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Abstract
With autonomous vehicles (AV) set to integrate further into
regular human traffic, there is an increasing consensus of
treating AV motion planning as a multi-agent problem. How-
ever, the traditional game theoretic assumption of complete
rationality is too strong for the purpose of human driving, and
there is a need for understanding human driving as a bounded
rational activity through a behavioral game theoretic lens. To
that end, we adapt three metamodels of bounded rational be-
havior; two based on Quantal level-k and one based on Nash
equilibrium with quantal errors. We formalize the different
solution concepts that can be applied in the context of hierar-
chical games, a framework used in multi-agent motion plan-
ning, for the purpose of creating game theoretic models of
driving behavior. Furthermore, based on a contributed dataset
of human driving at a busy urban intersection with a total
of ~4k agents and ~44k decision points, we evaluate the be-
havior models on the basis of model fit to naturalistic data,
as well as their predictive capacity. Our results suggest that
among the behavior models evaluated, modeling driving be-
havior as pure strategy Nash Equilibria with quantal errors at
the level of maneuvers with bounds sampling of actions at the
level of trajectories provides the best fit to naturalistic driving
behavior, and there is a significant impact of situational fac-
tors on the performance of behavior models.

Introduction
Motion planners are a critical component of autonomous ve-
hicle (AV) architecture, and the decisions made by the algo-
rithms impact the safety of road users, such as pedestrians,
cyclists, and other human-driven vehicles. Traditional ap-
proaches to motion planning have typically treated the prob-
lem as a single-agent problem; in this perspective, a vehicle
interacts with the environment (in simulation or on-field set-
ting), possibly with the help of recorded human-driven tra-
jectories, and plans its actions by optimizing over its objec-
tives while taking into account the dynamic obstacles in the
vicinity (Schwarting, Alonso-Mora, and Rus 2018; Ilievski
et al. 2019). However, in reality human driving is a complex
system with a symbiotic relation among agents, where ac-
tions of a vehicle influence the future actions of other road
users and vice versa. More recently, there has been a focus
towards treating motion planning of AVs as a multi-agent
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problem with game-theoretic solutions to AV decision mak-
ing (Fisac et al. 2019; Sadigh et al. 2016; Camara et al. 2018;
Li et al. 2018). Such approaches can account for heteroge-
neous objectives in a group of vehicles in a traffic scene
and identify equilibrium solutions that guide the actions of
the AV. Given that the movement dynamics of a vehicle is
in continuous domain, it is intuitive to model the dynam-
ics as a differential game, an approach adopted by multiple
models in the literature (Fridovich-Keil et al. 2019; Sadigh
et al. 2016; Wang et al. 2019). However, the applicability
of such games as a general purpose planner is limited by
the trade off between the computational burden and expres-
sivity; cases where efficient solutions exist in a multi-agent
setting restrict the behavior of the agents to only linear dy-
namics (Fridovich-Keil et al. 2019). As an alternative, (Fisac
et al. 2019) introduced the concept of a hierarchical game for
AV planning where the game is decomposed into two levels;
a long-horizon strategic game that can model richer agent
behavior and a short-horizon tactical game with simplified
information structure. Although hierarchical games are well
suited and show promising results for planning in AV, for
the models to be applicable in real world situations, we need
to understand how well the stationary concepts in the game
match naturalistic human driving behavior. It is well known
that in many realistic settings, the theoretical fixed point of
Nash equilibrium is a poor predictor of human behavior (Go-
eree and Holt 2001); therefore, it is necessary to investigate
if the same is true for human driving behavior too. In ab-
sence of that information, we do not know what to optimize
for.

Behavioral game theory provides a framework to anal-
yse decision making in a naturalistic setting and models
of behavior that often have higher predictive power than
Nash equilibria (Camerer 2011). A key element in behav-
ioral game theory is bounded rationality, where the conven-
tional game-theoretic notion of agents as fully rational is re-
laxed to allow for sub-optimal behavior. Such behavior may
arise from limitations in cognitive reasoning, or error-prone
actions (Samuelson 1995). Driving is a cognitively demand-
ing job that requires situational awareness and sophisticated
visuomotor co-ordination, added on to individual habits, bi-
ases, and preferences; and it is not hard to imagine that driv-
ing at its core is a bounded rational activity. Consequently,
it becomes essential for AV game theoretic planners to be
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able to characterize the bounded rational behavior in human
driving; for example, if humans are prone to making error in
judgement when the signal is about to turn red from amber at
a busy intersection, then the AV planner should take that into
account since the safety of the AV decision is conditioned on
the error made by the human driver. Therefore, developing
a game-theoretic planner for an AV is a multi-step process,
broadly involving a) selection of the right behavior model
and equilibrium concepts for other road agents, b) estima-
tion of the parameters of the model, and c) generation of a
safe maneuver and trajectory after accounting for the model
and its parameters. In this paper, we primarily focus on the
first two aspects.

Wright and Leyton-Brown developed a general frame-
work of analysing and estimating parameters of popular be-
havioral game theory models based on observations of game
play. They focus on two models of behavior, i.e. Quan-
tal Level-k (QLk) and Poisson-Cognitive Hierarchy (P-CH)
(Wright and Leyton-Brown 2012), which model iterated rea-
soning where agents have a limited capacity to maintain
higher order belief about other agents. Although QLk and
P-CH do not capture all types of bounded rationality that
one can think of in the case of human driving, such as the
ones that arise from sampling the actions of other agents, the
framework developed in (Wright and Leyton-Brown 2012)
nevertheless can be applied to a wider set of behavior models
including the ones we develop in this paper.

In this paper we make the following contributions: (i)
Building upon (Fisac et al. 2019), we further formalize a
general model of a hierarchical game for the purpose of
modeling human driving behavior. (ii) We extend three mod-
els of behavior from behavioral game theory, two based on
Quantal level-k and one based on Nash equilibrium with
quantal errors, and demonstrate the possible solution con-
cepts that can be applied to hierarchical games. (iii) In or-
der to better understand strategic and non-strategic decision
making in human driving, we compare 25 game theoretic
models based on a cross sectional study of human drivers
at a busy urban intersection with a total of 3913 agents and
43765 decision points. We make this dataset, which is one
of the largest multi-agent behavior dataset of human driving,
publicly available as a contribution.

Hierarchical Games
Prior to recent focus in autonomous driving, there has been
considerable body of research on modeling driving behavior
within the field of traffic psychology with a long history of
treating driving behavior as a hierarchical model (Keskinen
et al. 2004; Van der Molen and Bötticher 1988; Lewis-Evans
2012; Michon 1985). One of the more influential models, the
Michon hierarchy of driving tasks (Michon 1985), decom-
pose driving into three levels of control; a strategic plan such
as a route and general speed choice of going from point A
to B is decomposed into several tactical decisions of choos-
ing the right maneuvers, which is further decomposed into
high fidelity actions that control the steering and accelera-
tion. A primary motivation of a hierarchical decomposition
is that drivers have different motivations and risk judgements

in each level of the hierarchy, and the functional decomposi-
tion into a hierarchical system allows for modelling the risk
and safety considerations separately at each level. Motion
planners in autonomous vehicles also follow a similar hier-
archical pattern of decomposition; a high level route planner
plan is given to a behavior planner, which sets up the tac-
tical maneuvers for a lower level trajectory planner, which
in turn generates the trajectory profile for the vehicle con-
troller after respecting its nonholonomic constraints. In ad-
dition to the motivation mentioned earlier, treating the prob-
lem of planning as a hierarchical system is also driven by
computational efficiency as previously shown in (Fisac et al.
2019).
In a multi-agent setting, this means that the planning prob-

(a) (b)

Figure 1: Illustration of two instances of hierarchical games.
(a) As a Stackelberg game modeling a lane change maneu-
ver and (b) simultaneous move game modeling intersection
navigation. A hierarchical game is instantiated every ∆tp
seconds with action plan of ∆th seconds.

lem has to be extended to the notion of a hierarchical game,
which we formalize further below. A hierarchical game is
formulated by
• Set of N agents indexed by i ∈ {1, 2, 3, ..N}.
• A set of K levels indexed by κ ∈ {1, 2, 3, ..K}.
• Set of actions Ai,κ available to each agent i at level κ.
• A strategy si for agent i is a K-tuple si =

(ai,1, ai,2, .., ai,K) where ai,κ ∈ Ai,κ and the strategy
space of si is

∏
κ∈K

Ai,κ.

• A set of states Xi of agent i in level 1, and an initial map-
ping function fi,1 : Xi → P(Ai,1) that maps the initial
state of the agent to the available actions in level 1, where
P(·) is the power set.

• Set-valued functions fi,κ :
κ−1∏
j=1

Ai,j → P(Ai,κ) for each

agent i that maps a partial strategy (ai,1, ai,2, .., ai,κ−1) to
P(Ai,κ) and gives the set of available actions to i in level
κ > 1 for the partial strategy till level κ− 1.

• Set of N pay-off (utility) functions U = {ui(si, s−i)},
where −i refers to all agents other than i.

The hierarchical game imposes a total ordering in actions
Ai = {Ai,1, Ai,2, .., Ai,K} of a given agent, and along with
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fi,κ induces a game tree, as shown in Fig. 1b. The frequency
at which a hierarchical game is instantiated (∆tp) and the
time horizon of each strategy (∆th) are exogenous to the
model. Each node is labeled ni,κ,j , where i and κ are the
agent and level indices, and j is the node identifier within
level κ. This general formulation of a hierarchical game does
not prescribe a fixed information structure, and allows the
designer to set an information structure that is appropriate
to the environment and situation they want to model. For
example, (Fisac et al. 2019) models a lane change scenario
where an AV merges into a lane occupied by a human driven
vehicle. The game is modeled as a Stackelberg game with
the AV being the leader and the human driven vehicle re-
sponding to the action of the AV. Fig. 1a shows a 2-agent
2-level the game tree for such a scenario where each de-
cision node is a singleton information set since for every
decision node, the agent who owns the decision node has
perfect information on where they are in the game. At node
n1,1,1, the AV (indexed as agent 1) has the choice of either
staying in its current lane (L) or merging into the adjoin-
ing lane (M) A1,1 = {L,M}. Conditioned on this choice,
the vehicle has to generate a trajectory a1,2 ∈ f1,2(a1,1)
to execute the maneuver chosen in level 1. Whereas actions
in A1,1 are discrete choices, the agent can choose from a
continuum of actions (shaded region in the figure) at node
n1,2,2. The human driven vehicle after having observed the
actions of the AV, can respond by deciding to speed up (U)
to dissuade the merging AV cut-in the front, or slow down
(D) followed by a trajectory that corresponds to the choice.
In situations where assignment of a leader and a follower is
unclear or that assumption is too strong, the agents might
not have perfect information on the state of the play. Fig. 1b
illustrates a 2-agent 2-level scenario as an example where
an AV (indexed as 1) executes a free right turn on red at a
signalized intersection (in a situation similar to id:14 in Fig.
2), while a human driven vehicle (id:26 and re-indexed as
2 in Fig. 1b) approaches cross path from left to right. The
AV can either decide to turn (T) or wait (W) for the cross
path vehicle to pass, i.e., f1,1(X1) = A1,1 = {T,W}. The
human driven vehicle (id:26) can either slow down (D) or
choose not to slow down (U), f2,1(X2) = A2,1 = {D,U}.
Since either agent does not have perfect information about
what the other agent is about to do next, agent 2 does not
know whether they are in node n2,1,1 or n2,1,2 (connected
by the information set I(1)). This imperfection of informa-
tion is also reflected at the trajectory level (level 2 actions),
where each agent can only distinguish between the nodes in
level 2 that follow from their own chosen actions in level 1,
but not from the ones that follow from the other agent’s level
1 decision (I(2)-I(5)).

It becomes apparent from this structure that the game has
no proper subgame, and the game reduces to a simultane-
ous move game. It is well understood that a way to solve
such games is by reduction to normal form. However, as we
shall see, the hierarchical game has additional constraints
that allow solving the game in Fig. 1 also through back-
ward induction. To designate the nodes where utilities ac-
cumulate at each level in the backward induction process,

Algorithm 1: Backward induction for a hierarchical
game

Result: S∗1 , V ∗1
1 for κ := K;κ = 1; κ := κ− 1 do
2 for n ∈ L(κ) do

3 S∗κ,n, V
∗
κ,n ← solve Gκ(

N∏
i=1

fi,κ(σi(n)),

4 κ = K?U ;V ∗κ+1,L(κ+1))

5 end
6 end

we label a set of nodes in each level κ as level roots L(κ) =
{ni,κ,j |parent(ni,κ,j) /∈ Nκ} where Nκ is the set of nodes
in level κ. In other words, the set of level roots contain nodes
in each level κ whose parent is not in level κ. Therefore,
L(1) = {n1,1,1} and L(2) = {n1,2,1, n1,2,2, n1,2,3, n1,2,4}.
Algorithm 1 shows the standard backward induction process
adapted to the hierarchical game. The algorithm starts at the
bottom most level (K) and recursively moves up the tree by
solving the level games Gκ at every level. At each level, a
simultaneous move level game Gκ is instantiated from each
node in L(κ). These level games are constructed by first ex-
tracting σi(n), which gives the partial pure strategy for agent
i that lies on the branch from the root node of the game
tree L(1) to node n ∈ L(κ). fi,κ gives the available ac-
tions for each agent i in the current level κ, and these actions
form the domain of available strategies in the level game Gκ.
The utilities depend on the level of the game; for level game
Gκ=K the utilities are same as the game utility U , whereas
for level games Gκ<K are solved based on the game values
V ∗κ+1,L(κ+1) from the game Gκ+1 solved in the previous it-
eration. Note that the pseudocode shows only the case where
a single solution and game value (S∗κ,n, V

∗
κ,n) is propagated

up the hierarchy. In the case of multiple solutions for the
level games, the strategies and values have to be tracked and
repeated for each solution. The solutions and game value
S∗κ,n, V

∗
κ,n depend on the solution concept used for the indi-

vidual level game, and this is discussed in detail later under
Solution concepts.

One can see that the backward induction process is very
similar, if not same as solving for subgame perfect equilib-
ria in multi-stage games with stages being replaced by levels
in the hierarchy (Tadelis 2013). However, we cannot call it
that since the level games are not subgames in the game tree.
The reason why the backward induction works though is be-
cause the mapping functions fi,κ eliminate strategies for ev-
ery agent i that are not direct successors of the partial strate-
gies σi(n) ·σ−i(n), essentially breaking any information set
within a level κ that spans across two separate level roots in
L(κ). More intuitively, this mimics the elimination of hypo-
thetical strategies where in level 1 a vehicle may think about
slowing down, but in level 2 chooses a trajectory that speeds
up; and the fact that this cannot happen is part of the com-
mon knowledge among the agents in the game.
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(x, y)O

Figure 2: A snapshot of the intersection traffic scene. Rep-
resentative trajectories based on the three sampling schemes
over a R3. The figure shows the path (R2) projection of the
trajectories.

Game Structure
In this section, we describe the details of the game struc-
ture used in our study, including the number of agents, ac-
tions/strategies, and utilities.

Relevant agents and available actions. Since we are in-
terested in investigating decision making in the most crit-
ical tasks at a signalized intersection (such as unprotected
left turns and right turns on red), at each time step ∆tp=1s,
we setup a hierarchical game with an action plan horizon of
∆th=5s into the future from the perspective of each vehi-
cle that is turning left or right in the scenario. For example,
in the snapshot of Fig. 2, the black dashed line shows the
game from the perspective of the vehicle 14, which is turn-
ing right. The process of including the relevant vehicles in
the game is as follows: we identify the conflict points on
the map with respect to all the lanes in the intersection that
cross each other. Since a game is initiated with respect to
a ‘subject vehicle’, we first locate the conflict points corre-
sponding to the lane that the subject vehicle is currently in,
and include all agents in the scene that are on the lanes in
conflict with the subject vehicle’s lane. We also include the
leading vehicle of these conflicting vehicles. This set of rel-
evant vehicles along with the subject vehicle form the set of
agents in each game. Pedestrian actions are not modeled ex-
plicitly in the game tree; however, their influence is modeled
in the utility structure of the game, which is described later
in the section. Each game is a N -player 2-level hierarchi-
cal game where level 1 actions for each agent are high level
maneuvers that are relevant to the task under execution, and
level 2 actions are the corresponding trajectories. We setup
the set of maneuvers with the help of a rule engine that takes
into account the task of the vehicle and its situational state
(position, velocity, etc.). The complete list of level 1 actions

is documented in the code repository (c.f. Experiments sec-
tion). Level 2 actions (Ai,2) are trajectories that are gener-
ated based on the actions in level 1. To generate the trajec-
tories for each vehicle, we use a lattice sampling based tra-
jectory generation similar to one presented in (Ziegler and
Stiller 2009). First a set of lattice endpoints are sampled on
R2 cartesian co-ordinate centered on the vehicle’s current
position. Each lattice sample point on R2 is then extended
with a temporal lattice which is re-sampled to form the final
lattice points in R3 that contain the (x, y) positions and the
target velocity at each lattice point after accounting for ac-
celeration and jerk limits of passenger vehicles (Bae, Moon,
and Seo 2019). Finally, the sampled lattice points are con-
nected with a smooth cubic spline representing the vehicle
trajectory (Fig. 3).

Since the trajectory generation is in continuous space with
infinite actions for the drivers to reason over, combined with
the time constraints to make a decision (which is in the or-
der of milliseconds), the situation is ripe for bounded ratio-
nality to be in play. Osborne and Rubinstein takes a view
of bounded rationality that emerges from agents’ employ-
ing a mental process to sample other agents’ actions and
respond based on the imagined outcome of those samples
(Osborne and Rubinstein 1998). In our case, this is akin to
a vehicle sampling a set of trajectories of other agents and
responding in accordance to the sampled trajectories. Natu-
rally, one may imagine that some sampling procedures make
more sense than others. We now briefly mention the sam-
pling procedures used in our experiments, and the intuitive
reasoning behind each.

o

S(1)
(x, y)S(1)

(x, y)O S(1+B)

S(1+G)

(a)

S(1)

vτ=5
S(1)

vτ=0
O

S(1+B)

S(1+G)

(b)

Figure 3: Representative trajectories based on the 3 sampling
schemes over a R3 lattice showing the spatial representation
of the (a) path and (b) velocity profiles. Lattice points are
connected with cubic splines.

At each time step when the game tree is instantiated,
agents observe the current attributes (such as position, ve-
locity and acceleration) of other relevant agents in the game
tree. In the most basic case, an agent i may sample a sin-
gle trajectory (level 2 action) of every agent −i that that
they, i.e., i, think is most representative of the level 1 ac-
tion of the agent they are currently reasoning over. To con-
struct the trajectory sample, we select lattice endpoints along
the lane centerline and use a piecewise constant accelera-
tion model to generate the final trajectory. In the subsequent
sections, we refer to this sampling scheme that produces a
single trajectory as S(1) sampling. With a little more cogni-
tive bandwidth, along with the S(1) trajectory sample, they
can also sample trajectories that form the extreme ends of
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the bounded level-2 action space of other agents. These tra-
jectories are bounded spatially by the lane boundaries and
temporally by the upper and lower bounds on the velocity
limits of the level 1 action they correspond to. We refer to
this scheme as bounds sampling S(1+B). This set of trajec-
tories indicate what other agents might do in normative (i.e.
following the rules as captured by the piecewise constant
acceleration model) as well as in the extreme case but still
within the physical limitations of the vehicle. The final sam-
pling scheme lies in between the two schemes. Similar to
S(1+B), this scheme includes the S(1) trajectory; however,
the rest of the trajectories are sampled from a multivariate
Gaussian distribution with µ = [xS(1), yS(1), vS(1)]

> and an
unit diagonal covariance matrix, where (xS(1), yS(1), vS(1))
is the lattice endpoint corresponding to the S(1) trajectory.
We refer to this scheme as S(1 + G) and the samples in-
clude the normative behavior that comes from S(1) along
with variations in the path and velocity of the vehicle but not
to the extremes that were captured in the S(1 +B) scheme.

Utilities. To determine the utility structure, we draw from
motivational aspects of driver behavior modelling in traffic
psychology literature (Summala 1988). In general, driving
motivations can be broadly classified into inhibitory and ex-
citatory. Whereas excitatory motivations drive a driver to
make progress towards reaching the destination, inhibitory
motivations are the balancing factors that account for miti-
gating crashes and mental stress. In our case, the degree of
progress a driver can make based on a selected trajectory ai,2
is the excitatory utility uv exc(ai,2) as determined by the tra-
jectory length ‖ai,2‖, uv exc(ai,2) = min(

‖ai,2‖
dg

, 1), where
dg is a constant and can be interpreted as the distance to
goal or crossing the intersection. Inhibitory utility is based
on the minimum distance gap of the trajectory to other ve-
hicles uv inh as well as respecting pedestrian’s right of way
up inh. The final form of the utility function is

ui(ai,2, a−i,2) =

W · [uv inh(ai,2, a−i,2) up inh(ai,2) uv exc(ai,2)]
>

uv inh(ai,2, a−i,2)

=

∫
erf

[
d(ai,2, a−i,2)− θ

σ
√

2

]
N (θ; d∗ai,2,a−i,2 , σ)dθ

Sigmoidal functions are a popular family of functions
that map a safety surrogate metric, e.g., distance gap
d(ai,2, a−i,2), into an utility interval (Fishburn 1970). For
uv inh, we first fix a minimum safe distance gap d∗ai,2,a−i,2
based on the task (left turn, right turn, etc.) of the agents
in the game. The value of the safe distance gap determines
the location θ of the sigmoidal function (erf). However,
since the conception of what is considered safe may vary
in a population of drivers, we let θ to be a random vari-
able that is normally distributed with µ = d∗ai,2,a−i,2 and
constant variance σ determining the scale of the sigmoidal
function. The choice of erf as the sigmoidal function is
a mathematical convenience since the Gaussian integral of
the erf in uv inh(ai,2, a−i,2) evaluates to another sigmoidal

erf(
d(ai,2,a−i,2)−d∗ai,2,a−i,2

2σ ). up inh is a step function over [-

1,1] such that up inh(ai,2) = −1 if ai,2 is a trajectory that
does not wait for a pedestrian when the pedestrian is in the
vicinity having a right of way, or is on the crosswalk to be
traversed; and 1 otherwise. W is the weight parameter that
combines the inhibitory and excitatory utilities together to
produce a single real value. Utilities for the actions in G1 can
be calculated as follows. ui(ai,1, a−i,1) = V ∗2,η(i), where η
is the leaf node of the branch ai,1, a−i,1 and V ∗2,η(i) is the
utility of agent i following the pure strategy response a∗i,2,
where a∗i,2 is the solution to the underlying level-2 game.

Solution Concepts
A key element that influences solution concepts in games is
the manner in which each agent reasons over the strategies
of other agents. In non-strategic behavior models, agents do
not explicitly model other agents in the game and respond
solely on the basis of their own utility structure (Wright and
Leyton-Brown 2020). Strategic agents, on the other hand,
perform some reasoning over the strategies of other agents
and respond accordingly.

The first category of behavior models we consider is the
Quantal level-k (QLk) model (Wright and Leyton-Brown
2012). QLk models the population of agents as a mix of
strategic and non-strategic agents, with strategic agents hav-
ing an iterated cognitive hierarchy of reasoning. Strategic
agents in QLk use Quantal Best Response (QBR) func-
tion, often expressed as a logit response πQBR

i (ai, s−i, λ) =
exp [λ·ui(ai,s−i)]

Σ
a
′
i

exp [λ·ui(a
′
i,s−i)]

, where s−i represent the pure or mixed

strategies of other agents and λ is the precision parameter
that can account for errors in agent response with respect
to utility differences1. When λ→ 0, the mixed response is a
uniform random distribution, whereas λ→∞makes the re-
sponse equivalent to best response. Level-0 agents are non-
strategic (NS) agents who choose their actions uniformly at
random, whereas Level-1 agents are strategic (S) agents who
believe that the population consists solely of Level-0 agents,
and their response is a QBR response to Level-0 agents’ ac-
tions. In the original QLk model, level-0 agents follow an
uniform distribution mixed strategy; however, in our case
we use an expanded definition of level-0 agents presented
in (Wright and Leyton-Brown 2014), where instead of an
uniform distribution, the level-0 agents’ strategies follow
more intuitive yet non-strategic response, such as maxmax
response (MX) or maxmin (MM) response. We believe that
the expanded definition of the level-0 agents suit our situ-
ation much better, since it is unrealistic to expect a driver
to choose actions purely at random from their available ac-
tions. Even with this expanded definition, these are still non-
strategic since agent responses depend purely on their own
utilities and do not rely on a strategic reasoning over other
agents’ utilities (Wright and Leyton-Brown 2020).

In a hierarchical game, since the agent strategies are fac-
tored into levels si = (ai,1, ai,2), the manner in which an
agent reasons over strategies in one level might not be the

1 In this formulation, the symbols si and ai are strategies and ac-
tions of a game in a general sense, and not related to the symbols
used specifically in the formulation of hierarchical games earlier.
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QL0 QL1 PNE-QE

G1 G2 G1 G2 G1 G2

NS NS S+NS NS S NS

Table 1: Distribution of strategic (S) and non-strategic (NS)
behavior in level games G1 and G2 in three metamodels QL0,
QL1, and PNE-QE.

same as the reasoning process in another level. Therefore,
instead of a single solution concept in the game of Fig. 1,
the level games G2 can have a different solution concept than
the one in game G1. In our models, we let agents have a cog-
nitively less demanding non-strategic response in G2, and
a more deliberative strategic response in G1. This choice is
similar to one taken in (Fisac et al. 2019), and reflects the
natural process where it is easier for drivers to reason strate-
gically over the strategy space of discrete maneuvers than
over the space of infinitely many trajectories.

We consider two metamodels of behavior under QLk:
QL0 and QL1. We refer to them as metamodels, since they
can be further refined based on the choice of response func-
tion and sampling schemes to create concrete models. In
QL0 models, we restrict the population to be solely level-0
responders in both G1 and G2. In QL1, the population consist
of a mix of level-0 and level-1 responders in G1 and level-
0 responders in G2 (Table 1). For models of non-strategic
behavior, we use two response functions; maxmax response
(MX) and best worst-case or maxmin response (MM). The
model of MX is:

a∗i,κ = argmax
∀ai,κ,a−i,κ

ui(ai,κ, a−i,κ) (1)

πi(ai,κ)

=
exp[λi · ui(ai,κ, argmax∀a−i,κ ui(ai,κ, a−i,κ))]

Σ∀ai,κ exp[λi · ui(ai,κ, argmax∀a−i,κ ui(ai,κ, a−i,κ))]

(2)

where a∗i is the pure strategy utility maximizing action for i.
The model for non-strategic MM response is:

a∗i,κ = argmax
∀ai,κ

argmin
∀a−i,κ

ui(ai,κ, a−i,κ) (3)

πi(ai,κ)

=
exp[λi · ui(ai,κ, argmin∀a−i,κ ui(ai,κ, a−i,κ))]

Σ∀ai,κ exp[λi · ui(ai,κ, argmin∀a−i,κ ui(ai,κ, a−i,κ))]

(4)

Equations 2 and 4 are relaxations that translate the pure strat-
egy action to a noisy response πi(ai,κ) based on the preci-
sion parameter λi and sensitivity to i’s utility difference with
respect to opponent actions that maximizes i’s utility for MX
and minimizes for MM.

In QL1 metamodel, the population consists of a mix
of level-0 and level-1 agents. Level-0 agents in this pop-
ulation follow non-strategic behavior as formulated ear-
lier and level-1 agents best responds quantaly to level-0
agents’ behavior. With the expanded definition of level-0
agents as non-strategic bounded rational agents, there is a
design choice to be made on what level-1 agents believe

about level-0 agents. They can either consider level-0 agents
bounded rational having mixed response of Equations 2 and
4, or level-1 agents can consider level-0 agents to be pure
strategy rational responders based on Equations 1 and 3. We
choose the later to align with the original QLk model, where
agents modeling other agents as bounded rational agents are
observed only at a higher cognitive level (level-2 and above).
In QLk models, mixed population is modeled as uniform
population of bimodal mixture behavior. Therefore, if the
proportion of level-0 and level-1 agents is α and 1 − α re-
spectively, then the QL1 model response in G1 is the mixed
strategy response

πQL1
i (ai,1) = α ·πQL0

i (ai,1) + (1−α) ·πQBR
i (ai,1, a

∗
−i,1, λi)

(5)
where πQL0

i (ai,1) is the left hand side of the equation 2 or 4
and a∗−i,1 is the solution set to equations 1 or 3 for each of
the other agents.

The final metamodel we consider is a generalization of
pure strategy Nash equilibrium with noisy response. In this
metamodel, agents follow a non-strategic model in G2, and
a strategic model in G1 as described below.

a∗i,1 = argmax
∀ai,1

ui(ai,1, a
∗
−i,1) (6)

πi(ai,1)

=
exp[−λi ·min∀(a∗i,1,a∗−i,1)(u

∗
i − ui(ai,1, a∗−i,1))]

Σ∀ai,1 exp[−λi ·min∀(a∗i,1,a∗−i,1)(u
∗
i − ui(ai,1, a∗−i,1))]

(7)

where u∗i = ui(a
∗
i,1, a

∗
−i,1). In the above model, agents re-

spond according to pure strategy Nash equilibria a∗i,1, but
in error may choose actions ai,1 /∈ a∗i,1 based on the sen-
sitivity to the difference in the utility of the action and an
equilibrium action. We refer to this model as pure strategy
Nash equilibria with quantal errors (PNE-QE). The formu-
lation is similar to Quantal Response Equilibrium (QRE),
yet with key differences. In QRE, strategic reasoning occurs
in a space of mixed responses and the precision parameter
is part of common knowledge in the game. In our model,
reasoning over opponent strategies is in pure strategy ac-
tion space and the precision parameter is endogenous to each
agent; therefore, when an agent reasons about the strategies
of other agents, their parameters do not play a role (Craw-
ford, Costa-Gomes, and Iriberri 2013). Based on the choice
of the metamodel, the response function, and the sampling
scheme, we get 25 different behavior models (B), cf. Fig. 4,
which we evaluate in the next section.

Estimation of game parameters. Our dataset contains in-
stances of D (~23k) hierarchical games, instantiated with
∆tp = 1s,∆th = 5s and with the state variables Xi along
with the observed strategy soi = (aoi,1, a

o
i,2) for every agent

i in the game. For each behavior model b ∈ B, we note the
errors in actions with respect to the pure strategy responses
in the games as ∆Ub = {εi,b|εi,b = min∀a∗i [ui(a

∗
i , a
∗
−i) −

ui(a
o
i , a
∗
−i)]}, where a∗i are the solutions to Equations 1 or

3 for non-strategic models and 6 for PNE-QE model (we
verified the existence of pure strategy NE for all G1 games
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in D). Within the context of a game, we assume that all
agents follow the same behavior model, and the precision
parameters (λi,b) in an individual game is a function of the
agent’s state Xi from whose perspective the game is initi-
ated as well as the behavior model b of the game. There-
fore, for a given state factor Xi, εi,b follows an exponen-
tial distribution based on the game’s precision parameter for
non-strategic and PNE-QE models, and a mixed exponential
distribution (5) for QL1 in G1. To estimate the value of λi,b
we fit a generalized linear model glm(εi,b ∼ βXi)|∆Ub with
Gamma(k = 1) family and inverse link, which models εi,b as
an exponentially distributed random variable with E[εi,b] =

1
λi,b

and Var[εi,b] = 1
λ2
i,b

. β is the model co-efficient, solved
through maximum likelihood estimate based on the data in
∆Ub. The prediction of the glm model gives the mean and
standard error of λ−1

i,b based on the state observation Xi. For
the mixed exponential distribution in QL1 model, once we
estimate the individual precision parameters of 5, we use
iterative gradient ascent to solve for α by maximizing the
likelihood function Σ∀aoi,1 ln(πQL1

i (aoi,1)).

Experiments
Dataset. The dataset contains a total of 3649 vehicles and
264 pedestrians, including their centimetre-accurate trajec-
tory estimates. We analyse the decision making in right turn-
ing and left turning vehicles, which results in a total of 12526
hierarchical games. The process of data collection was as
follows: we recorded traffic footage from a busy intersec-
tion during mid-day traffic in Waterloo, Canada, with an
overhead drone and used a third-party service to label the
vehicles, pedestrians, bicycles, etc in the video recordings
2. We added additional metadata information about the tra-
jectories, including lane segments, the state of the traffic
lights, the true level-1 maneuver of the vehicles, and con-
flict points in the map. Dataset along with the related doc-
umentation is available at git.uwaterloo.ca/a9sarkar/traffic
behavior modeling.

In our experiment we study naturalistic driving behavior
and evaluate which behavior model captures human driv-
ing better, both in terms of model fit and predictive ac-
curacy. In our experiments, we study behaviors after set-
ting W = [0.25 0.5 0.25], thereby giving more impor-
tance to pedestrian inhibitory actions and set the value of
dg = 100 m. In particular we answer the following research
questions:
• RQ1. Which solution concept provides the best explana-

tion for the observed naturalistic data?
• RQ2. How do state factors influence the precision param-

eters in the games?
• RQ3. How does the choice of the response function in the

lower level game G2 affect the higher level solutions in
G1?
Models are indexed by their metamodel followed by the

choices of response functions in G1:G2 followed by the sam-
pling scheme used in G2. For models using S(1) sampling

2 datafromsky.com

of trajectories, the response function in G2 is omitted since
the hierarchical game only consists of G1 games; and in
those cases each agent has a single choice under each level-
2 roots. We perform our analysis of RQs 1 and 2 based
on G1, and discuss the impact of the choice of G2 solution
concepts as a part of RQ3. For the level-1 actions, we use
the following maneuvers: wait-for-oncoming, proceed-turn,
track-speed, follow-lead, decelerate-to-stop, wait-for-lead-
to-cross, follow-lead-into-intersection, wait-on-red, wait-
for-pedestrian. Most of the names of these maneuvers are
self-explanatory; track-speed applies to straight through ve-
hicles, where the generated trajectory either maintains or ac-
celerates/decelerates to road speed limit. Each maneuver is
further divided into aggressive and normal modes, thereby
giving a total of 18 level-1 actions.

RQ1. We address this question in three ways; with respect
to the (i) parameter values in the model, (ii) predictive accu-
racy in unseen data, and (iii) model fit. Fig. 4(c) shows the
box-plot of ∆Ub or the utility difference between the true
utility (i.e. utility of observed maneuver) and the utility of
the maneuver predicted by the game solutions for each be-
havior model. A lower value therefore indicates that the so-
lutions are closer to the true maneuver executed by the vehi-
cle. In general, PNE-QE metamodels show lower values in
the utility difference compared to Ql0 and Ql1 metamodels,
and within the PNE-QE metamodels, utilities of the actions
selected by the PNE-QE:MMS(1+B) model are closest to the
utilities of real action selected by the vehicles.

The models can also be compared based on the precision
parameter estimates (λi,b), where a higher value in λi,b in-
dicate the solutions of the models being closer to the true
behavior. However, since λi,b depends on the state of each
agent (Xi), we can only compare the parameter across the
models after controlling for the agent state. Therefore, for
each Xi, we note the predicted λi,b value by the glm model,
and Figure 4 (a) shows their distribution across all states for
each model b. Since Ql1 models are mixed exponential dis-
tributions with two precision parameters (one from level-0
behavior and the other from level-1 behavior) (Eqn 5), Fig-
ure 4(a) shows only one precision parameter (the one from
level-1 behavior) for Ql1 models. The other parameter is
the same as the values shown in the figure for Ql0 models
with the same solution concept; for example Ql1:MXS(1) is
a mixed exponential model with two parameters; one shown
under Ql1:MXS(1) corresponding to level-1 behavior and an-
other under Ql0:MXS(1) model from level-0 behavior. Over-
all, the proportion of level-1 responders in Ql1 models were
α = 0.519± 0.02. In general, similar to results in Fig. 4 (c),
PNE-QE models show higher values of the precision param-
eter as well, thus reflecting better performance as a model of
behavior in level-1 games, i.e. for selection of maneuvers.
PNE-QE:MXS(1+B) (PNE-QE model with maxmax response
in G2 with bounds sampling) show highest value of the pre-
cision parameter (λ = 190.8 ± 0.57). Next, we evaluate
model fit using Akaike information criterion (AIC) values,
which are noted in Fig. 4(a) in brackets. PNE-QE models
with bounds sampling of trajectories have lowest AIC val-
ues (-263.96 and -267.56 for PNE-QE:MXS(1+B) and PNE-
QE:MMS(1+B) respectively), indicating the best fit among the
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Figure 4: Comparison of the models based on (a) precision parameters (λi,b), fit (AIC values noted in brackets), (b) predictive
accuracy (log likelihood of observations in test data after 30 runs). (c) Spread of utility differences between selected action
(aoi,1) and the solution (a∗i,1) in G1 games for each behavior model..

models based on this criteria.

Alternatively, model selection can also be guided by their
predictive power in unseen situations. For evaluation based
on this criterion, we use random subsampling with 75:25
training and testing split and 30 runs. The model parame-
ters are estimated based on the observations in the training
set, and the predictive accuracy is measured on the basis of
the log likelihood of the observed actions in the testing set.
Fig. 4 (b) shows the sum log likelihood of the observed G1

actions in the testing set as predicted by each model, along
with the standard deviation. We observe that even in terms of
predictive accuracy, PNE-QE models have better accuracy
than Ql0 and Ql1 models with the exception of PNE-QE:S(1),
which in fact has the worst predictive accuracy among all
models. This means that when used in context of a behav-
ior planner in an AV, if computational constraints inhibits
the planner’s capacity to sample more than a single baseline
trajectory of other agent, the planner is better off selecting
Ql0 or Ql1 as a model of behavior than PNE-QE. How-
ever, in other cases, PNE-QE is better suited than Ql0 or
Ql1. Within the PNE-QE models, whereas the bounds sam-
pling showed better performance in PNE-QE models with
regards to precision parameter and AIC, Gaussian sampling
shows higher predictive accuracy when maxmin response is
used for G2 games (p-value 0.003; Welch test). With max-
max response, the difference between the sampling schemes
is non-significant. The rational baselines are shown in braces

in Fig. 4 (b), which are the sum log-likelihood of the actions
corresponding to the pure strategy solutions, i.e. the action
with highest probability in the mixed strategy.

Overall, these results indicate that based on the three eval-
uation criteria combined (precision parameter, AIC, and pre-
dictive performance), pure strategy Nash equilibria, espe-
cially with bounds sampling of trajectories, is still a good
model of decision making at the level of maneuvers, but
with a noisy response; and this noise can be modelled with a
quantal error model that is sensitive to the utility difference
to a sample NE.

RQ2. In this research question we study the impact of the
state factors on the precision parameter. The state factors are
shown in the first column of Table 2. Most state factors are
self explanatory; NEXT CHANGE refers to the next change
in the traffic signal and time in seconds till the change oc-
curs, RELEV VEHICLE refers to the type of relevant vehi-
cle in the game, for example, whether there is a lead vehicle
present or other vehicles in conflict which are not lead ve-
hicles. The table shows the mean precision parameter of the
behavior models for each state. Since λi,b depends on the
stateXi, which is a vector of the six categorical state factors,
each row in the table shows the mean precision parameter
for situations with the corresponding state factor value, but
in isolation; i.e. without taking into account the interaction
between the state factors like in the predictive glm model.
The factors that are found to have the most impact are vehi-
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STATE FACTOR Ql1
MM
MX
S(1+G)

Ql0
MX
MX
S(1+G)

PNE QE
MX
S(1+B)

SEGMENT
prep-left-turn 22.4 23.6 27.7*
exec-left-turn 71.7 72.4 56.8
OTHER LANES 101.8 106.9 111.5
prep-right-turn 101.1* 95.7 79.0
exec-right-turn 730.6 801.2 385.9

NEXT CHANGE
≥ 10sec. to Y/R 34.9 37.0 37.7*
< 10sec. to Y/R 39.2 41.7* 40.7
< 10sec. to G 314.6 283.2 263.4
≥ 10sec. to G 204.5 198.5 195.8

SPEED
LOW SPEED 65.9 68.7 71.8*
MEDIUM SPEED 190.6* 177.4 162.0

PEDESTRIAN
pedestrian present 53.2 54.5 57.1*
no pedestrian 82.8 76.5 90.1*

RELEV VEHICLE
LEAD VEHICLE 29.3 31.0 35.4*
OTHER VEHICLES 25.4 20.2 48.1*

AGGRESSIVE
Y 114.2 117.6* 105.2
N 57.2 59.7 65.0*

Table 2: Mean precision parameter (λi,b) of the representa-
tive behavior models for each state variable across all games.

cles being on right turn execution segment (exec-right-turn),
with and average increase of 165.62 in the precision param-
eter across all models and when the state of the traffic signal
is red/amber, with average increase of 136. Table 2 shows
the precision parameter values for the best models (c.f. Fig.
4 (a)) from each metamodel when the corresponding state
factor is present. When we contrast the values of the pre-
cision parameter in Table 2 to the values in Fig. 4(a), we
observe that there is much more variation within individual
models depending on agent’s state compared to the variation
across different models. This means that although PNE-QE
models overall has the better performance compared to other
models, there is no single model that is best suited across all
situations; rather, the choice of the behavior model should
be influenced by the agent’s situational circumstances. For
example, as shown in the table, when agents are observed to
have an aggressive trajectory, a Ql0:MX:MXS(1+G) may be a
better model on average than any other model.

RQ3. As a part of this research question we analyse how
much impact the choice of solution concept in lower level
game G2 has on the solution of the higher level game G1.
For the five possible combinations of the metamodel and
solution concept in G1, i.e. Ql0:MX, Ql0:MM, Ql1:MX,
Ql1:MM, PNE-QE, Table 3 shows the relative change in the
precision parameter of level games G1 based on the choice of
the response function in G2. Significance is shown based on
Dunn’s pairwise comparison test after Kruskal-Wallis test

R(G1): MX MM

R(G2): MX MM p MX MM p

QL0 +15.3 – .006 +6.3 – �0.05
QL1 +13.8 – �0.05 – – ns.

R(G1): PNE-QE

R(G2): MX MM p

+10.8 – �0.05

Table 3: Impact of response function choice in G2 on ratio-
nality parameters in G1.

indicated significant within group difference. We see that
other than Ql1:MM models, the choice of response function
in G2 is statistically significant. Even though there is an ef-
fect of the choice of G2 response function in the precision
parameter values, the difference is not as pronounced differ-
ences due to the situational factors.

Conclusion
We formalize the concept of a hierarchical game and develop
the various solution concepts that can be applied to a hierar-
chical game by adapting popular behavioral game theoretic
metamodels (QLk and PNE-QE). We evaluated the behavior
models based on a large contributed dataset of human driv-
ing at a busy urban intersection. Our results show that among
the behavior models evaluated, modeling driving behavior as
pure strategy NE with quantal errors at the level of maneu-
vers along with bounds sampling of trajectories provides the
best fit to naturalistic driving behavior. Additionally, we ob-
serve a significant impact of situational circumstances on the
performance of the behavior models, and a moderate impact
of the choice of solution concept and sampling strategy at
the trajectory level of a hierarchical game. We identify two
main directions for future work. The first one evaluate the
behavior models with respect to different weights W of the
excitatory and inhibitory motivations, ideally learned from
the observational data itself and further addition of social
utility norms (Schwarting et al. 2019) and traffic rules in the
utility structure. The second one is to perform further analy-
sis of the effect of more situational contexts on the behavior
models to inform the choice of correct behavior model under
different circumstances.

Ethics Statement
Research in self-driving cars or autonomous vehicles has
broad impact on transportation and society in general. Mem-
bers of the public have a stake in the development of AVs
since the algorithms and the processes that go into the devel-
opment of AVs impact the safety of everyone as road users.
The main goal of our paper is to understand human driving
behavior in a multi-agent setting in order to make it easier
to evaluate how decisions made by AV motion planning al-
gorithms impact other road users. Although the approaches
developed in the paper are well suited to be used for the pur-
pose of verification and testing of AV motion planners, there
are ethical impacts that should be taken into consideration
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while applying the models.
First, driving behaviors that fall under errors or off-

equilibrium behaviors are considered off-equilibrium only
with respect to a specific utility structure. Our ability to
predict the utility of motivations at an individual level is
severely limited, and this limitation needs to be acknowl-
edged and taken into account. For example, the quantita-
tive value an individual driver, for whom their car is a vital
commodity for their source of livelihood, assigns to driving
safely, (as modelled through surrogate safety metics) may
be very different from another individual who owns multi-
ple cars or someone who uses their vehicle only for casual
commute. In addition, there are several factors, such as, so-
cioeconomic status, disability, access to insurance, etc., play
a role in shaping the driving behavior of an individual.

Secondly, as shown in the paper, off-equilibrium behav-
iors that we observe in the behavior models can be modelled
as an exponential distribution; i.e., the probability of behav-
iors that lie away from the equilibrium reduces the further
the behavior is from on-equilibrium behavior. Since we can
estimate the parameters of this distribution, it may be tempt-
ing to evaluate models solely through quantitative risk met-
rics that are derived from this distribution. However, along
with such an analysis, there is also a need to be more trans-
parent and investigate the situational context in which the
low probability events occur. Due to the same factors men-
tioned earlier, choosing a certain behavior profile for an AV
may adversely impact a segment of road-users, such as older
people or people with disability, disproportionately while
keeping the overall risk at a population level within a pre-
scribed threshold. Therefore, the use of behavior models in
practical AV development needs to be accompanied with not
only the information about objective risk metrics but also
how the chosen behavior profile impacts vulnerable sections
of road users.
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