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Abstract

We introduce and study a novel majority based opinion dif-
fusion model. Consider a graph G, which represents a social
network. Assume that initially a subset of nodes, called seed
nodes or early adopters, are colored either black or white,
which correspond to positive or negative opinion regarding
a consumer product or a technological innovation. Then, in
each round an uncolored node, which is adjacent to at least
one colored node, chooses the most frequent color among its
neighbors.
Consider a marketing campaign which advertises a product
of poor quality and its ultimate goal is that more than half
of the population believe in the quality of the product at the
end of the opinion diffusion process. We focus on three types
of attackers which can select the seed nodes in a determinis-
tic or random fashion and manipulate almost half of them to
adopt a positive opinion toward the product (that is, to choose
black color). We say that an attacker succeeds if a majority of
nodes are black at the end of the process. Our main purpose
is to characterize classes of graphs where an attacker cannot
succeed. In particular, we prove that if the maximum degree
of the underlying graph is not too large or if it has strong ex-
pansion properties, then it is fairly resilient to such attacks.
Furthermore, we prove tight bounds on the stabilization time
of the process (that is, the number of rounds it needs to end)
in both settings of choosing the seed nodes deterministically
and randomly. We also provide several hardness results for
some optimization problems regarding stabilization time and
choice of seed nodes.

1 Introduction
In real life, we usually have specific perspectives on vari-
ous topics, such as consumer products, technological inno-
vations, life styles, and political events and by communicat-
ing with friends, family, and colleagues, our opinions are
influenced. Opinion diffusion and (mis)-information spread-
ing can affect different aspects of our lives such as economy,
defense, fashion, even personal affairs. Therefore, there has
been a growing interest to understand how opinions form
and diffuse because of the existence of social ties among
a community’s members and how the structure of a social
network can influence this process. This would enable us
to obtain better predictions of electoral results, control the
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effect of marketing and political campaigns, and in general
advance our knowledge of the cognitive processes behind
social influence.

The study of opinion diffusion and the evolution of so-
cial dynamics on networks has attracted the attention of
researchers from a vast spectrum of disciplines such as
economics (Bharathi, Kempe, and Salek 2007), epidemi-
ology (Pastor-Satorras and Vespignani 2001), social psy-
chology (Yin et al. 2019), statistical physics (Gärtner and
Zehmakan 2020), and political sciences (N. Zehmakan
and Galam 2020). It has also gained significant popularity
in theoretical computer science, especially in the quickly
growing literature focusing on the interface between social
choice and social networks, cf. (Bredereck and Elkind 2017)
and (Auletta, Ferraioli, and Greco 2018).

From a theoretical viewpoint, it is natural to introduce and
study mathematical models which mimic different opinion
dynamics. Of course in the real world, they are too com-
plex to be explained in purely mathematical terms. However,
the main idea is to comprehend their general principles and
make crude approximations at discovering certain essential
aspects of them which are otherwise totally hidden by the
complexity of the full phenomenon.

In these models, it is usually assumed that we have a graph
G and initially some nodes are colored, say black or white.
Then, in each round a group of nodes get colored or update
their color based on a predefined rule. Graph G is meant to
represent a social network, where each agent is modeled as a
node and edges indicate relations between them, e.g., friend-
ship, common interests, advice, or various forms of interac-
tions. Furthermore, black and white stand for the opinion of
an agent regarding an innovation or a political party, etc.

In the plethora of opinion diffusion models, threshold-
based ones are certainly the best known, cf. (Kempe,
Kleinberg, and Tardos 2003), (Apt and Markakis 2014),
and (Zehmakan 2020). There, nodes (i.e., agents) adopt a
color (i.e., opinion) if it is shared by a certain number or frac-
tion of their connections. Particularly, the majority-based
models, where each node chooses the most frequent color
among its neighbors, have received a substantial amount of
attention, cf. (Chistikov et al. 2020). This imitating behavior
can be explained in several ways: an agent that sees a ma-
jority agreeing on an opinion might think that her neighbors
have access to some information unknown to her and hence
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they have made the better choice; also agents can directly
benefit from adopting the same behavior as their friends
(e.g., prices going down).

Nowadays, the identification of factors leading to a suc-
cessful innovation in a given market is a question of con-
siderable practical importance. Marketing campaigns rou-
tinely use online social networks to attempt to sway people’s
opinions in their favor, for instance by targeting segments
of agents with free sample of their products or misleading
information. Consequently, the study of control and manip-
ulation of collective decision-making has gained increasing
popularity in mechanism design, algorithmic game theory,
and computational social choice, cf. (Bredereck and Elkind
2017). Especially, majority-based models have been postu-
lated as one potential explanation for the success or failure of
collective action and the diffusion of innovations. For exam-
ple for different majority-based opinion diffusion models, a
substantial amount of attention has been devoted to the study
of characterizing graph structures for which the dominant
color at the end of the process is the same as the dominant
color in the initial coloring, cf. (Auletta et al. 2015).

Our Contribution
We introduce a novel majority-based opinion diffusion
model and consider three different types of attackers whose
goal is to engineer the output of the diffusion process. Our
central problem is to characterize classes of graphs for which
an attacker fails to reach its goal.

Our model. Consider a graph G. Assume that initially a
subset of nodes, which are called the seed nodes, are colored
black or white and the rest of nodes are uncolored. Then, in
discrete-time rounds each node, which is uncolored and is
adjacent to at least one colored node, chooses the most fre-
quent color among its colored neighbors. In case of a tie,
it chooses black color with probability (w.p.) 1/2 indepen-
dently and white otherwise. (We should mention that the
results provided in the present paper actually hold for any
choice of the tie-breaking rule.)

The seed nodes correspond to early adopters, who are the
first customers to adopt a new product or technology before
the rest of the population does and usually constitute 10-
20% of the population. They are often called lighthouse cus-
tomers because they serve as a beacon of light for the rest
of the population to follow, which will take the technology
or product mainstream. The term early adopters comes from
the technology adoption curve, which was popularized by
the book Diffusion of Innovations (Rogers 1962).

The seed nodes and their color might be chosen randomly
or deterministically. We take an adversarial perspective and
focus on the following three types of attackers, where we
assume that α, ε ∈ (0, 1/2) are some arbitrary constants and
n is the number of nodes in the underlying graph.

Definition 1.1 (strong attacker) An (α,ε)-strong attacker
selects a seed set of size αn and color (1/2 + ε) fraction
of its nodes white and the rest black.

Definition 1.2 (moderate attacker) An (α,ε)-moderate at-
tacker selects a seed set of size αn and color each seed node
white, independently, w.p. (1/2 + ε) and black otherwise.

Definition 1.3 (weak attacker) An (α,ε)-weak attacker se-
lects each node to be a seed node, independently, w.p. α
and then color each seed node white, independently, w.p.
(1/2 + ε) and black otherwise.

Assume that the process runs for t rounds. Then, the main
goal of an attacker is to maximize the ratio of the number of
black nodes to white ones at the end of the t-th round. We
say that the attacker wins if this ratio is at least one half. Our
goal is to bound the probability that an attacker wins.

To better understand the aforementioned attacker models,
you might think of an attacker as a marketer which desires
to advertise an innovation or a product of poor quality and it
can select the set of early adopters (i.e., seed nodes) in a ran-
dom or deterministic fashion. Then, it manages to convince
almost half of them to adopt a positive opinion about the
product (i.e., choose black color). More precisely, a strong
attacker can choose (1/2−ε) fraction of the seed nodes to be
black and a moderate/weak attacker colors each seed node
black w.p. (1/2 − ε). The attacker’s ultimate goal is that a
majority of nodes are colored black after some number of
rounds, even though initially white is the dominant color.

As an extreme example, consider a star graph Sn, which
includes n−1 leaves and an internal node of degree n−1. An
(α,ε)-strong attacker can choose the internal node and αn−1
of the leaves to be the seed nodes and color the internal node
black. Then after one round of the process, all the remaining
(1 − α)n nodes will be colored black. Thus, the attacker
wins. Even for an (α,ε)-weak attacker (which essentially has
no real selection power and only runs a random procedure),
the internal node is selected w.p. α and will be colored black
w.p. (1/2− ε). Hence, the attacker wins w.p. (1/2− ε)α.

Our main purpose is to characterize classes of graphs
which are resilient to such attacks (i.e., an attacker cannot
win) where we assume that the attacker has full knowledge
of the graph structure. We should emphasize that for a mod-
erate or weak attacker since each seed node is white indepen-
dently w.p. (1/2+ε), the probability that the attacker wins is
at most 1/2. However, we are interested in graph structures
where the probability of winning is extremely small.

Strong attacker. An (α,ε)-strong attacker is quite pow-
erful. However, there are graphs, such as a complete graph,
where it cannot win. We prove that if the graph is regular
and has strong expansion properties, then a strong attacker
fails. More precisely we prove that for a regular graph G if
σ(G) ≤ ε

√
α(1− α), then an (α,ε)-strong attacker cannot

win, where σ(G) is the second-largest absolute eigenvalue
of the normalized adjacency matrix of G. (Please see Sec-
tion 2 for a more detailed definition of σ(G) and its relation
to expansion.) We argue that expansion and regularity are
not only sufficient conditions, but also somewhat necessary
for a graph to be resilient to a strong attacker.

In a nutshell, since a strong attacker has the power to
choose the seed nodes and their color, for a graph to be re-
silient, the “influencing power” should be distributed uni-
formly among all nodes. In particular, the number of edges
among each two node sets must be proportional to their size
and this is what basically regularity and expansion provide.

Moderate attacker. Roughly speaking, if there is a small

5612



set of nodes of size s with significant influencing power,
then a weak attacker can select them to be in the seed set.
These nodes will be colored black w.p. (1/2 − ε)s, which
is non-negligible for small s, and this can result in the at-
tacker winning. A natural way to avoid such scenarios is
to bound the maximum degree of the underlying graph. We
show that if the maximum degree is not “too large”, then
a moderate attacker fails asymptotically almost surely. (We
say an event happens asymptotically almost surely (a.a.s.) if
it occurs with a probability tending to 1 while we let n go to
infinity.) More precisely, we prove that for a graph G and an
(α,ε)-moderate attacker, if ∆ ≤ (Cn/ log(1/µ))

1
2t for some

small constant Cε,α > 0, the attacker cannot win in t rounds
w.p. at least 1 − µ, where ∆ denotes the maximum degree.
Furthermore, we argue the tightness of this statement.

Weak attacker. As we discussed, an (α,ε)-weak attacker
wins on a star graph Sn w.p. at least (1/2 − ε)α. Loosely
speaking, the graphs of this type, where there is a small sub-
set of nodes with significant influencing power and a large
set of nodes with very limited power, are problematic. Our
goal is basically to show that graphs which do not fall un-
der the umbrella of this type of structure are resilient to a
weak attacker. We prove that if the maximum degree in a
graph G is sufficiently small or if a majority of nodes have
rather large degrees, then a weak attacker will fail. More ac-
curately, we show that for a graph G and an (α,ε)-weak at-
tacker, if ∆ ≤ Cn/((log n)C

′
log(1/µ)) for some suitable

constants Cα,ε, C ′α,ε > 0 or if half of nodes are of degree at
least C ′′ log(1/µ) for a sufficiently large constant C ′′α,ε, then
the attacker fails w.p. at least 1−µ. Note that the bound on ∆
does not depend on t unlike the case of a moderate attacker.

Stabilization time. For a connected graph G, if the seed
set is non-empty, then all nodes will be colored eventually.
The number of rounds the process needs to color all nodes
is called the stabilization time of the process. As we discuss
in Section 5, it is straightforward to prove that the stabiliza-
tion time is upper-bounded by the diameter of G. This is, in
particular, true for the setting of a strong/moderate attacker.
However, what if the seed nodes are chosen at random (for
example, in case of a weak attacker)? We prove that if each
node is in the seed set independently w.p. α, then the sta-
bilization time is a.a.s. lower-bounded by Ω(log∆ log n

1
α )

and upper-bounded by O((1/αδ) log n), where δ denotes
the minimum degree in G. Furthermore, we argue that these
bounds are both tight, up to a constant factor.

Hardness results. We provide some hardness results for a
decision problem on the stabilization time and an optimiza-
tion problem on the choice of seed set and its coloring. As-
sume that we are given a graph G and some integers t and
s. We prove that the problem of determining whether there
is a seed set of size s for which the process takes t rounds
to end is NP-complete. Furthermore, suppose we are given
a graph G and some integers b, w, and t as the input and
our goal is to find the minimum (expected) number of white
nodes after t rounds if there are b black and w white nodes
initially. We prove the best possible approximation factor for
this problem is larger than n1−ζ for any ζ > 0 unless P=NP.

Related Work
Numerous opinion diffusion models have been introduced
to investigate how a group of agents modify their opinions
under the influence of other agents. It is usually assumed that
for a graph G, which represents a social network, initially
some nodes are colored black (positive) or white (negative).
Then, nodes update their color based on some predefined
rule. Among these models, the threshold and majority model
are perhaps the closest to ours. In both of them, initially each
node is black or white. In the majority model (Peleg 1997),
in each round all nodes simultaneously update their color to
the most frequent color in their neighborhood (and no update
in case of a tie). In the threshold model (Kempe, Kleinberg,
and Tardos 2003), each node v has a threshold value tv and
it becomes black as soon as it has at least tv black neighbors.

We should emphasize that different variants of these mod-
els have been considered; for example, asynchronous updat-
ing rule (Auletta et al. 2015), various tie-breaking rules (Pe-
leg 1998), random threshold values (Kempe, Kleinberg,
and Tardos 2003), and with a bias toward one of the col-
ors (Anagnostopoulos et al. 2020). Even more complex
models such as the ones considered in (Ferraioli and Ventre
2017) and (Auletta, Fanelli, and Ferraioli 2019), which fol-
low an averaging-based updating rule, or the models in (Brill
et al. 2016), (Meir et al. 2010), (Auletta, Ferraioli, and Greco
2020), and (Faliszewski et al. 2018) can be seen as exten-
sions of the majority model.

Consider a marketer which advertises a new product. As-
sume that it can convince a subset of agents to adopt a pos-
itive opinion about its product, e.g., by giving them free
samples of the product, and it aims to trigger a large cas-
cade of further adoptions. Which agents should it target?
A node set A is a target set if black color eventually takes
over all (or half) of nodes once A is fully black. (This is
sometimes also known as dynamic monopoly or percolat-
ing set.) For both the majority and threshold model, the
minimum size of a target set has been extensively stud-
ied on various classes of graphs such as lattice (Balister
et al. 2010), Erdős-Rényi random graph (Schoenebeck and
Yu 2018), random regular graphs (Gärtner and Zehmakan
2018), power-law random graphs (Amini and Fountoulakis
2014), and expander graphs (Mossel, Neeman, and Tamuz
2014). Furthermore, (Berger 2001) proved that there exist
arbitrarily large graphs which have target sets of constant
size under the majority model and (Auletta, Ferraioli, and
Greco 2018) showed that every n-node graph has a target
set of size at most n/2 under the asynchronous variant.

Furthermore, it is known that the problem of finding the
minimum size of a target set for a given graph G is NP-
hard for different variants of these models. For the major-
ity model, (Mishra, Radhakrishnan, and Sivasubramanian
2002) proved that this problem cannot be approximated
within a factor of log ∆ log log ∆, unless P=NP; however,
there is a polynomial-time log ∆-approximation algorithm.
For the threshold model, (Chen 2009) proved that the prob-
lem is NP-hard even when all thresholds tv are 1 or 2 and
G is a bounded-degree bipartite graph. On the other hand,
the problem is traceable for special classes of graphs such as
trees. We study a similar optimization problem in our setting
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and provide inapproximability results.
Many other adversarial scenarios where an attacker aims

to engineer the output of an opinion diffusion process have
been investigated. For example, assume that an attacker can
manipulate almost half of initially colored nodes to choose
black color in a random or deterministic manner, similar to
our attacker models. Which graph structures are resilient to
such attacks, i.e., at the end of the process the white color is
still the dominant color? For the majority model, (Mustafa
and Pekeč 2001) proved that a graph is resilient if it is a
clique or very close to a clique. (Auletta et al. 2015) pro-
vided similar results for the asynchronous setting. For our
majority-based model, we prove that expansion, regularity,
and maximum degree are chiefly responsible for resilience.

Other kinds of attackers with various manipulation pow-
ers, such as adding/deleting edges or changing the order of
updates, have been considered, cf. (Bredereck and Elkind
2017), (Corò, D’Angelo, and Velaj 2019), and (Wilder and
Vorobeychik 2017). Moreover, the complexity of finding an
optimal strategy for different types of attackers has been
studied, cf. (Grandi, Stewart, and Turrini 2018), (Corò et al.
2019), and (Borodin, Filmus, and Oren 2010).

In the majority model, since the updating rule is deter-
ministic, the process eventually reaches a cycle of color-
ings. The length of this cycle and the number of rounds
the process needs to reach it are called the periodicity
and stabilization time of the process, respectively. (Goles
and Olivos 1980) proved that periodicity is always one or
two. Recently, (Chistikov et al. 2020) and (Zhuang et al.
2020) showed that it is PSPACE-complete to decide whether
the periodicity is one or not for a given coloring of a
directed graph. Regarding the stabilization time, (Fogel-
man, Goles, and Weisbuch 1983) showed that it is bounded
by O

(
n2
)
. (Frischknecht, Keller, and Wattenhofer 2013)

proved that this bound is tight, up to some poly-logarithmic
factor. (Kaaser, Mallmann-Trenn, and Natale 2016) proved
that the problem of determining whether there exists a col-
oring for which the process takes at least t rounds is NP-
complete. As mentioned, we provide tight bounds and hard-
ness results on the stabilization time of our diffusion process.

Preliminaries
Graph definitions. Let G = (V,E) be an n-node graph.
For two nodes v, u ∈ V , we define d (v, u) to be the length
of a shortest path between v, u in terms of the number of
edges, which is called the distance between v and u (for
a node v, we define d (v, v) := 0). For t ∈ N0, we let
Nt(v) := {u ∈ V : d(v, u) = t} denote the set of nodes
whose distance from v is exactly t. In particular, N0(v) = v
and N1(v) is the set of v’s neighbors. Furthermore, we de-
fine N̂t(v) := ∪ti=0Ni(v) to be the t-neighborhood of v.
Analogously, for a node set S ⊆ V we have Nt(S) :=

{u ∈ V : d(S, u) = t} and N̂t(S) := ∪ti=0Ni(S), where
d(S, u) := minv∈S d(v, u). We let deg (v) := |N1 (v) | de-
note the degree of v and define degS (v) := |N1 (v)∩S|. We
also define ∆ (G) and δ (G) to be respectively the maximum
and minimum degree in graph G. For two node sets S and
S′, we define e (S, S′) := |{(v, u) ∈ S × S′ : {v, u} ∈ E}|

where S × S′ is the Cartesian product of S and S′.
Model definitions. In our model, we will denote by Rt

the set of nodes which are colored in the t-th round for t ∈
N0. In other words, R0 is equal to the seed set and Rt :=

Nt(R0) for t ∈ N. We also define R̂t = ∪ti=0Ri. Moreover,
we let Bt (analogously Wt) denote the set of black (resp.
white) nodes in Rt. Similarly, B̂t and Ŵt denote the set of
black and white nodes in R̂t, respectively. We also define
rt := |Rt|, r̂t = |R̂t|, bt := |Bt|, b̂t = |B̂t|, wt = |Wt|, and
ŵt = |Ŵt|. Note that these are random variables even when
we choose the seed nodes and their color deterministically
since we break a tie at random.

Some inequalities. Now, we present some standard prob-
abilistic inequalities, cf. (Dubhashi and Panconesi 2009),
which we utilize several times later.

Theorem 1.4 (Chernoff bound) Suppose x1, · · · , xk are
independent Bernoulli random variables and let X denote
their sum, then for any 0 ≤ η ≤ 1

• Pr[(1 + η)E[X] ≤ X] ≤ exp
(
−η

2E[X]
3

)
• Pr[X ≤ (1− η)E[X]] ≤ exp

(
−η

2E[X]
2

)
.

If we are given k discrete probability spaces (Ωi,Pri) for
1 ≤ i ≤ k, then their product is defined to be the probability
space over the ground set Ω := Ω1 × Ω2 × · · · × Ωk with
the probability function Pr[(ω1, . . . , ωk)] :=

∏k
i=1 Pri[ωi],

where ωi ∈ Ωi. Let (Ω,Pr) be the product of k discrete
probability spaces, and let X : Ω→ R be a random variable
over Ω. We say that the effect of the i-th coordinate is at most
ci if for all ω, ω′ ∈ Ω which differ only in the i-th coordinate
we have |X (ω) −X (ω′) | ≤ ci. Azuma’s inequality states
that X is sharply concentrated around its expectation if the
effect of the individual coordinates is not too big.

Theorem 1.5 (Azuma’s inequality) Let (Ω,Pr) be the
product of k discrete probability spaces (Ωi,Pri) for 1 ≤
i ≤ k, and let X : Ω → R be a random variable with the
property that the effect of the i-th coordinate is at most ci.
Then, Pr[X ≤ E[X]− a] ≤ exp(−a2/(2

∑k
i=1 c

2
i )).

Moreover, we sometimes use the basic inequalities 1− z ≤
exp (−z) for any z and 4−z ≤ 1− z for any 0 < z < 1/2.

Assumptions. All logarithms are to base e, otherwise we
point out explicitly. Furthermore, we let n (the number of
nodes) tend to infinity and α, ε ∈ (0, 1/2) are constants.
We assume that the error probability µ is larger than 1/

√
n.

(Actually, most of our proofs also work when µ > 1/f(n)
for any function f(n) sub-exponential in n.)

2 Strong Attacker
In this section, our goal is to prove that a regular expander
graph is resilient to a strong attacker. Roughly speaking, one
says a graph has strong expansion properties if it is highly
connected. There exist different parameters to measure the
expansion of a graph. We consider an algebraic character-
ization of expansion. However, since the relation between
other measures, such as vertex and edge expansion, and ours
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is well-understood, cf. (Hoory, Linial, and Wigderson 2006),
our results can be immediately rephrased.

Let σ(G) be the second-largest absolute eigenvalue of the
normalized adjacency matrix of graph G. There is a rich lit-
erature about the relation between the value of σ and the
expansion of graph G. However for our purpose here, all
one needs to know is that G has stronger expansion proper-
ties when σ is smaller. Now, we present the expander mixing
lemma, cf. (Hoory, Linial, and Wigderson 2006), which ba-
sically states that the number of edges between any two node
sets is almost completely determined by their cardinality if
the value of σ is small.
Lemma 2.1 (Expander mixing lemma) For a d-regular
graph G = (V,E) and S, S′ ⊂ V∣∣∣∣e (S, S′)− |S| |S

′|d
n

∣∣∣∣ ≤ σd√|S| |S′| .
Theorem 2.2 For a d-regular graph G = (V,E) and an
(α,ε)-strong attacker, if σ ≤ ε

√
α(1− α), then the attacker

cannot win for any number of rounds.

Proof. We know that w0 = (1/2 + ε)αn > αn/2. We prove
that w1 ≥ (1− α)n/2, which yields w0 +w1 > n/2. Thus,
for any number of rounds, white is the dominant color.

Let A := V \ (R0 ∪ W1) be the set of non-seed nodes
which are black or uncolored after one round. It suffices
to prove that a := |A| ≤ (1 − α)n/2 (since this im-
plies that w1 ≥ (1 − α)n/2). For each node v ∈ A,
degW0

(v) ≤ degB0
(v) (because otherwise it would become

white after one round). Hence, e(A,W0) ≤ e(A,B0). By
applying Lemma 2.1 to both sides of this inequality, we get

aw0d

n
− σd

√
aw0 ≤

ab0d

n
+ σd

√
ab0.

Dividing by
√
a and re-arranging the terms give us
√
a(w0 − b0) ≤ σn(

√
w0 +

√
b0).

Since
√
w0 +

√
b0 =

√
(1/2 + ε)αn +

√
(1/2− ε)αn ≤√

2αn, w0 − b0 = 2αεn, and σ ≤ ε
√
α(1− α), we get

√
a ≤

εn
√
α(1− α)

√
2αn

2αεn
⇒ a ≤ (1− α)n/2. �

Random regular graphs. The random d-regular graph Gn,d
is the random graph with a uniform distribution over all d-
regular graphs on n nodes. It is proven by (Friedman 2003)
that σ(Gn,d) ≤ 2/

√
d for d ≥ 3 a.a.s. Putting this statement

in parallel with Theorem 2.2 implies that if d ≥ 4/(α(1 −
α)ε2), then Gn,d is resilient to an (α,ε)-attacker a.a.s.

Irregular graphs. So far, we limited ourselves to regu-
lar graphs. However, our result can be generalized to cap-
ture irregular graphs by applying basically the same proof
ideas. All we need to do is to apply a more general variant
of Lemma 2.1, cf. (Hoory, Linial, and Wigderson 2006), and
replace d with δ or ∆, according to the case. Then, we can
conclude that for a graphG = (V,E) and an (α,ε)-strong at-
tacker, if σ ≤ ((1+γ)ε/2−(1−γ)/4)

√
α(1− α), then the

attacker cannot win, where γ := δ/∆. (This is equivalent to
the statement of Theorem 2.2 for γ = 1.)

Erdős-Rényi random graph. In the Erdős-Rényi ran-
dom graph Gn,p each edge is added independently w.p. p
on a node set of size n. Let K be a sufficiently large con-
stant. It is proven by (Le, Levina, and Vershynin 2017) that
if p ≥ K log n/n, then σ(Gn,p) = O(1/

√
np) a.a.s. (re-

call that log n/n is the connectivity threshold). Furthermore,
it is well known, cf. (Dubhashi and Panconesi 2009), that
γ ≥ (1 − ε) for any ε > 0 a.a.s. if p ≥ K log n/n. Com-
bining the last two statements and our proposition about ir-
regular graphs implies that Gn,p for p ≥ K log n/n is a.a.s.
resilient to an (α,ε)-strong attacker.

Tightness. We believe that regularity and expansion are
not only sufficient conditions for a graph to be resilient to
a strong attacker, but also somehow necessary. (See the full
version of the paper for more details.)

3 Moderate Attacker
In this section, our main purpose is to prove Theorem 3.2.
To do so, let us first provide Lemma 3.1.

Lemma 3.1 For a graph G = (V,E) and an (α,ε)-
moderate attacker, (1/2 + ε)αn − αεn/2 ≤ w0 ≤ (1/2 +
ε)αn+ αεn/2 w.p. 1− exp(−Θ(ε2αn)).

Proof. Label the seed nodes arbitrarily from v1 to vαn. We
define Bernoulli random variable xi to be 1 if and only if
vi is colored white. Then, w0 =

∑αn
i=1 xi and E[w0] =

(1/2 + ε)αn. Since xis are independent, applying the Cher-
noff bound (Theorem 1.4) for η = ε/2 yields our claim. �

Theorem 3.2 For a graph G = (V,E) and an (α,ε)-
moderate attacker, if ∆ ≤ (Cn/ log(1/µ))

1
2t for some suf-

ficiently small constant Cα,ε > 0, then the attacker cannot
win in t rounds w.p. at least 1− µ.

Proof. Let r = r̂t − r0 be the number of nodes which are
colored during rounds 1 to t. We define X := ŵt−w0 to be
the number of nodes which are colored white among these
nodes. We prove thatX > r/2−αεn/2 w.p. at least 1−µ/2.
Furthermore based on Lemma 3.1, w0 ≥ r0/2+αεn/2 w.p.
1− exp(−Θ(ε2αn)) ≥ 1− 1/(2

√
n) ≥ 1−µ/2 (where we

used our assumptions that α, ε are constant and µ ≥ 1/
√
n).

Therefore, we have ŵt = X + w0 > (r/2 − αεn/2) +
(r0/2 + αεn/2) = (r + r0)/2 = r̂t/2 w.p. at least 1 − µ,
which implies that the attacker does not win in t rounds.

It remains to prove that X > r/2 − αεn/2 w.p. at least
1 − µ/2. Let us label all nodes in R0 arbitrarily from v1 to
vαn. Corresponding to each node vi for 1 ≤ i ≤ αn, we
define the probability space (Ωi,Pri). Then, X : Ω → R
is defined over Ω, where (Ω,Pr) is the product of discrete
probability spaces (Ωi,Pri). Recall that we say the effect of
the i-th coordinate is at most ci if for all ω, ω′ ∈ Ω which dif-
fer only in the i-th coordinate we have |X(ω)−X(ω′)| ≤ ci.
Obviously, if we change the color of node vi, then the
color of at most |N̂t(vi)| ≤ 2∆t of the nodes, which are
colored in the first t rounds, will be affected. Therefore,
ci ≤ 2∆t, which implies that

∑αn
i=1 c

2
i ≤ 4αn∆2t. Fur-

thermore, E[X] ≥ r/2 since each node in V \ R0 is white
w.p. at least 1/2 (actually, one can get the stronger lower
bound of (1/2 + ε) with a coupling argument, which is

5615



not needed here). Now, applying Azuma’s inequality (Theo-
rem 1.5) yields

Pr[X ≤ r

2
− αεn

2
] ≤ exp(− α2ε2n2

8
∑αn
i=1 c

2
i

) ≤ exp(− αε2n

32∆2t
).

For a suitable choice of Cα,ε, we have ∆ ≤ ( αε2n
32 log(2/µ) )

1
2t .

Thus, the above probability is at most µ/2. �

Tightness. Now, we provide Proposition 3.3 which as-
serts that if we could replace the exponent 1/2t with 1/t
in Theorem 3.2, then our bound would be tight, up to some
constant factor. We believe that this is actually doable with
some case distinctions and more careful calculations; how-
ever, we only prove such statement for t = 1, in Proposi-
tion 3.4. Please see the full version of the paper for the proof
of Propositions 3.3 and 3.4.

Proposition 3.3 For any ε, α, µ > 0 and t ∈ N, there ex-
ists a graph G with ∆ = (C ′n/ log(1/µ))

1
t for some con-

stant C ′α,ε such that an (α,ε)-moderate attacker can win in t
rounds w.p. larger than µ.

Proposition 3.4 For a graph G = (V,E) and an (α,ε)-
moderate attacker, if ∆ ≤ C ′′n/ log2(1/µ) for some suf-
ficiently small constant C ′′α,ε > 0, then the attacker cannot
win in one round w.p. at least 1− µ.

4 Weak Attacker
Theorem 4.1 states that if the maximum degree of a graph is
sufficiently smaller than n or if the degree of at least half of
the nodes is pretty large, then it is resilient to a weak attacker.
In other words, a weak attacker can be successful only on
graphs with some nodes of very high degree and a large set
of nodes with small degree such as a star graph.

Theorem 4.1 For a graph G = (V,E) and an (α,ε)- weak
attacker, if ∆ ≤ Cn/((log n)C

′
log(4/µ)) for some suitable

constantsCα,ε, C ′α,ε > 0 or if half of the nodes are of degree
at least d∗1 := (6/αε2) log(12/αεµ), then for any t ∈ N the
attacker cannot win in t rounds w.p. at least 1− µ.

We observe that the bound on ∆ in Theorem 4.1 does not
depend on the number of rounds t, unlike the case of a mod-
erate attacker. Furthermore for a moderate attacker, we can-
not prove that if the degree of half of the nodes is larger than
a certain degree threshold, then the attacker fails, except if
the threshold is very large. Assume that graphG is the union
of a clique of size αn− 1 and a clique of size (1−α)n+ 1.
Suppose that an (α,ε)-moderate attacker chooses all αn− 1
nodes in the first clique and a node v in the second one to be
the seed nodes. If v is colored black, then the attacker wins
and this happens w.p. (1/2− ε). Note that all nodes in G are
of degree at least αn− 2.

Proof sketch. The complete proof is fairly long and is
given in the full version of the paper. Here, we deliver some
key ideas which the proof is built on.

Since each of a node’s neighbors is initially black inde-
pendently w.p. (1/2 − ε)α and white w.p. (1/2 + ε)α, the
dominant color in the neighborhood of a high-degree node is
very likely to be white. This lets us prove that if half of the

nodes are of degree at least d∗1, then after one round more
than n/2 nodes are white w.p. at least 1−µ. In that case, the
attacker cannot win after any number of rounds.

For the case of ∆ ≤ Cn/((log n)C
′
log(4/µ)), we first

show that w0 ≥ b0 + αεn w.p. at least 1 − µ/4, similar to
the proof of Lemma 3.1. Furthermore, one can prove that
at most αεn/2 nodes are colored after the t∗1-th round w.p.
at least 1 − µ/4, for t∗1 := (2/α) log(4/αε). In the worst
case scenario, all these nodes are colored black, but this is
not an issue since we already have αεn extra white nodes
in R0. Moreover building on the argument from the previ-
ous paragraph, we can prove that all non-seed nodes whose
degree is larger than d∗2 := 8 log n/(αε2) are colored white
after one round w.p. at least 1 − µ/4. Therefore, it only re-
mains to show that at least half of the nodes whose degree
is smaller than d∗2 and are in ∪t

∗
1
i=1Ri will be colored white

w.p. at least 1− µ/4. For this, we rely on Azuma’s inequal-
ity, similar to the proof of Theorem 3.2. However, we can
prove a much tighter bound on

∑r0
i=1 c

2
i by a smarter count-

ing argument and using the fact that we only need to focus on
“low-degree” nodes that are colored up to the t∗1-th round. �

Tightness. The bound (6/αε2) log(12/αεµ) in Theo-
rem 4.1 is tight in terms of µ. However, we believe the de-
pendency on α and ε is not best possible. The upper bound
on ∆ is also tight in µ and the dependency on n is optimal,
up to the poly-logarithmic term. Please see the full version
of the paper for more details including the proof of these
claims.

5 Stabilization Time
In this section, we prove tight bounds on the stabilization
time of our opinion diffusion process. Let G be a connected
graph. (Otherwise, we just need to consider the maximum
stabilization time among all the connected components.)
Note that stabilization time is only a function of the choice of
seed nodes, not their color. After t rounds, all nodes whose
distance from the seed set is at most twill be colored. There-
fore, the stabilization time is upper-bounded by the diame-
ter D(G), which is the greatest distance between any pair
of nodes in G. This bound is obviously tight. Consider two
nodes v, u such that d(v, u) = D. If v is the only seed node,
then it takes D rounds until node u is colored.

What if the seed set is chosen randomly (as in case of a
weak attacker)? We prove that if each node is chosen to be
a seed node independently w.p. α, then a.a.s. the stabiliza-
tion time is between Ω(log∆ log n

1
α ) (see Theorem 5.4) and

O((1/αδ) log n) (see Theorem 5.1).

Theorem 5.1 For a graph G = (V,E), if each node is a
seed node independently w.p. α, then the stabilization time
is in O((1/αδ) log n) a.a.s.

To prove Theorem 5.1, we first provide Lemmas 5.2 and 5.3.

Lemma 5.2 For a node v in a graphG = (V,E) and t ∈ N,
if Nt(v) 6= ∅, then |N̂t(v)| ≥ (t− 1)δ/3.

Proof. Consider a triple (N3i(v), N3i+1(v), N3i+2(v)) for
some 0 ≤ i ≤ b(t+1)/3c−1. SinceN3i+1(v) is non-empty,
it must include a node u. All the neighbors of u are in this
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triple, i.e., N(u) ⊂ N3i(v) ∪ N3i+1(v) ∪ N3i+2(v). Since
deg(u) = |N(v)| ≥ δ, the triple must include at least δ + 1

nodes. Thus, we get |N̂t(v)| ≥ b t+1
3 c(δ+1) ≥ (t−1)δ/3. �

Lemma 5.3 Assume each node in a graph G = (V,E) is a
seed node independently w.p. α. Then, a.a.s. there is no node
v such that |N̂t(v)| ≥ (2/α) log n and N̂t(v) ∩R0 = ∅.

Proof. The probability that N̂t(v) ∩R0 = ∅ is equal to

(1− α)|N̂t(v)| ≤ (1− α)
2 log n
α ≤ exp(−2 log n) =

1

n2
.

Thus, a union bound implies that w.p. 1 − 1/n there is no
node v such that |N̂t(v)| ≥ 2

α log n and N̂t(v) ∩R0 = ∅. �
Proof of Theorem 5.1. Let t∗2 := (6/αδ) log n + 1. If

Nt∗2 (v) = ∅ for a node v ∈ V , it will be colored in less
than t∗2 rounds or it will never be colored. On the other
hand, if Nt∗2 (v) 6= ∅, by Lemma 5.2 we have |N̂t∗2 (v)| ≥
(t∗2 − 1)δ/3 = (2/α) log n. By Lemma 5.3, we know that
a.a.s. every node whose t∗2-neighborhood is of size at least
(2/α) log n has a seed node in its t∗2-neighborhood, and
thus is colored in at most t∗2 rounds. Hence, a.a.s. after
t∗2 = (6/σα) log n + 1 = O((1/αδ) log n) rounds every
node is colored or it will never be colored. �

Tightness. Let Cδn be the δ-th power of a cycle Cn, which
is a 2δ-regular graph. We can prove that if each node is a
seed node independently w.p. α, then a.a.s. there is a node u
such that N̂t∗3 (u) ∩ R0 = ∅, for t∗3 := (1/16αδ) log2 n− 1,
which implies that it will be colored after the t∗3-th round.
Thus, the process takes at least t∗3 = Ω((1/αδ) log n) rounds
to end. A complete proof is given in the full version.
Theorem 5.4 For a connected graph G = (V,E), if each
node is a seed node independently w.p. α, then the stabiliza-
tion time is in Ω(log∆ log n

1
α ) a.a.s.

Tightness. We can prove that if each node in a complete ∆-
ary tree is a seed node independently w.p. α, then a.a.s. after
O(log∆ log n

1
α ) rounds all nodes are colored. This implies

that the lower bound in Theorem 5.4 is tight. The proof of
this statement and Theorem 5.4 are provided in the full ver-
sion of the paper.

6 Hardness Results
Assume you are given a graph G = (V,E) and some t ∈ N.
The goal is to determine whether there is a choice of the
seed set for which the process needs exactly t rounds to end.
This problem is polynomial-time solvable. If t > D, where
D is the diameter of G, then the answer is No since the sta-
bilization time is upper-bounded by D. If t ≤ D, then the
answer is Yes. Assume that d(v, u) = D for some nodes
v, u ∈ V . Then, if the seed set is equal to N̂D−t(v), the pro-
cess takes exactly t rounds. However, if in the above problem
we require that the seed set must be of a given size s, then
the problem becomes NP-hard. It is because the t-hop dom-
inating set problem, which is proven to be NP-hard by (Ba-
suchowdhuri and Majumder 2014), can be reduced to this
problem. Assume we are given a graph G and integers t, s
as input. In the t-hop dominating set problem, the task is to

decide whether there is a node set S ⊆ V of size s such that
d(S, v) ≤ t for any v ∈ V . We observe that the answer to
this problem is Yes if and only if there is a seed set of size
s for which the process takes at most t rounds. Hence, this
problem can be reduced to our stabilization time problem.

Now, assume that you are given an n-node graph G and
some integers b, w, and t. Your task is to choose a seed set
of b black nodes and w white nodes such that ŵt is as small
as possible. (This is similar to what a strong attacker aims to
do.) We call this the Minimum Influence (MI) problem.
Theorem 6.1 Let A be a polynomial-time β-approximation
algorithm for the MI problem. Then, β > n1−ζ for any ζ >
0 unless P=NP.

Proof sketch. In the clique problem, which is NP-hard, a
graph G′ and an integer k are given and the task is to deter-
mine whether G′ has a clique of size k. Let G′ and k be the
input of the clique problem. Then, we construct an n-node
graph G such that the solution of the MI problem for b = k,
w =

(
k
2

)
on G is

(
k
2

)
if G′ has a clique of size k and it is

larger than n1−ζ(k
2

)
if G′ does not. This yields our claim.

To constructG, we essentially replace each edge and node
in a copy of G′ with some gadget, which includes a large
clique. Our construction is tailored in a way that if G′ has a
clique of size k, then we can place w =

(
k
2

)
white nodes on

the gadgets corresponding to the edges of this clique such
that no new white node will be generated. However, when
there is no clique of size k, then a large group of nodes will
become white after two rounds, no matter how we place the
w white nodes. A complete proof is given in the full version
of the paper. �

7 Conclusion
It would be interesting to study other variants of our model
or attackers. Our results apply to some other settings with
some minor changes. For example, our propositions regard-
ing the attackers should still hold if in each round only a
random subset of nodes update their color or if each node
does not follow the majority rule with some noise proba-
bility smaller than ε. However, our proof techniques cannot
immediately be applied to characterize graph structures re-
silient to an attacker which can choose the order of updates
or add/delete edges. Hence, this is a potential avenue for fur-
ther research.

The maximum degree in most of real-world social graphs
is not too large, which makes them fairly resilient to a mod-
erate and weak attacker. However, they are usually far from
being regular or expander, and thus are vulnerable to a strong
attacker. A counter-measure might be to add an Erdős-Rényi
random graph on top of the underlying graph structure. In
the real world, this is essentially the same as asking agents
to choose a fraction of their connections at random. Our
preliminary experiments on data from SNAP (Leskovec and
Krevl 2014) suggest that such modification enhances the re-
silience significantly. However, a detailed and formal inves-
tigation of this subject is left for future research.
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