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Abstract

We study the problem of automated mechanism design with
partial verification, where each type can (mis)report only a
restricted set of types (rather than any other type), induced
by the principal’s limited verification power. We prove hard-
ness results when the revelation principle does not necessar-
ily hold, as well as when types have even minimally different
preferences. In light of these hardness results, we focus on
truthful mechanisms in the setting where all types share the
same preference over outcomes, which is motivated by appli-
cations in, e.g., strategic classification. We present a number
of algorithmic and structural results, including an efficient
algorithm for finding optimal deterministic truthful mecha-
nisms, which also implies a faster algorithm for finding op-
timal randomized truthful mechanisms via a characterization
based on convexity. We then consider a more general setting,
where the principal’s cost is a function of the combination of
outcomes assigned to each type. In particular, we focus on the
case where the cost function is submodular, and give gener-
alizations of essentially all our results in the classical setting
where the cost function is additive. Our results provide a rela-
tively complete picture for automated mechanism design with
partial verification.

1 Introduction
Agents are often classified into a variety of categories, some
more desirable than others. Loan applicants might be clas-
sified in various categories of risk, determining the interest
they would have to pay. University applicants may be clas-
sified into categories such as “rejected,” “wait list,” “regular
accept,” and “accept with honors scholarship.” Meanwhile
universities might themselves be classified into categories
such as “most competitive,” “highly competitive,” etc. In
line with the language of mechanism design (often consid-
ered part of game theory), we assume that each agent (i.e.,
the entity being classified) has a type, corresponding to the
agent’s true financial situation, ability as a student, or com-
petitiveness as a university. This type is information that is
private to the agent. In most applications of mechanism de-
sign, the type encodes the agent’s preferences. For example,
in an auction, an agent’s type is how much he values the out-
come where he wins the auction. In contrast, in our setting,
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the type does not encode the agent’s preferences: in the ex-
amples above, typically any agent has the same preferences
over outcomes, regardless of the agent’s true type. Instead,
the type is relevant to the objective function of the principal
(the entity doing the classification), who wants to classify
the agents into a class that fits their type.

Often, in mechanism design, it is assumed that an agent
of any type can report any other type (e.g., bid any value in
an auction), and outcomes are based on these reports. Un-
der this assumption, our problem would be hopeless: every
agent would always simply report whatever type gives the
most favorable outcome, so we could not at all distinguish
agents based on their true type. But in our context this as-
sumption is not sensible: while an agent may be able to take
some actions that affect how its financial situation appears, it
will generally not be possible for a person in significant debt
and without a job to successfully imitate a wealthy person
with a secure career. This brings us into the less commonly
studied domain of mechanism design with partial verifica-
tion (Green and Laffont 1986; Yu 2011), in which not every
type can misreport every other type. That is, each type has
certain other types that it can misreport. A standard example
in this literature is that it is possible to have arrived later than
one really did, but not possible to have arrived earlier. (In
that case, the arrival time is the type.) In this paper, however,
we are interested in more complex misreporting (in)abilities.

What determines which types can misreport (i.e., success-
fully imitate) which other types? This is generally specific
to the setting at hand. Zhang, Cheng, and Conitzer (2019b)
consider settings in which different types produce “samples”
(e.g., timely payments, grades, admissions rates, ...) accord-
ing to different distributions. They characterize which types
can distinguish themselves from which other types in the
long run, in a model in which agents can either (1) manipu-
late these samples before they are submitted to the principal,
by either withholding transforming some of them in limited
ways, or (2) choose the number of costly samples to gener-
ate (Zhang, Cheng, and Conitzer 2019b,a, 2021). In this pa-
per, we will take as given which types can misreport which
other types; this relation may result from applying the above
characterization result, or from some other model.

Our goal is: given the misreporting relation, agents’ pref-
erences, and the principal’s objective, can we efficiently
compute the optimal (single-agent) mechanism/classifier,
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which assigns each report to an outcome/class? This is
a problem in automated mechanism design (Conitzer and
Sandholm 2002, 2004), where the goal is to compute the
optimal mechanism for the specific setting (outcome space,
utility and objective functions, type distribution, ...) at hand.
Quite a bit is already known about the complexity of the au-
tomated mechanism design problem, and with partial verifi-
cation, the problem is known to become even harder (Auletta
et al. 2011; Yu 2011; Kephart and Conitzer 2015, 2016). The
structural advantage that we have here is that, unlike that ear-
lier work, we are considering settings where all types have
the same preferences over outcomes. This allows us positive
results that would otherwise not be available.

1.1 Our Results and Techniques
Throughout the paper, we assume agents have utility func-
tions which they seek to maximize, and the principal has a
cost function which she seeks to minimize.

General vs. truthful mechanisms. We first set out to in-
vestigate the problem of automated mechanism design with
partial verification in the most general sense, where there
is no restriction on each type’s utility function. In light of
previously known hardness results, although the most gen-
eral problem is unlikely to be efficiently solvable, one may
still hope to identify maximally nontrivial special cases for
which efficient algorithms exist. In order to determine the
boundary of tractability, our first finding, Theorem 1, shows
that when the revelation principle does not hold, it is NP-
hard to find an optimal (randomized or deterministic) mech-
anism even if (1) there are only 2 outcomes and (2) all types
share the same utility function.1 In other words, without the
revelation principle, no efficient algorithm exists even for
the minimally nontrivial setting. We therefore focus our at-
tention on cases where the revelation principle holds, or, put
in another way, on finding optimal truthful mechanisms.

General vs. structured utility functions. The above result,
as well as prior results on mechanism design with partial ver-
ification (Auletta et al. 2011; Yu 2011; Kephart and Conitzer
2015, 2016), paints a clear picture of intractability when the
revelation principle does not hold. But prior work also often
suggests that this is indeed the boundary of tractability. This
is in fact true if we consider optimal randomized truthful
mechanisms, which can be found by solving a linear pro-
gram with polynomially many variables and constraints if
the number of agents is constant (Conitzer and Sandholm
2002). However, as our second finding (Theorem 2) shows,
the case of deterministic mechanisms is totally different —
even with 3 outcomes and single-peaked preferences over
outcomes, it is still NP-hard to find an optimal determin-
istic truthful mechanism (significantly improving over ear-
lier hardness results for deterministic mechanisms (Conitzer

1The revelation principle states that if certain conditions hold
on the reporting structure, then it is without loss of generality to
focus on truthful mechanisms, in which agents are always best off
revealing their true type. We will discuss below a necessary and
sufficient condition for the revelation principle to hold in our set-
ting.

and Sandholm 2002, 2004)). In other words, optimal deter-
ministic truthful mechanisms are almost always hard to find
whenever types have different preferences over outcomes.
This leads us to what appears to be the only nontrivial case
left, i.e., where all types share the same preference over out-
comes. But this case is important: as discussed above, it
in fact nicely captures a number of real-world scenarios of
practical importance, and will be the focus in the rest of our
results.
Efficient algorithm for deterministic mechanisms. Our
first algorithmic result (Theorem 3) is an efficient algo-
rithm for finding optimal deterministic truthful mechanisms
with identical preferences in the presence of partial verifi-
cation. The algorithm works by building a directed capac-
itated graph, where each deterministic truthful mechanism
corresponds bijectively to a finite-capacity s-t cut. The al-
gorithm then finds an s-t min-cut in polynomial time, which
corresponds to a deterministic truthful mechanism with the
minimum cost.
Condition for deterministic optimality and faster algo-
rithm for randomized mechanisms. We then consider ran-
domized mechanisms. We aim to answer the following two
natural questions.
• In which cases is there a gap between optimal determin-

istic and randomized mechanisms, and how large can this
gap be?

• While LP formulations exist for optimal randomized
truthful mechanisms in general, is it possible to design
theoretically and/or practically faster algorithms when
types share the same utility function?

The answers to these questions turn out to be closely related.
For the first question, we show that the gap in general can

be arbitrarily large (Example 1). On the other hand, there al-
ways exists an optimal truthful mechanism that is determin-
istic whenever the principal’s cost function is convex with
respect to the common utility function (Lemma 1). In order
to prove this, we show that without loss of generality, an
optimal truthful mechanism randomizes only between two
consecutive outcomes (when sorted by utility) for each type,
and present a way to round any such mechanism into a deter-
ministic truthful mechanism, preserving the cost in expecta-
tion.

For the second question, we give a positive answer, by
observing that with randomization, essentially only the con-
vex envelope of the principal’s cost function matters. This
implies a reduction from finding optimal randomized mech-
anisms with general costs, to finding optimal randomized
mechanisms with convex costs, and – via our answer to the
first question (Lemma 1) – to finding optimal deterministic
mechanisms with convex costs. As a result, finding optimal
randomized truthful mechanisms is never harder than find-
ing optimal deterministic truthful mechanisms with convex
costs. Combined with our algorithm for the latter problem
(Theorem 3), this reduction implies a theoretically and prac-
tically faster algorithm for finding optimal randomized truth-
ful mechanisms when types share the same utility function.
Generalizing to combinatorial costs. With all the intuition
developed so far, we then proceed to a significantly more
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general setting, where the principal’s cost is a function of
the combination of outcomes for each type, i.e., the prin-
cipal’s cost function is combinatorial. This further captures
global constraints for the principal, e.g., budget or headcount
constraints. We present combinatorial counterparts of essen-
tially all our results for additive costs in Section 3.

1.2 Further Related Work
Some recent research along the line of automated mech-
anism design includes designing auctions from observed
samples (Cole and Roughgarden 2014; Devanur, Huang,
and Psomas 2016; Balcan, Sandholm, and Vitercik 2018;
Gonczarowski and Weinberg 2018), mechanism design
via deep learning (Duetting et al. 2019; Shen, Tang, and
Zuo 2019), and estimating incentive compatibility (Balcan,
Sandholm, and Vitercik 2019). Most of these results fo-
cus on auctions, while in this paper, we consider automated
mechanism design in a more general sense (though we focus
mostly on the types of setting discussed in the introduction,
which have more of a classification focus). More closely re-
lated are results on automated mechanism design with par-
tial verification (Auletta et al. 2011; Yu 2011; Kephart and
Conitzer 2015, 2016). Those results are about conditions un-
der which the revelation principle holds (including a relevant
condition to our setting discussed later), and the computa-
tional complexity of deciding whether there exists an imple-
mentation of a specific mapping from types to outcomes. On
the other hand, we focus on algorithms for designing cost-
optimal truthful mechanisms, which is largely orthogonal to
those results.

Another closely related line of research is strategic ma-
chine learning. There, a common assumption is that utility-
maximizing agents can modify their features in some re-
stricted way, normally at some cost (Hardt et al. 2016; Klein-
berg and Raghavan 2019; Haghtalab et al. 2020; Zhang
and Conitzer 2021) (see also (Kephart and Conitzer 2015,
2016)). Strategic aspects of linear regression have also been
studied (Perote and Perote-Pena 2004; Dekel, Fischer, and
Procaccia 2010; Chen et al. 2018). Our results differ from
the above in that we study strategic classification from a
more general point of view, and do not put restrictions on
the class of classifiers or learning algorithms to be used.

Another line of work in economics considers mechanism
design with costly misreporting, where the cost is unobserv-
able to the principal (Laffont and Tirole 1986; McAfee and
McMillan 1987). These results are incomparable with ours,
since they consider rather specific models, while we con-
sider utility and cost functions of essentially any form.

2 Additive Cost over Types
Consider the classical setting of Bayesian (single-agent)
mechanism design, which is as follows. The agent can have
one of many possible types. The agent reports a type to the
principal (which may not be his true type), and then the prin-
cipal chooses an outcome. The principal does not know the
type of the agent, but she has a prior probability distribution
over the agent’s possible types. The principal has a different
cost for each combination of a type and an outcome. The

goal of the principal is to design a mechanism (a mapping
from reports to outcomes) to minimize her expected cost as-
suming the agent best-responds to (i.e., maximizes his utility
under) the mechanism. The principal aims to minimize her
total cost over this population of agents, which is equal to
the sum of her cost over individual agents.

In this section, we focus on the traditional setting where
the principal’s cost is additive over types. In Section 3, we
generalize our results to broader settings where the princi-
pal’s cost function can be combinatorial (e.g., submodular)
over types.
Notation. Let Θ be the agent’s type space, and O the set
of outcomes. Let n = |Θ| and m = |O| be the numbers
of types and outcomes respective. Generally, we use i ∈ Θ
to index types, and j ∈ O to index outcomes. Let R+ =
[0,∞). We use ui : O → R+ to denote the utility of a type
i agent, and ci : O → R+ to denote the cost of the principal
of assigning different outcomes to a type i agent.

Let R ⊆ Θ×Θ denote all possible ways of misreporting,
that is, a type i agent can report type i′ if and only if (i, i′) ∈
R. We assume each type i can always report truthfully, i.e.,
(i, i) ∈ R. The principal specifies a (possibly randomized)
mechanism M : Θ → O, which maps reported types to
(distributions over) outcomes. The agent then responds to
maximize his expected utility under M .

Let ri denote the report of type i when the agent best re-
sponds:

ri ∈ argmaxi′∈Θ,(i,i′)∈R E[ui(M(i′))].

Without loss of generality, the principal’s cost function can
be scaled so that the prior distribution over possible types is
effectively uniform. The principal’s cost under mechanism
M is then given by

c(M) =
∑
i∈Θ

E [ci (M (ri))]

where both expectations are over the randomness in M .
Throughout the paper, given a set S, we use ∆(S) to denote
the set of all distributions over S.

2.1 Hardness without the Revelation Principle
The well-known revelation principle states that when any
type can report any other type, there always exists a truthful
direct-revelation mechanism that is optimal for the princi-
pal.2 However, this is not true in the case of partial verifica-
tion (see, e.g., (Green and Laffont 1986; Yu 2011; Kephart
and Conitzer 2016)). In fact, it is known (see Theorem 4.10
of (Kephart and Conitzer 2016)) that in our setting, the rev-
elation principle holds if and only if the reporting structure
R is transitive, i.e., for any types i1, i2, i3 ∈ Θ,

(i1, i2) ∈ R and (i2, i3) ∈ R =⇒ (i1, i3) ∈ R.3

2A direct-revelation mechanism is a mechanism in which
agents can only report their type, rather than sending arbitrary mes-
sages. A mechanism is truthful if it is always optimal for agents to
report their true types.

3To get some intuition for this characterization, suppose that
(i1, i2) ∈ R, (i2, i3) ∈ R, but (i1, i3) /∈ R, and we would like
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We begin our investigation by presenting a hardness result,
which states that when the revelation principle does not hold,
it is NP-hard to find any optimal mechanism (even in the
minimal nontrivial setting).
Theorem 1 (NP-hardness without the Revelation Principle).
When partial verification is allowed and the revelation prin-
ciple does not hold, it is NP-hard to find an optimal (ran-
domized or deterministic) mechanism, even if there are only
2 outcomes and all types share the same utility function.

We postpone the proof of Theorem 1, as well as all other
proofs in this section, to Appendix C. In light of Theorem 1,
in the rest of the paper, we focus on finding optimal truth-
ful direct-revelation mechanisms. That is, we consider only
mechanisms M where for any (i1, i2) ∈ R,

E[ui1(M(i1))] ≥ E[ui1(M(i2))].

2.2 General vs. Structured Utility Functions
Following the convention in the literature, we assume agents
always break ties by reporting truthfully. As a result, for a
(possibly randomized) truthful mechanism M , the cost of
the principal can be written as

c(M) =
∑
i∈Θ

E[ci(M(i))].

Our first finding establishes a dichotomy between determin-
istic and randomized mechanisms when agents can have ar-
bitrary utility functions. On one hand, it is known that an
optimal randomized mechanism can be found in polyno-
mial time by formulating the problem as a linear program
(Conitzer and Sandholm 2002). On the other hand, finding
an optimal deterministic mechanism is NP-hard even in an
extremely simple setting as described below.
Theorem 2 (NP-hardness with General Utility Functions).
When partial verification is allowed, even when the revela-
tion principle holds, it is NP-hard to find an optimal deter-
ministic mechanism, even if there are only 3 outcomes and
the utility functions are single-peaked (see Appendix B.1 for
a definition).

Although Theorem 2 establishes hardness for finding op-
timal deterministic mechanisms in most nontrivial cases, it
leaves the possibility of efficient algorithms when all types
have the same utility function — which, as discussed in the
introduction, is the setting we focus on in this paper.

2.3 Finding Optimal Deterministic Mechanisms
In light of the previously mentioned hardness results, for the
rest of this section, we focus on the setting where the rev-
elation principle holds and all types have the same utility
function.
to accept i2 and i3 but not i1. That is, higher types are better, and
each type (except for the top one) can make itself look a bit, but
not much, better than it is. There is no truthful mechanism that
achieves what we want: if we accept a report of i2, we will end up
accepting i1 as well because it can misreport i2. On the other hand,
if we accept only i3, then we get what we want, by relying on i2 to
non-truthfully report i3 (whereas i1 cannot). Hence, our goal can
be achieved in a non-truthful implementation while it cannot be
achieved in a truthful implementation, showing that the revelation
principle does not hold in this case.

We recall and simplify some notations before we state the
main result of this section (Theorem 3). Let u : O → R+

be the common utility function of all types. Recall that n =
|Θ| is the number of types and m = |O| is the number of
outcomes. Let Θ = [n] = {1, . . . , n}. For brevity, we use
O = {o1, . . . , om} ⊆ R+ to encode the utility function u.
That is, for all j ∈ [m], oj ∈ R+ is the utility of the agent
under the j-th outcome. Without loss of generality, assume
o1 = 0, and oj < oj+1 for all j ∈ [m− 1].

We give an efficient algorithm (Algorithm 1) for finding
an optimal deterministic mechanism when partial verifica-
tion is allowed.4 Our algorithm first builds a (capacitated)
directed graph based on the principal’s cost function and the
reporting structure, then finds an s-t min-cut in the graph,
and then constructs a mechanism based on the found min-
cut. The idea is finite-capacity cuts in the graph constructed
correspond bijectively to truthful mechanisms, where the ca-
pacity is precisely the cost of the principal. In particular, we
use edges with∞ capacity to ensure that if one type gets an
outcome, any type that can misreport the former must get at
least as good an outcome. See Figure 1 for an illustration of
Algorithm 1. The following theorem establishes the correct-
ness and time complexity of Algorithm 1.

Theorem 3 (Fast Algorithm for Finding Optimal Deter-
ministic Mechanisms). Suppose for any i ∈ [n] and j ∈
[m], ci(oj) ∈ N. Let W = maxi,j ci(oj). Algorithm 1
outputs an optimal deterministic truthful mechanism in
time O(TMinCut(mn,mn2,W )), where TMinCut(n

′,m′,W ′)
is the time it takes to find an s-t min-cut in a graph with n′

vertices, m′ edges, and maximum capacity W ′.

We note that Algorithm 1 only finds an optimal determin-
istic mechanism subject to truthfulness — when the reve-
lation principle does not hold, Algorithm 1 may not find an
unconditionally optimal mechanism (and indeed finding that
is NP-hard given Theorem 1). The same applies for all our
algorithmic results.

2.4 Optimality of Deterministic Mechanisms with
Convex Costs

In the previous subsection, we showed that when the rev-
elation principle holds and all types have the same utility
function, there is a min-cut-based algorithm (Algorithm 1)
that finds an optimal deterministic truthful mechanism.

In this subsection, we identify an important special case
where there exists an optimal truthful mechanism that is
deterministic (even when randomized mechanisms are al-
lowed). Consequently, we have an algorithm (Algorithm 1)
for finding the optimal truthful mechanism that runs faster
than solving a linear program. More importantly, as we will
show in Section 2.5, we can essentially reduce the general
case to this special case, and consequently obtain an algo-

4In a more empirically focused companion paper (Krish-
naswamy et al. 2021), we apply a simplified version of Algorithm 1
to a special case of the problem studied in this paper. There, the
goal is to find a nearly optimal binary classifier (i.e., m = 2),
given only sample access to the population distribution over the
type space.
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Figure 1: An example of the graph constructed in Algorithm 1. As highlighted in the left graph, each row corresponds to an
outcome and each column corresponds to a type. The horizontal edges with infinite capacity correspond to the fact that type 2
can misreport as type 1. The right graph gives a possible s-t min-cut, which corresponds to a mechanism where M(1) = o2,
M(2) = (o3), and M(3) = o3. The horizontal edges make sure that type 1 never gets a more desirable outcome than type 2, so
type 2 never misreports. The cost of the mechanism M is equal to the value of the min-cut, which is c1(o2) + c2(o3) + c3(o3).

rithm for computing the optimal truthful mechanism whose
runtime is asymptotically the same as Algorithm 1.

We first show (in Example 1) that, in general, there can be
an arbitrarily large gap between the cost of the optimal de-
terministic mechanism and that of the optimal randomized
mechanism, even when restricted to truthful mechanisms
and when all types share the same utility function.

Example 1 (Gap between Deterministic and Randomized
Mechanisms). There are 2 types Θ = {1, 2} and 3 outcomes
O = {o1 = 1, o2 = 2, o3 = 3}, which encode the common
utility function. The principal’s cost is given by c1(o1) =
c1(o3) = ∞, c1(o2) = 0, c2(o1) = c2(o3) = 0, and
c2(o2) = ∞. The reporting structure R allows any type to
report any other type, i.e., R = {(1, 1), (2, 2), (1, 2), (2, 1)}.
Consider first the optimal truthful randomized mechanism,
which as we argue below has cost 0. To make the princi-
pal’s cost finite, the optimal truthful mechanism must assign
outcome o2 to type 1 with probability 1, which gives type 1
utility 2. To prevent misreporting, the mechanism must give
type 2 the same expected utility. And again, to make the cost
finite, it must never assign outcome o2 to type 2. The unique
way to satisfy the above is to assign to type 2 outcome o1

with probability 1/2, and o3 with probability 1/2.
Now consider any deterministic truthful mechanism. Any

truthful mechanism must give both types the same utility
to prevent misreporting. The only way to achieve this de-
terministically is to assign the same outcome to both types.

However, all 3 possibilities result in infinite total cost, so all
deterministic truthful mechanisms have cost infinity.

Example 1 shows that Algorithm 1 in general does not
find an (approximately) optimal truthful mechanism when
randomized mechanisms are allowed. In such cases, one has
to fall back to significantly slower algorithms, e.g., solving
the straightforward LP formulation of the problem with mn
variables and n2 constraints. It is worth noting that the LP
formulation does not utilize the fact that types share an iden-
tical utility function. To address this issue, we identify an
important special case where there does exist an optimal
truthful mechanism that is deterministic: when the princi-
pal’s cost is convex in the common utility function. More
importantly, as we will show in Section 2.5, we can reduce
the problem of finding the optimal randomized mechanism
under general costs to the problem of finding the optimal
mechanism with convex costs. First we formally define the
notion of convex costs we use.
Definition 1 (Convex Costs). For any i ∈ Θ, let the piece-
wise linear extension c`i : [o1, om] → R+ of ci be such
that (1) for any x ∈ O, c`i(x) = ci(x), and (2) for any
x ∈ [o1, om] \ O,

c`i(x) =
oj+1 − x

oj+1 − oj
· ci(oj) +

x− oj
oj+1 − oj

ci(oj+1),

where j = max{j′ ∈ [m] | oj′ ≤ x}. The principal’s cost
function {ci}i∈Θ is convex if for every i ∈ Θ, the piecewise
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Algorithm 1: Finding an optimal deterministic mechanism.
Input: The set of types Θ, the principal’s cost function {ci}i∈Θ for each type, the set of outcomes O (which encodes the

agents’ common utility function), and the reporting structure R.
Output: A deterministic truthful mechanism M : Θ→ O minimizing the principal’s cost.

1 Let V ← (Θ×O) ∪ {s, t}, E ← ∅;
2 Replace R with its transitive closure (using the Floyd–Warshall algorithm):
3 for i2, i1, i3 ∈ Θ where (i1, i2) ∈ R and (i2, i3) ∈ R do
4 R← R ∪ {(i1, i3)} ;
5 end
6 for each type i ∈ Θ do
7 E ← E ∪ {(s, (i, o1),∞)} (add an edge from s to (i, o1) with capacity∞) ;
8 for each outcome j ∈ [m− 1] do
9 E ← E ∪ {((i, oj), (i, oj+1), ci(oj))} (add an edge from (i, oj) to (i, oj+1) with capacity ci(oj));

10 end
11 E ← E ∪ {((i, om), t, ci(om))} (add an edge from (i, om) to t with capacity ci(om));
12 end
13 for each pair of types (i1, i2) where i1 6= i2 and (i1, i2) ∈ R, and each outcome oj ∈ O do
14 E ← E ∪ {((i2, oj), (i1, oj),∞)} (add an edge from (i2, oj) to (i1, oj) with capacity∞);
15 end
16 Compute an s-t min-cut (S, S) on graph G = (V,E) ;
17 for each type i ∈ Θ do
18 Let M(i) = oj where j = max{j′ ∈ [m] | (i, oj′) ∈ S};
19 end
20 return M ;

linear extension c`i of ci is convex.

Lemma 1 (Optimality of Deterministic Mechanisms with
Convex Costs). When all types share the same utility func-
tion, and the principal’s cost function is convex, there is an
optimal truthful mechanism that is deterministic even with
partial verification allowed.

2.5 Reducing General Costs to Convex Costs
Lemma 1 together with Algorithm 1 provides an efficient
way for finding optimal truthful mechanisms with convex
costs (even when randomized mechanisms are allowed).
One may still wonder if it is possible to design faster al-
gorithms in general than solving the standard LP formula-
tion, presumably by exploiting the additional structure that
the agents share the same utility function. To this end, we
observe that for computing optimal mechanisms, only the
convex envelope of the principal’s cost function matters.
Given this observation, we show that finding optimal truth-
ful mechanisms can be reduced very efficiently to finding
optimal deterministic mechanisms.

We present Algorithm 2, which computes the optimal
truthful mechanism and has the same asymptotic runtime as
Algorithm 1. Algorithm 2 first computes the convex enve-
lope of the principal’s cost function, and then finds an opti-
mal “deterministic” mechanism by calling Algorithm 1 with
the same types and outcomes, but replacing the principal’s
cost function with its convex envelope. Algorithm 2 then re-
covers an optimal randomized mechanism from the “deter-
ministic” one, by interpreting each “deterministic” outcome
as a convex combination of outcomes in an optimal way.
The following theorem establishes the correctness and time

complexity of Algorithm 2.

Theorem 4. Algorithm 2 finds an optimal (possibly random-
ized) truthful mechanism, in asymptotically the same time as
Algorithm 1.

Below we give a comparison between the time com-
plexity of our algorithm, Algorithm 2, and that of the LP-
based approach.5 The current best algorithm for LP (Co-
hen, Lee, and Song 2019) takes time that translates to
Õ(n2.37m2.37 + n4.74)6 in our setting (this is, for example,
at least Õ(n3.24m1.5)). The current best algorithm for s-t
min-cut (Lee and Sidford 2014) takes time that translates to
Õ(n2.5m1.5) in our setting. Moreover, in a typical classifi-
cation setting, it is the number of outcomes (corresponding
to “accept”, etc.) m that is small, and the number of types
(e.g., “(CS major, highly competitive, female, international,
. . . )”, “(math major, acceptable, male, domestic, . . . )”) n is
much larger. In such cases, the improvement becomes even
more significant. Our results are theoretical, but practically,
while there are highly optimized packages for LP, there are
also highly optimized packages for max-flow / min-cut that
are still much faster. Last but not least, in many practical set-
tings, the principal has to implement a deterministic policy
(it is hard to imagine college admissions explicitly made ran-
dom), in which case our Algorithm 1 can be applied while
LP generally does not give a solution.

5We note that a conclusive comparison is unrealistic since algo-
rithms for both LP and min-cut keep being improved.

6Õ hides a poly-logarithmic factor.
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Algorithm 2: Finding an optimal (possibly random-
ized) truthful mechanism.

Input: The set of types Θ, the principal’s cost
function {ci}i∈Θ for each type, the set of
outcomes O (which encodes the common
utility function), and the reporting structure
R.

Output: A truthful mechanism M : Θ→ O
minimizing the principal’s cost.

1 for each type i do
2 Compute the convex envelope

c−i : [o1, om]→ R+ of ci, defined such that for
any x ∈ [o1, om],

c−i (x) = min
o∈∆(O),E[o]=x

E[ci(o)].

Let ĉi be c−i restricted to O;
3 end
4 Run Algorithm 1 on input (Θ, {ĉi}i∈Θ,O, R). Let

M̂ be the resulting deterministic mechanism;
5 for each type i do
6 M(i)← argmin

o∈∆(O),E[o]=M̂(i)
E[ci(o)] ;

7 end
8 return M ;

3 Generalizing to Combinatorial Costs
In this section, we generalize the problem considered in the
previous section, allowing the principal to have a combina-
torial cost function over outcomes for each type. See Ap-
pendix A for a more detailed exposition.
The combinatorial setting. As before, let Θ = [n] be the
set of types, O = {oj}j∈[m] ⊆ R+ be the set of outcomes
encoding the common utility function, and R ⊆ Θ×Θ be the
reporting structure. The principal’s cost function c : OΘ →
R+ now maps a vector O = (Oi)i of outcomes for all types
to the principal’s cost c(O). This subsumes the additive case,
since one can set the cost function c to be

c((Oi)i) =
∑
i∈Θ

ci(O
i).

Because the cost function is now combinatorial, it matters
how the mechanism combines outcomes for different types.
We therefore modify the definition of a randomized mecha-
nism M ∈ ∆(Θ → O) = ∆(OΘ), so that it allows corre-
lation across different types. The principal’s cost from using
a truthful mechanism M is then c(M) = E[c((M(i))i)].
For type i, the utility from executing mechanism M is still
ui(M) = E[M(i)]. M is truthful iff for any (i1, i2) ∈ R,
ui1(M) ≥ ui2(M). In the rest of the section, we present
combinatorial generalizations of all our algorithmic and
structural results given in the previous section.
General vs. submodular cost functions. Combinatorial
functions in general are notoriously hard to optimize, even
ignoring incentive issues. To see the difficulty, observe that
a combinatorial cost function c : OΘ → R+ overOΘ gener-
ally does not even admit a succinct representation (e.g., one

whose size is polynomial in m and n). It is therefore infeasi-
ble to take the entire cost function as input to an algorithm.
To address this issue, the standard assumption in combinato-
rial optimization is that algorithms can access the combina-
torial function through value queries. That is, we are given
an oracle that can evaluate the combinatorial function c at
any point O ∈ OΘ, obtaining the value c(O) in constant
time. For the rest of the paper, we assume that our algorithm
can access the cost function only through value queries.

Still, in order to minimize an arbitrary combinatorial
function, in general one needs Ω(mn) queries to obtain any
nontrivial approximation. Despite that, there exist efficient
algorithms for combinatorial minimization for an important
subclass of cost functions, namely submodular functions.
Definition 2 (Submodular Functions). For any O1 =
(Oi

1)i ∈ OΘ and O2 = (Oi
2)i ∈ OΘ, let

O1∧O2 = (min(Oi
1, O

i
2))i and O1∨O2 = (max(Oi

1, O
i
2))i.

A combinatorial cost function c : OΘ → R+ is submodular
if for any O1, O2 ∈ OΘ,

c(O1) + c(O2) ≥ c(O1 ∧O2) + c(O1 ∨O2).

In the rest of this section, we focus on submodular cost
functions. For this important special case, we give efficient
algorithms for finding optimal truthful deterministic / ran-
domized mechanisms, as well as a sufficient condition for
the existence of an optimal mechanism that is deterministic.
Finding optimal deterministic mechanisms. First we
present a polynomial-time combinatorial algorithm for find-
ing optimal truthful deterministic mechanisms with partial
verification, when the cost function is submodular.
Theorem 5. There exists a polynomial-time algorithm
which accesses the cost function via value queries only, and
computes an optimal deterministic truthful mechanism when
partial verification is allowed and the cost function is sub-
modular.

Sufficient condition for the optimality of determinis-
tic mechanisms. Restricted to additive cost functions,
Lemma 1 gives a sufficient condition under which there ex-
ists an optimal mechanism that is deterministic. We present
below a combinatorial version of this structural result when
the outcome space is binary, i.e., when m = 2.
Theorem 6 (Optimality of Deterministic Mechanisms with
Binary Outcomes). When the outcome space is binary, i.e.,
|O| = 2, and the principal’s cost function is submodular,
there is an optimal truthful mechanism that is deterministic,
even when partial verification is allowed.

Computing optimal randomized mechanisms. Finally we
give an algorithm for finding an optimal mechanism with
arbitrary submodular cost functions.
Theorem 7. When the cost function c is submodular
and bounded, for any desired additive error ε > 0,
there is an algorithm which finds an ε-approximately op-
timal (possibly randomized) truthful mechanism7 in time
poly(n,m, log(1/ε)), even if partial verification is allowed.

7An ε-approximately optimal truthful mechanism is a truthful
mechanism whose expected cost is at most ε larger than the mini-
mum possible cost of any truthful mechanism.
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