trainable model parameters
are initialized by sampling values from the Glorot uniform
initializer (Glorot and Bengio 2010). Hyper-parameters of
our model and baselines are tuned on the validation set. The
sizes of LSTM hidden state k, attention units z are all 128,
and batch size is set as 128. The dropout (Srivastava et al.
2014) rate is 0.25 and the number of epochs is set as 30. The
L2 regularization weight is 10−4. Finally, we train the mod-
els with an initial learning rate of 0.0075. All the methods
are implemented by Tensorflow6 and run on a server config-
ured with a Tesla V100 GPU, 8 CPU, and 16G memory.

Experimental Results
We compare our proposed model with the following state-
of-the-art dialogue classification models, which mainly
come from similar tasks, such as dialogue sentiment classi-
fication and dialogue act classification. We briefly describe
these baseline models below: 1) HRN (Lin et al. 2015): It
uses a bidirectional LSTM to encode utterances, which are
then fed into a standard LSTM for context representation.
2) HAN (Yang et al. 2016): HAN is a hierarchical network,
which has two levels of attention mechanisms, applied at
the words and utterances. 3) BERT (Devlin et al. 2019): It
uses a pre-trained BERT model to construct the single utter-
ance representations for classification. 4) CRF-ASN (Chen
et al. 2018): It extends the structured attention network to the
linear-chain conditional random field layer, which takes both
contextual utterances and corresponding dialogue acts into
account. 5) HBLSTM-CRF (Kumar et al. 2018): It is a hier-
archical recurrent neural network using bidirectional LSTM

5https://pypi.org/project/jieba/
6https://www.tensorflow.org/
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Models
Clothing Makeup

F1 Macro F1 AUC GT-I GT-II GT-III F1 Macro F1 AUC GT-I GT-II GT-III

HRN 57.29 73.45 86.53 62.33 71.75 76.46 58.21 74.10 87.16 62.33 72.51 78.06
HAN 58.17 74.12 86.76 62.93 72.17 76.72 60.08 75.29 87.21 65.44 74.89 79.87
BERT 56.03 72.93 83.78 59.27 68.07 73.10 56.98 73.25 81.65 61.45 71.01 76.48
CRF-ASN 57.62 73.35 84.62 61.45 72.58 77.95 56.81 73.59 83.87 63.65 74.24 79.84
HBLSTM-CRF 59.02 74.39 86.46 63.61 73.72 78.82 60.11 75.43 86.08 67.01 76.29 81.16
DialogueRNN 59.04 74.34 86.94 63.10 73.75 79.02 61.33 76.07 88.45 66.34 75.98 81.15
CASA 59.73 74.74 86.90 64.84 74.89 79.66 60.38 75.73 87.98 67.79 76.96 81.79
LSTM + LCA 61.81 76.09 85.79 66.38 76.27 81.07 62.06 76.61 88.93 67.84 76.87 81.72
CESTa 60.47 75.15 86.22 63.97 74.63 79.63 60.24 75.22 87.14 65.16 75.91 81.49

DAMI (Our Model) 67.19 79.44 91.23 72.83 81.27 85.51 69.26 80.90 92.31 71.80 79.60 84.05

- Emotion 66.14 78.78 90.38 67.68 77.56 82.46 65.63 78.56 90.79 67.65 77.16 82.43
- Matching 63.69 77.67 89.56 67.92 75.90 80.35 63.76 77.37 90.18 66.16 76.24 81.80
- Difficulty-Assisted 65.27 78.39 90.56 68.93 76.61 80.62 64.35 78.24 90.72 68.85 76.79 81.27
↪→ + Attention 66.67 79.15 91.11 69.17 76.95 81.11 67.25 79.63 91.08 69.26 78.00 82.78

Table 2: Performance (%) on Clothing and Makeup datasets. Underline shows the best performance for baselines. The last
four rows show the results of ablation study. Bold indicates statistical significance at p < 0.01 level compared to the best
performance of baselines. λ of GT-T is 0.

as a base unit and two projection layers to combine utter-
ances and contextual information. 6) DialogueRNN (Ma-
jumder et al. 2019): It is a method based on RNNs that keeps
track of the individual party states throughout the conver-
sation and uses the information for emotion classification.
7) CASA (Raheja and Tetreault 2019): It leverages the ef-
fectiveness of a context-aware self-attention mechanism to
capture utterance level semantic text representations on prior
hierarchical recurrent neural network. 8) LSTM+LCA (Dai
et al. 2020): It is a hierarchical model based on the revised
self-attention to capture intra-sentence and inter-sentence in-
formation. 9) CESTa (Wang et al. 2020): It employs LSTM
and Transformer to encode context and leverages a CRF
layer to learn the emotional consistency in the conversation.

Table 2 shows the experimental results of the methods
on the Clothing and Makeup datasets. Overall, CESTa,
LSTM+LCA, CASA, and DialogueRNN perform better
than other baselines, which indicates contextual information
is important for the MHCH tasks. Except for HAN, BERT,
and our model, the other models simply use either convo-
lutional or recurrent neural networks to get utterances rep-
resentations. The experimental results indicate that compre-
hensive utterances representations have a positive influence
on the results (HAN and BERT compare with HRN). We
will explore how to combine BERT with our proposed com-
ponents efficiently in the future. Also, our model utilizes
difficulty-assisted encoding to get comprehensive represen-
tations. Unlike conventional attention methods, our weights
are computed by the combination of word embeddings, term
frequencies, position embeddings, and part-of-speech tags to
capture the difficulty information associated with utterances.

As shown in Table 2, our approach achieves the best
performance against the strong baselines on the Clothing
and Makeup datasets for the MHCH task. We also conduct
Wilcoxon signed-rank tests with continuity correction be-
tween our method with the baselines (15 runs), and the re-

sults show the improvements are significant with p < 0.01.
These experimental results demonstrate the effectiveness of
utilizing matching and difficulty information to enhance the
hierarchical network capability for the MHCH task. Mean-
while, we also find that, the performance of baseline mod-
els will change in different magnitudes with the change
of λ. Taking GT-II on Makeup dataset as an example,
LSTM+LCA performs better than CASA when λ ≤ −0.5,
while it is opposite when λ ≥ −0.25. Overall, our models
perform reliably better than baseline models7.

Analysis and Discussion
Ablation study. To evaluate the contributions of the pro-
posed modules in our model, we implement several model
variants for ablation tests respectively. - Emotion gets the ut-
terance representation without concatenating the emotional
score. - Matching removes the Matching Inference mech-
anism. - Difficulty-Assisted replaces the Difficult-Assisted
Encoding with one layer BiLSTM. + Attention replaces the
Difficulty-Assisted Encoding with one layer BiLSTM en-
hanced by self-attention (Yang et al. 2016). For the sake of
fairness, we keep the other components in the same settings
when modifying one module.

We can observe that - Emotion performs well but
still worse than DAMI, indicating that concatenating emo-
tional information is helpful but not noticeable compared
with other components. Without Matching or Difficulty-
Assisted, the performances drop a lot but are still better than
baselines under a few indicators, which proves the effective-
ness of these two modules, respectively.

Since our Difficulty-Assisted module is attention-based,
we replace it with an attention mechanism. Working with
Matching Mechanism, it also outperforms many baselines
but not as competent as the full version of DAMI. By re-
moving Matching and Difficulty-Assisted simultaneously,

7https://github.com/WeijiaLau/MHCH-DAMI/gtt plot.pdf
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(a) (d)(b) (c)

Figure 3: (a), (b), and (c) are the visualizations of the utterance representation vectors. Specifically, (a) encodes utterances
by BiLSTM. (b) encodes utterances by BiLSTM + self-attention. (c) is the full version of Difficulty-Assisted Encoding. Or-
ange/Blue denotes a transferable/normal utterance; (d) The visualization of matching features VM for the given example.

Dialogue Content LSTM
+LCA DAMI

C1: ***URL of a product*** Normal N N
C2: Buy two get one free. Normal N N
A3: Dear, you can add your favorite three goods to shopping cart
directly. The system will cut the price automatically when you
pay! Normal

N N

C4: Can I buy three of these goods at once? Normal N N
A5: Dear, there will be a specific introduction on the detail page.
If we have buy-two-get-one-free promotions, the system will cut
the price automatically when you buy three goods. Normal

N N

C6: How to enjoy “buy one get one free”? Normal N N
A7: Dear, you can pay attention to the front page of out store.
(… A long text introducing a series of sales activities and
preferential rules ...) Transferable

N T

(A few moments later.)
A8: Dear, your order has not been paid yet. We will give priority
to ship your goods if you pay early. Normal N N

C9: I don't understand how to place orders. Transferable N T
A10: Beauties, the detail page will have instructions. If the
problem has not been resolved, please type "manual". Normal T T

C11: ***URL of a product*** Normal N N
C12: Is any human here? Transferable T T
(…Human agent intervenes this dialogue... )

Figure 4: An example from test data. Ci/Ai denotes Cus-
tomer/Chatbot utterance, followed by a true label. The sec-
ond and third columns are the predictions of LSTM+LCA
and DAMI, respectively. N/T denotes Normal/Transferable.

the model degenerates to an HRN-like approach, which per-
forms worst of baselines. This observation indicates that the
resonance of these two modules can make essential con-
tributions to the task. Figure 3 (a), (b), and (c) visualize
the 3,054 utterance representation vectors vt from Clothing
test dataset by t-SNE (Maaten and Hinton 2008). Difficulty-
Assisted Encoding helps to distinguish the transferable ut-
terances from the main clusters of normal utterances ef-
fectively. Although there are still some overlaps between
two types of utterances, they are mainly: (1) Repeated ut-
terances. Due to the incompetence of chatbot, customer or
chatbot may repeat semantically similar utterances; (2) Low
relevance responses. The chatbot may respond to the cus-
tomer with a safe but not highly relevant answer, e.g., a uni-
versal response. However, those utterances can be correct in

perfect matched dialogues. By introducing contextual and
matching information, models can distinguish the overlaps.

Case Study. Figure 4 illustrates prediction results with
an example which is translated from Chinese text. This case
includes three ground-truth transferable utterances (A7, C9

and C12) and is transferred to the human agent after the
12th round. LSTM+LCA predicts two transferable utter-
ances while DAMI predicts four. We combine with the vi-
sualization of the matching features in Figure 3 (d) to ex-
plain prediction results. Considering the context, A3, A5,
and A7, they are all about placing an order and semantically
similar. The terms “buy one get one free” in C6 belong to
low-frequency terms in corpus, and they affect the chatbot
that gives an irrelevant and complicated utterance A7. As
a consequence, DAMI correctly predicted A7 as “Transfer-
able”. In terms of C9, along with C4 and C6, they are all
about inquiring activities and placing orders. What’s more,
the emotion of C9 is negative. Our approach captures those
matching and emotional features and predicts the utterance
as “Transferable” correctly. Both LSTM+LCA and DAMI
predict A10, a universal and indirect response, as “Transfer-
able” with one round of delay. Finally, the customer com-
plains about the chatbot and asks for a human agent service.
Both models recognize this situation and predict correctly.

Conclusion
In this paper, we introduce the MHCH task to cope
with challenging dialogues and enable chatbots’ human-
algorithm collaboration from a unique perspective. We pro-
pose a DAMI network which utilizes a difficulty-assisted en-
coding module to enhance the representations of utterances.
What’s more, a matching inference mechanism is introduced
for DAMI to capture the contextual matching features. Con-
sidering the tolerance property of the MHCH task, a new
evaluation metric, namely GT-T, is proposed to assess the
model performance. Experimental results on two real-world
datasets indicate the efficacy of our model.

In the future, we will investigate personalized information
by considering user profiles. Moreover, we will investigate
the reverse-handoff task, i.e., handoff from the human agent
to machine, when the chatbot has confidence to handle it.
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