
On the PTAS for Maximin Shares in an Indivisible Mixed Manna

Rucha Kulkarni1, Ruta Mehta1, Setareh Taki1
1 University of Illinois at Urbana-Champaign

ruchark2@illinois.edu, rutameht@illinois.edu, staki2@illinois.edu

Abstract

We study fair allocation of indivisible items, both goods and
chores, under the popular fairness notion of maximin share
(MMS). The problem is well-studied when there are only
goods (or chores), where a PTAS to compute the MMS values
of agents is well-known.
In contrast, for the mixed manna, a recent result showed that
finding even an approximate MMS value of an agent up to
any approximation factor in (0,1] is NP-Hard for general in-
stances. In this paper, we complement the hardness result by
obtaining a PTAS to compute the MMS value, when its ab-
solute value is at least 1/p times either the total value of all
the goods or total cost of all the chores, for some constant p
valued at least 1.

1 Introduction
Finding fair and efficient allocations is a fundamental prob-
lem in algorithmic game theory. The problem has been ex-
tensively studied for divisible resources, phrased as the cake
cutting problem; see (Robertson and Webb 1998) for a sum-
mary. Here, a division of a cake that gave one piece to each
of n agents was termed fair if it ensured properties like (a)
envy-freeness, meaning every agent values her own piece
more than those allocated to other agents, and (b) propor-
tionality, meaning every agent values her piece at least 1/n
fraction of her total value for the cake.

When there are two agents, the simple cut and choose
protocol is known to work since the biblical era, where one
agent cuts the cake into two pieces and the other agent gets to
choose first. Recent years have seen a surge of works on the
fair division of indivisible items, like school/course seats,
assets and liabilities, and computing resources on networks,
due to their wide applications (Steinhaus 1948; Brams and
Taylor 1996; Vossen 2002; Moulin 2004; Etkin, Parekh, and
Tse 2007; Budish 2011; Ghodsi et al. 2018). A simple exam-
ple of allocating a single indivisible item among two agents
shows that both envy-free and proportional allocations may
not exist. Therefore, Budish (2011) defined the notion of
maximin share (MMS) based on the following extension of
the cut and choose protocol. If there are n agents, an agent

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

partitions the items into n bundles assuming she will get to
choose last. As she may end up with the least valued bun-
dle, naturally, she will partition the items in such a way that
the value of the least valued bundle is maximized. This is
called her MMS value. An allocation where every agent re-
ceives a bundle of at least her MMS value is called an MMS
allocation.

This problem is well studied for the good manna where all
items are valued non-negatively by every agent, and for the
bad (chore) manna where items are valued non-positively
by everyone (See Section 1.1 for related work). We consider
a mixed manna setting, where every item can be positively
valued by some agents, and negatively valued by some. A
natural starting question in the quest to find MMS alloca-
tions is,

Q: Given a mixed manna, what is the MMS value of every
agent?

This question is NP-hard, even for the good manna. Note
that finding the MMS value of an agent is equivalent to
finding an MMS allocation when all agents have valua-
tions identical to this agent. Hence, the problem of find-
ing MMS allocations is also NP-hard, even with identical
agents and a good manna. However, (Woeginger 1997) gave
a PTAS for this setting. This PTAS was later used in sev-
eral works to find approximate MMS allocations with non-
identical agents (Procaccia and Wang 2014; Kurokawa, Pro-
caccia, and Wang 2016; Amanatidis et al. 2017; Ghodsi et al.
2018; Garg and Taki 2020). The best known approximation
result for the MMS problem with nonidentical agents in a
chore manna (Huang and Lu 2019) also uses a PTAS for
finding MMS values (Jansen, Klein, and Verschae 2016) as
a subroutine. The next question then is,

Q: Is there a PTAS to find the MMS values of agents in a
mixed manna setting?

Surprisingly, (Kulkarni, Mehta, and Taki 2020a) showed
that even in a highly restricted setting of two identical agents
where the mixed manna has only two chores, it is NP-hard
to find approximate MMS values within any constant fac-
tor. Their reduction indicates that perhaps the bottleneck is-
sue that makes the problem hard, is that the absolute MMS
value can be arbitrarily small. Intuitively speaking, as the
MMS value approaches arbitrarily close to zero, the prob-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5523

lem of finding approximate MMS values approaches that of
finding exact MMS values. In the limit where MMS= 0, ev-
ery approximate MMS value is the exact MMS value. We
then ask,

Q: If we had a guarantee that the absolute MMS value
is greater than some threshold value, say ∆, then does the
problem become tractable?

In this paper, we resolve this question positively for a spe-
cific value of ∆. Note that since the MMS problem is scale-
free, setting ∆ to a fixed constant will not make the problem
any easier. Therefore, ∆ will have to be instance dependent.
To be specific, let v+ denote the sum of values of an agent
for all the items she values positively, and v− the sum of
absolute values of all her negatively valued items (chores).

Theorem 1.1 (Informal). In the case of identical
agents, there is an algorithm that: (a) when |MMS| ≥
min{v+,v−}/ρ for some constant ρ ≥ 1, finds an al-
location that gives every agent a bundle of value at
least (1− ε)-MMS for any constant ε > 0, and (b) when
|MMS|< min{v+,v−}/ρ, reports this by returning the triv-
ial allocation where all items are given to one agent. The
algorithm runs in time O(mnL), where m,n are the number
of items and agents, and L is the bit-length of the input.

We note that our assumption is weaker than having
min{v+,v−} being a constant. Also, the extensively stud-
ied good manna and chore manna are special cases of this
setting, hence any algorithmic results here translate to these
settings as well.

One of the key tools used by our algorithm is a care-
fully designed Integer Program (IP) that can be solved in
polynomial-time. IPs have been used to solve related prob-
lems in several works. (Woeginger 1997) gave a PTAS using
this idea for the machine covering problem, which is equiva-
lent to the MMS problem in a good manna. The MMS prob-
lem in a chore manna is equivalent to machine scheduling
which has a PTAS using IP for bin packing (the dual prob-
lem). Several algorithms for the bin packing problem solve
a relaxation of an IP as their main idea (De La Vega and
Lueker 1981; Johnson 1982; Karmarkar and Karp 1982).
Our approach builds on these, but requires several new ideas
to handle both goods and chores simultaneously. Next we
briefly describe some of these.

Non-constant variables. The variables of the IP will cor-
respond to subsets of items. We show that we only need to
consider subsets with total value at most a particular bound.
With a good (chore) manna, this restricts to subsets where
the number of items with value at least some fraction of the
bound is a constant. While for a mixed manna, subsets of
even O(m) size may have a small value due to positive and
negative values may cancel each other. Hence, the number
of variables of the IP is not a constant for a mixed manna.

We circumvent this issue by reducing the problem to a
problem with only goods, where a restricted set of alloca-
tions are allowed, called valid allocations.

Allow only valid allocations. The next task is to define
constraints in the IP that ensure a valid allocation. Towards

this, we define a cost function that characterizes valid allo-
cations with a single constraint.

Sign of MMS. Our approach works for both cases
MMS ≥ 0 (Section 3), and MMS < 0. These are inherently
different problems. The MMS ≥ 0 problem maximizes the
smallest bundle’s value, while the negative MMS case mini-
mizes the absolute value of the largest bundle. We show that
our IP for the former case can be modified to work for the
later case of MMS< 0.1

1.1 Related Work

The MMS problem has been extensively studied for the good
manna (Kurokawa, Procaccia, and Wang 2016; Ghodsi et al.
2018; Garg, McGlaughlin, and Taki 2018; Kurokawa, Pro-
caccia, and Wang 2018; Barman and Krishna Murthy 2017;
Farhadi et al. 2019; Amanatidis et al. 2017; Garg and Taki
2020) and chore manna (Barman and Krishna Murthy 2017;
Huang and Lu 2019) settings. With a good manna, there are
several algorithms to find allocations that give every agent
a bundle worth a constant fraction of their MMS value; the
best factor known so far is (3/4+1/(12n))-MMS, by (Garg
and Taki 2020). For the chore manna, (Huang and Lu 2019)
give a PTAS to find the MMS values of agents, and an
11/9 approximate MMS allocation. The study of the mixed
manna setting started recently. (Kulkarni, Mehta, and Taki
2020a) gave a PTAS for the special case of the problem with
a constant number of agents, when the total value of goods
is some factor away from the total absolute value of chores.

2 Preliminaries and Notation
In this section, we formally define mixed instances and other
relevant notions of maximin share. We use [k] to denote
the set {1,2 · · · ,k}, and (S j) j∈[k] to denote the (multi-)set
{S1,S2 . . . ,Sk}.
Definition 2.1. An MMS instance is a tuple 〈N ,M ,v〉,
where N is a set of n agents, M is a set of m indivisi-
ble items, and v : 2M → R is the identical additive valua-
tion function of all agents, represented by v(S) = ∑ j∈S v j for
S⊆M .

A partition of all items among all agents is termed an allo-
cation, denoted by A = {A1,A2, · · · ,An}. Thus, Ai∩Ai′ = /0
for all distinct i, i′ in N , and ∪iAi = M .

Definition 2.2 (MMS value). Given an MMS instance, let
Πn(M) be the set of all possible allocations of M into n
sets. The maximin share (MMS) value of an agent, denoted
by MMSn(M), is defined as,

MMSn(M) = max
A ∈Πn(M)

min
Ak∈A

v(Ak) .

We refer to MMSn(M) by MMS when the qualifiers n
and M are clear. Note that MMS can be negative too.

1The proof of Theorem 1.1 for the case when MMS< 0 is sim-
ilar to the case when MMS≥ 0, and in some sense simpler, and is
discussed in the full version (Kulkarni, Mehta, and Taki 2020b).

5524

An allocation which gives every agent a set of items worth
at least MMS is called an MMS allocation. Note that all
agents have the same valuation function v for M , hence
the MMS values are same for all agents. Also, the alloca-
tion determining the MMS value for any agent is an MMS
allocation. Hence when the agents are identical MMS allo-
cations always exist. However, finding an MMS allocation is
known to be NP-Hard (Bouveret and Lemaı̂tre 2016). Thus,
we search for a PTAS to find almost optimal allocations,
termed (1− ε)-MMS allocations, defined as follows.
Definition 2.3 ((1− ε)-MMS allocation). A is called a
(1− ε)-MMS allocation, if for a given ε > 0, for each agent
i ∈ N we have v(Ai) ≥ (1− ε)MMS if MMS ≥ 0, and
v(Ai)≥ (1/(1− ε))MMS, if MMS< 0. Equivalently,

v(Ai)≥min{(1− ε)MMS,(1/(1− ε))MMS}.
Definition 2.4 (MMS problem). Given an MMS instance
〈N ,M ,v〉, the MMS problem is to find a (1− ε)-MMS al-
location of M among N .

Items of a mixed manna can be divided into two sets.
Goods are the items valued positively according to v. The
set of goods is denoted by M+ = { j ∈M | v j ≥ 0}. Chores
are items valued negatively, and the set of chores is termed
M− = { j ∈M | v j ≤ 0}. We denote by v+ the sum of val-
ues of all goods in the manna. That is, v+ = ∑ j∈M+ v j. Sim-
ilarly, we denote by v− the sum of absolute values of all
chores, i.e., v− = ∑ j∈M− |v j|.

To circumvent the hardness result of (Kulkarni, Mehta,
and Taki 2020a) for the MMS problem for any ε ∈ [0,1),
we make the assumption that |MMS| ≥min{v+,v−}/ρ, for
some constant ρ ≥ 1. As we cannot decide before computing
the MMS value if a given instance satisfies this property,
we pose the following problem, termed the Bounded MMS
problem, denoted by B-MMS.
Definition 2.5 (B-MMS problem). Given an MMS instance
〈N ,M ,v〉 and an ε > 0, return a (1− ε)-MMS allocation
if MMS≥min{v+,v−}/ρ for some constant ρ ≥ 1, else re-
port MMS< min{v+,v−}/ρ by returning the trivial alloca-
tion where one agent gets all items M .

In this paper, we give a polynomial time algorithm that
solves the B-MMS problem. In other words, we provide
a PTAS to find the MMS values of agents in a mixed
manna, when the absolute MMS values are higher than
min{v+,v−}/ρ, for some constant ρ ≥ 1.

The following lemma by (Kulkarni, Mehta, and Taki
2020a) shows an easy way to decide the sign of MMS, al-
lowing us to design separate approaches for the negative and
non-negative MMS cases.
Lemma 2.1. v(M)≥ 0 iff MMS≥ 0.

For solving the B-MMS problem, we first find the sign
of MMS using Lemma 2.1, then apply the appropriate algo-
rithm for that case.

3 Algorithm for B-MMS when MMS≥ 0
In this section, we describe a PTAS for the B-MMS prob-
lem for the MMS ≥ 0 case. Some proofs are omitted from

this section due to simplicity and they are available in the
full version (Kulkarni, Mehta, and Taki 2020b). The main
parts of the PTAS are explained and solved in separate sub-
sections.

3.1 Reducing B-MMS to GC-MMS

We first reduce the given B-MMS problem to a new prob-
lem with only goods called the Goods manna Constrained
MMS problem, denoted by GC-MMS. At a high level, this
is similar to the MMS problem, but it computes optimal al-
locations over a restricted set of partitions, called valid allo-
cations (described shortly).

The intuition behind defining GC-MMS problem is as fol-
lows: Suppose we replace every chore by n−1 goods, each
of value equal to the absolute value of the chore. Lets call
these good-copies of the chores. Every time we want to as-
sign a chore j ∈M to some agent, we instead assign one
of the n− 1 good-copies of j to the remaining n− 1 agents
(one copy for each n−1 agents). This adds exactly |v j| value
to every bundle and therefore keeps their relative order the
same. Once we do this for every chore, the value added to
each bundle is exactly v−, and is the same for every partition
in Πn(M). Therefore, if we restrict the allocations in the
new setting to allow an agent to get at most one good-copy
of any chore, then MMS allocations in the two settings are
equivalent.

Following this intuition, we define a GC-MMS instance
and valid allocations as follows.
Definition 3.1 (GC-MMS instance). A tuple
〈N ,G ,(S j) j∈[m−],u〉, where N is a set of agents, G
is a set of goods, (S j) j∈[m−] are m− sets of goods,
each containing (n− 1) identical copies of a good, and
u : M ∪(S j) j∈[m−]→R+ is the identical valuation function
of the agents in N for all items G ∪ (S j) j∈[m−].
Definition 3.2 (Valid allocation). Given a GC-MMS in-
stance 〈N ,G ,(S j) j∈[m−],u〉, an allocation A is valid if
no agent receives more than 1 item from any set S j ∈
(S j) j∈[m−], i.e., for all i ∈N , j ∈ [m−], |Ai∩S j| ≤ 1.

The GC-MMS problem asks to find a valid allocation that
maximizes the value of the smallest bundle, i.e., an MMS
allocation over the valid allocations. We abuse notation to
denote both the problem and the value by GC-MMS, and
formally define them as follows.
Definition 3.3 (GC-MMS value). Given a GC-MMS in-
stance 〈N ,G ,(S j) j∈[m−],u〉, let F be the set of all valid
allocations. The GC-MMS value of the instance, denoted by
GC-MMS, is defined as follows.

GC-MMS= argmax
A ∈F

min
A∈A

v(A)

Since it is NP-hard to compute GC-MMS (even when
(S j) j∈[m−] = /0), define the following approximate version
of the problem.
Definition 3.4 (GC-MMS problem). Given a GC-MMS in-
stance 〈N ,G ,(S j) j∈[m−],u〉 and ε > 0, return a valid allo-
cation A such that minA∈A v(A)≥ (1− ε ′)GC-MMS.

5525

Next we show that the B-MMS problem can be reduced
to GC-MMS problem such that a PTAS for the latter gives a
PTAS for the former.

Given an instance 〈N ,M ,v〉 we define the correspond-
ing GC-MMS instance 〈N ,G ,(S j) j∈[m−],u〉 as follows:
The set of agents is unchanged, G = M+, m− = |M−|, and
for all j ∈M−, define S j to be a set of (n−1) goods repre-
sented as S j := {(j,k)|k ∈ [n− 1]} – S j consists of good-
copies of chore j. Finally, define u(j) = v(j) for all j ∈ G
and u((j,k)) =−v(j) for all j ∈M− and k ∈ [n−1].
Lemma 3.1. Allocations of B-MMS are in one-to-one cor-
respondence with valid allocations of GC-MMS, such that
if allocation Bπ of the former maps to allocation Cπ of the
later then u(Ci) = v(Bi)+ v−, ∀i ∈N .

Proof. Given a B-MMS allocation Bπ , add good-copies of
each chore to agents who did not receive the chore in Bπ ,
and discard all chores. This gives a GC-MMS allocation Cπ .
The reverse allocation is obtained by similarly discarding all
good-copies and assigning the corresponding chore to the
agent who did not receive any good-copy.

Every agent i ∈N receives in Ci all the goods assigned
to her in Bi. Every chore that was assigned to her in Bi is
discarded in Ci. Due to this, her value increases by the ab-
solute value of chores allotted to her in Bi. Further, for ev-
ery chore not assigned to her, she receives a good-copy of it
in Ci. As for all j ∈C,u(j) = |v(j∗)| for the corresponding
j∗ in M , each good-copy increases her value by the abso-
lute value of the corresponding chore. Her total valuation
increases by the absolute value of all chores not assigned to
her as well. Hence, the difference u(Ci)− v(Bi) is exactly,
∑ j∈Bi v(j)+∑ j/∈Bi v(j) = v−.

Corollary 3.1. GC-MMS, relates to the MMS value of the
B-MMS problem as,

GC-MMS=MMS+ v−. (1)

Equation (1) allows to relate the approximation parame-
ters of B-MMS and GC-MMS allocations as follows.
Theorem 3.1. If MMS≥ v−/ρ , then a (1− ε

(1+ρ))GC-MMS

allocation gives a (1− ε)-MMS allocation, and therefore a
PTAS for GC-MMS gives a PTAS for the B-MMS problem.

Proof. Let ε ′= ε

(1+ρ) . Take the (1−ε ′)GC-MMS allocation,
say Cπ , and consider the corresponding allocation Bπ of the
B-MMS instance as described in the proof of Lemma 3.1.
From Lemma 3.1, the smallest bundle in Bπ has value (1−
ε ′)GC-MMS− v−.

If MMS ≥ v−/ρ , we have, (1 − ε ′)GC-MMS − v− ≥
(1− ε ′)(MMS+ v−)− v− ≥ (1− ε ′)(MMS+ ρMMS)−
ρMMS = (1− (1+ρ)ε ′)MMS = (1− ε)MMS. Therefore,
Bπ is a (1− ε)-MMS allocation

Since ρ and ε are constants in the B-MMS problem, ε ′ is
also a constant. Therefore, a PTAS for GC-MMS is indeed a
PTAS for the B-MMS problem as well.

Due to the above theorem, it suffices to obtain a PTAS for
the GC-MMS problem.

3.2 Algorithm for GC-MMS

Algorithm 1 for GC-MMS will perform a search for the
highest value µ for which we get an allocation that gives
every agent at least a µ-valued bundle. For this we perform
a search on a multiplicative grid over all possible values
of GC-MMS, obtained as follows. First, we have v−/ρ ≤
MMS ≤ v(M)/n = (v+− v−)/n. Combined with Equation
(1), we get v−+ v−/ρ ≤ GC-MMS≤ (v+− v−)/n+ v−.

In each iteration of the search, it first checks if there is
an item with value more than µ. First, there will be no such
chore. Because if there was one, say c, we have c > µ ≥
GC-MMS=MMS+ v− which implies MMS< c− v− ≤ 0.

If there is a good j with v(j) ≥ µ , we have µ − v− ≥
GC-MMS− v− = MMS(B-MMS instance). Using this we
find Bπ , a solution of the B-MMS instance as follows: as-
sign good j and all the chores to an agent, and remove the
agent and her bundle. The following allocation for the re-
sulting instance is feasible, and has equal or higher MMS
value. From any MMS allocation of the B-MMS instance,
(a) remove all chores and add them to the part containing the
good j, and (b) remove all goods except j from this part and
arbitrarily distribute among the remaining parts. The MMS
value of the resulting instance is not lower, and therefore it
suffices to find it’s (1− ε)-MMS allocation using the PTAS
of (Woeginger 1997). Algorithm 1 returns allocation Cπ cor-
responding to this B-MMS allocation.

If every item has value at most µ , the algorithm applies a
subroutine Exists-GC-MMS, for which we prove in Section
3.3,
Theorem 3.2. Exists-GC-MMS(〈N ,G ,(S j) j∈[m−],u〉,ε,µ)
returns a tuple (A , f lag) with f lag = true and
u(A) ≥ (1 − ε)µ, ∀A ∈ A , whenever µ ≤ GC-MMS.
And it runs in O(mn) time.

If Exists-GC-MMS returns a false flag, the Algorithm re-
sets µ ← (1− ε)µ and starts the next iteration, else returns
the allocation obtained and stops. Theorem 3.2 implies the
following.When Algorithm 1 stops, say for a value µ∗, we
know GC-MMS≤ µ∗/(1− ε̄), from the false flag returned in
the previous iteration. From this iteration’s output, we have
a (1− ε̄)2GC-MMS allocation. Fixing ε̄ as ε ′/2 gives,
Lemma 3.2. If GC-MMS ≥ (1+ 1/ρ)v−, Algorithm 1 re-
turns a (1− ε ′)GC-MMS allocation.

We are now ready to show Theorem 1.1 for the case when
MMS≥ 0.
Theorem 3.3. There is an algorithm to solve the B-MMS
problem for the case MMS ≥ 0, that runs in time O(mnL),
where L is the number of bits needed to represent function v.

Proof. From Theorem 3.1, it suffices to get a PTAS for
the corresponding GC-MMS problem. By Lemma 3.2 Al-
gorithm 1 does solve a GC-MMS problem. The while loop
of the algorithm runs for 1

ε̄
log(v++(n−1)v−

n − (1+ρ)v−

ρ
) ≤

2(1+ρ)
ε

L many times. By Theorem 3.2 and (Woeginger
1997), every iteration of the while loop takes at most O(mn)
time, and therefore the overall running time is O(mnL).

5526

Algorithm 1: Algorithm for GC-MMS

Input : 〈N ,G ,(S j) j∈[m−],u〉, ε ′ > 0
Output: (1− ε ′)GC-MMS allocation if

GC-MMS≥ (1+1/ρ)v−

1 ε̄ ← ε ′/2; µ ← v+/n+(1−1/n)v−

2 while µ ≥ (1+1/ρ)v− do
3 if ∃ j ∈ G : u(j)≥ µ then
4 A = (A1, . . . ,An), An←{ j}
5 (A1, . . . ,An−1)← (1− ε̄)-MMS partition of

〈N \{n},G ,u〉 // use PTAS of
(Woeginger 1997)

6 Ai← Ai∪{(j, i)} for all i ∈ [n−1] and
j ∈ [m−]

7 return A

8 (A , f lag)←
Exists-GC-MMS(〈N ,G ,(S j) j∈[m−],u〉, ε̄,µ)

9 If f lag then return A
10 else µ ← (1− ε̄)µ

11 A = (A1, . . . ,An) where Ai = {(j, i) : ∀ j ∈ [m−]} for
i ∈ [n−1],An = G // agents 1 to n−1
each get one good-copy of all
chores.

12 return A

The next section shows Theorem 3.2.

3.3 Algorithm for Exists-GC-MMS

At a high level, we first map the set of items in the
Exists-GC-MMS instance to multi-sets of numbers corre-
sponding to their values (scaled to have µ = 9d 1

ε
e2 for tech-

nical reasons). Valid partitions of these numbers are defined
analogously like valid allocations of the GC-MMS items. We
then classify the values as BIG or SMALL. The key compo-
nent of the algorithm is an IP to find a valid partition of
the BIG values such that (a) every part has value at least
9(d 1

ε
e2−d 1

ε
e), and (b) there are enough SMALL values to

greedily allocate over this partition and have every part val-
ued at least 9d 1

ε
e2. We now discuss the details of the algo-

rithm formally.
Exists-GC-MMS has two steps 1) Pre-processing and 2)

Main Algorithm.

Pre-processing.(Algorithm 2, line 1) Let E := d 1
ε̄
e. Note

that E is a constant integer that only depends on ε̄ and not
on parameters in the GC-MMS instance. Scale the valuations
v by 9E2/µ . Let V g = (g j)(j∈[m+]) and V c = ∪ j∈[m−]C j,

where C j = (ck
j)k∈[n−1] be multi-sets of numbers corre-

sponding to scaled valuations, respectively of M+ and
(S j) j∈[m−]. Let T = V g∪V c.

This completes the pre-processing step. The following
lemmas characterize partitions of T that correspond to ap-
proximately optimal GC-MMS allocations.
Definition 3.5 (Valid Partition of T). We call a partition
P = (P1, . . . ,Pn) of values in T valid if each Pk contains at

most one element from each C j, i.e., |Pk ∩C j| ≤ 1 for all
k ∈ [n] and j ∈ [m−].

It is easy to see that each valid partition of T is equivalent
to a valid allocation in its corresponding GC-MMS instance.
With the scaling step, this directly implies,
Lemma 3.3. Given a GC-MMS instance
〈N ,G ,(S j) j∈[m−],u〉, if µ ≤ GC-MMS then there is
a valid partition of T where the sum of values in each part
is at least 9E2.

As E = d1/ε̄e, we can show that a part of value at least
9E2− 9E will correspond to a bundle of value at least (1−
ε̄)µ. We use this and Lemma 3.3 to show the next lemma.
Lemma 3.4. A valid partition of T where the sum of values
in each part is at least 9(E2−E) is equivalent to a valid
allocation for its corresponding GC-MMS instance where
each bundle has value at least (1− ε̄)µ .

Main Algorithm. Call a valid partition of T optimal if the
sum of values in each part is at least 9(E2−E). This step
returns an optimal partition if µ ≤ GC-MMS, else correctly
reports µ > GC-MMS by returning f lag = f alse. Note that
Algorithm 1 runs Exists-GC-MMS only if every item has
value at most µ. Hence, after scaling by 9E2, we can assume
t ≤ 9E2, ∀t ∈ T . The key of the algorithm is an IP. We first
explain the IP.

Notation. We define SMALL and BIG values in T . Call
a value t ∈ T SMALL if t < 3E and BIG if t ≥ 3E. For
each T ⊆ T let SMALL(T) be the set of all small values in
T and BIG(T) be the set of all big values in T . We call a
set C j ∈ V c small if it contains SMALL values and big oth-
erwise2. Let σ ,σ+,(n− 1) ·σ− respectively be the sum of
all values in SMALL(T), SMALL(V g) and SMALL(V c), ,
i.e., σ := ∑t∈SMALL(T) t, σ+ := ∑t∈SMALL(V g) t and σ− :=
(∑t∈SMALL(V c) t)/(n− 1). Note that σ− is equal to the sum
of values obtained by picking one value from each small C j,
and σ = σ++(n−1)σ−.

Next, we know that every BIG value will be in the range
[3E,9E2]. For all integers r in [3E,9E2], let n+r , n− respec-
tively be the number of values in BIG(V g) and the number
of sets C j with integral part of values r. Thus, (n−1)n−r +n+r
items j in V g∪V c have b jc= r.

We now define notation to represent a subset of BIG val-
ues and their sum. Let X denote a part in a partition of
T . We define the type of X by τ(X) = 〈τ(X),τ(X)〉 =
(τ3E , . . . ,τ9E2 ,τ3E , . . . ,τ9E2); here τr,τr are resp. the num-
ber of values in BIG(X ∩V g) and BIG(X ∩V c) with integer
part r. Let SIZE(τ(X)) := ∑r r(τr + τr) be the total sum of
these rounded values in BIG(T ∩X).

Using this notation, we design an IP to find an assignment
of BIG values in an optimal partition. First, observe that ev-
ery BIG value is at most 9E2. Thus, if an optimal partition
has some part valued more than 18E2, we can remove values
until the size of this set is in the range [9E2,18E2]. Find-
ing a partial allocation of BIG values that assigns at least

2Note that each C j, j ∈ [m−] contains n−1 equal values. i.e, for
each C j, either SMALL(C j) = /0 or SMALL(C j) =C j.

5527

9E2 value to all parts suffices to solve Exists-GC-MMS, as
we can arbitrarily add the unallocated values. Thus, we will
only consider types whose size SIZE(.) is at most 18E2.

The variables of the IP correspond to all types τ that sat-
isfy (i) SIZE(τ) ≤ 18E2, (ii) τr ≤ n+r , (iii) τr ≤ n−r . Let
τ(1),τ(2), . . . ,τ(Γ) be an enumeration of all variables. Intu-
itively, we consider types that represent valid allocations of
items corresponding to the BIG values in a GC-MMS in-
stance. Every IP variable takes an integer value equal to the
number of times the corresponding type is selected. This in
turn represents the number of parts in the output allocation
that have a subset of BIG items as represented by this type.

Lemma 3.5. The number of IP variables Γ is O(1).

Proof. Every type with size at most 18E2 can have at most
6E BIG values, as every BIG value is at least 3E. Each value
is one of [3E,9E2], a constant sized set. Hence, the number
of types τ̄ and τ are each at most (9E2−3E+1)6E . The total
number of types at most twice this value, hence a constant
as E is a constant. The number of variables of the IP is at
most the number of types with size at most 18E2, hence is
constant.

Before defining the IP, we define two cost functions for
every type. These are used to define constraints to allocate
SMALL items.

First, define c(τ(X)) :=max{0,9E2−6E−SIZE(τ(X))}.
The intuition for this function is as follows. Our aim is
to create an optimal partition. If the sum of BIG val-
ues SIZE(τ(X)) < 9(E2 − E), we must add values from
SMALL(T) to X . The required sum from SMALL, is at
least 9E2− 9E − SIZE(τ(X)). However, SMALL(T) does
not have arbitrarily precise values. As every SMALL value
is at most 3E, we may have to add SMALL items until the
net value of the part becomes 3E more than required, i.e.,
9E2 − 6E. Hence the cost function c(τ(X)) is defined as
specified.

The second cost function captures the value that must
be added to a part from SMALL(V g). If a part has
c(τ) > 0, we can add at most value σ− to the part from
SMALL(V c). Hence, the minimum value from SMALL(V g)
is σ+(τ(X)) := max{0,c(τ(X))−σ−}.

Using these notions, we define the following IP for finding
an allocation of BIG values.

Γ

∑
j=1

x j = n; x j ∈ {0}∪N,∀ j ∈ [Γ] (2)

Γ

∑
j=1

τ
(j)
r x j ≤ n+r ∀r ∈ [3E,9E2] (3)

Γ

∑
j=1

τ
(j)
r x j ≤ (n−1)n−r ,∀r ∈ [3E,9E2] (4)

(a)
Γ

∑
j=1

c(τ(j))x j ≤ σ ; (b)
Γ

∑
j=1

σ
+(τ(j))x j ≤ σ

+ (5)

Algorithm 2: Exists-GC-MMS

Input : 〈N ,G ,(S j) j∈[m−],u〉, ε̄ , µ

Output: (A ,True) if there exists a (1− ε̄)-GC-MMS
allocation A and (/0,False) otherwise

1 V g←{g1, . . .gm+},g j = u(j).
(

9E2

µ

)
, j ∈ G

V c←
⋃

j∈[m−]C j,C j := {c1
j , . . . ,c

n−1
j },

ck
j = u(j,k),∀(j,k) ∈S j,∀S j ∈ (S j) j∈[m−];

T ← V g∪V c

2 if IP has a solution X for T then
3 j← 1
4 for all i : xi 6= 0 : do
5 Create xi parts Pj to Pj+xi
6 Add BIG values to each Pk, k ∈ [j, j+ xi] as

per τ(i) ; j← j+ xi +1
7 while ∃k : ∑ j∈Pk

j < (9E2−9E) do
8 while ∑ j∈Pk

j < (9E2−9E) do
9 If Pk ∩C j = /0 for any j ∈ [m−] then add

one value from C j to Pk
10 else Pk← Pk ∪ any j ∈ SMALL(V g)

11 while there is an unallocated value k from C j for
any j ∈ [m−] do

12 Add k to any Pi : Pi∩C j = /0
13 Add remaining unallocated values arbitrarily
14 A ← allocation corresponding to

P = (P1, · · · ,Pn) // use Lemma 3.3
15 return (A ,True)
16 return (/0,False)

The Exists-GC-MMS algorithm is as follows. After apply-
ing the pre-processing step, it defines and solves the above
IP. If the IP has a solution, then first it considers the items
from the GC-MMS instance that correspond to the BIG val-
ues in T . The algorithm partitions all these items in n bun-
dles by creating n subsets, with xi subsets corresponding to
type τ(i). After this, it considers the subsets of BIG items
that do not have total sum of values at least 9E2− 9E. To
each of these, it first adds the SMALL items corresponding
to the small C j subsets, by adding at most one item from
each subset C j, in any order. If upon adding these, the value
of the set is still not 9E2−9E, it adds items corresponding to
the SMALL(V g) set, until the total sum of values is at least
9E2−9E. The algorithm returns the tuple (A , true), where
A is the allocation formed by this process. If the IP does not
have a solution, it returns the tuple (/0, f lag = f alse).

Algorithm 2 formally describes Exists-GC-MMS. We
now analyze the correctness of Exists-GC-MMS.

Lemma 3.6. If µ ≤ GC-MMS, then IP has a solution.

Proof. As µ ≤ GC-MMS, from Lemma 3.3, there is a valid
partition of T with sum of values of each part at least 9E2.
Let this partition be T IP. Let τ i = τ(T IP

i) be the type of each
part, and τ IP = [τ1 · · · ,τn], be the multi-set of types of all

5528

parts.
Constraints (2), (3) and (4) hold for τ IP by definition

of a valid partition. For any τ i ∈ τ IP with c(τ i) = 0, we
have ∑t∈SMALL(T IP

i) t ≥ c(τ i) = 0, and for any τ i ∈ τ IP with

c(τ i) > 0, we have ∑t∈SMALL(T IP
i) t ≥ 9E2−∑t∈BIG(T IP

i) t ≥
9E2− 6E − SIZE(τ i) ≥ c(τ i). The second inequality holds
because the SIZE function rounds down all values, and there
are at most 6E BIG values in each T IP

i . By adding the above
inequality for all τ i ∈ τ IP, we obtain (5) of the IP.

Since each T IP
i is a subset of a valid part, its corre-

sponding type τ i has at most one value from each C j.
Therefore, for any τ i ∈ τ IP with σ+(τ i) > 0 we have,
for ∑t∈SMALL(τ i∩V g) t ≥ c(τ i)−∑t∈SMALL(τ i∩V c) t ≥ c(τ i)−
σ− ≥ σ+(τ i). Moreover, for any τ i ∈ τ IP with σ+(τ i) = 0
we have, for ∑t∈SMALL(τ i∩V g) t ≥ σ+(τ i) = 0. By adding
the above inequality for all T IP

i ∈ T IP we get constraint (5).
Thus, T IP is a solution of the IP.

Lemma 3.7. If the IP has a solution, then the allocation re-
turned by Exists-GC-MMS is an allocation that gives every
agent a bundle of value at least (1− ε̄)µ .

Proof. Let τsol be the solution of the IP and Psol be the par-
tition of the values formed by Exists-GC-MMS after find-
ing τsol . We show that each part of Psol has value at least
(9E2−9E). From Lemma 3.4, we get that in A , every agent
gets a bundle of value at least (1− ε̄)µ .

After assigning BIG values to Pi as per the type τ i, sup-
pose there are parts with value less than 9E2−9E.

Consider any such part P. The algorithm first adds SMALL
values from V g. As τsol satisfies constraint (5) (a) of the IP,
then c(τ(P))≤ σ+. That is, the value to add to P so that the
sum of values in P is at least 9E2− 9E is at most the sum
of all SMALL values. We first add values from SMALL(V c).
Suppose after receiving one value from each set in V c, P still
has value less than (9E2− 9E). As τsol satisfies constraint
(b) of (5) of the IP, the total cost from SMALL(V c) for all
parts together is at most σ+. As the cost function is mono-
tonic with number of parts, the total cost from SMALL(V c)
for P also is at most SMALL(V c). Hence, there are enough
values in SMALL(V g) to add to Pi to increase its value to at
least (9E2−9E).

After adding values to P, its total value is at
most 9E2 − 6E, as every item has value at most 3E.
Thus, the value added to it from SMALL values is
at most c(τ(P)). The total cost of the remaining parts
is ∑P′ 6=P c(τ(P)) = ∑P∈Psol c(τ(P)) − c(τ(P)) ≤ σ+ −
(the sum of SMALL values assigned to P), which is exactly
the total value of unassigned SMALL values. Hence, con-
straint 5 (a) is satisfied for the smaller set τsol\τ(P). Simi-
larly, we can show constraint 5 (b) also is satisfied. The ini-
tial constraints 2, 4 and 3 are satisfied for τsol\τ(P) by the
validity of τsol . Hence τsol\τ(P) is a solution to the IP for
the smaller case after removing P and its assigned values.
By induction, we can assign values to every part until all

parts are satisfied. Adding any unallocated values arbitrarily
in Line 13 only increases the value of each bundle.

Hence, Psol has every bundle of value at least 9E2− 9E.
From Lemma 3.4, the corresponding allocation A gives ev-
ery agent a bundle of value at least (1− ε̄)µ .

Lemma 3.8. Exists-GC-MMS runs in time O(mn).

Proof. The time to run Exists-GC-MMS is asymptotically
equal to the time for constructing and solving the IP.
Lenstra’s algorithm (Lenstra Jr 1983) takes time exponen-
tial in the number of variables, O(21/ε̄2

) = O(24/ε ′2) here,
and polynomial in the largest coefficient of any variable
in all inequalities, m+ + (n− 1)m− = O(mn) here. Note
that σ and σ+ are at most n · 9E2. Hence, the IP requires
O(21/ε2

mn) = O(mn) time.

Lemmas 3.6, 3.7 and 3.8 together prove Theorem 3.2.

Acknowledgements
Rucha Kulkarni and Ruta Mehta thank the support of NSF
Grant CCF-1750436 (CAREER). Setareh Taki is partially
supported by NSF Grant CCF-1942321 (CAREER).

References
Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi, A.
2017. Approximation Algorithms for Computing Maximin
Share Allocations. ACM Trans. Algorithms 13(4): 52:1–
52:28.

Barman, S.; and Krishna Murthy, S. K. 2017. Approxima-
tion algorithms for maximin fair division. In Proceedings of
the 2017 ACM Conference on Economics and Computation,
647–664. ACM.

Bouveret, S.; and Lemaı̂tre, M. 2016. Characterizing con-
flicts in fair division of indivisible goods using a scale of
criteria. Autonomous Agents and Multi-Agent Systems 30(2):
259–290.

Brams, S. J.; and Taylor, A. D. 1996. Fair Division: From
cake-cutting to dispute resolution. Cambridge University
Press.

Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6): 1061–1103.

De La Vega, W. F.; and Lueker, G. S. 1981. Bin packing can
be solved within 1+ ε in linear time. Combinatorica 1(4):
349–355.

Etkin, R.; Parekh, A.; and Tse, D. 2007. Spectrum sharing
for unlicensed bands. IEEE Journal on selected areas in
communications 25(3): 517–528.

Farhadi, A.; Ghodsi, M.; Hajiaghayi, M. T.; Lahaie, S.; Pen-
nock, D. M.; Seddighin, M.; Seddighin, S.; and Yami, H.
2019. Fair Allocation of Indivisible Goods to Asymmetric
Agents. J. Artif. Intell. Res. 64: 1–20.

5529

Garg, J.; McGlaughlin, P.; and Taki, S. 2018. Approximating
Maximin Share Allocations. In 2nd Symposium on Simplic-
ity in Algorithms (SOSA 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Garg, J.; and Taki, S. 2020. An Improved Approximation
Algorithm for Maximin Shares. In Proceedings of the 21st
ACM Conference on Economics and Computation, 379–380.

Ghodsi, M.; Hajiaghayi, M.; Seddighin, M.; Seddighin, S.;
and Yami, H. 2018. Fair Allocation of Indivisible Goods:
Improvements and Generalizations. In Proceedings of the
2018 ACM Conference on Economics and Computation.

Huang, X.; and Lu, P. 2019. An algorithmic framework for
approximating maximin share allocation of chores. CoRR
abs/1907.04505.

Jansen, K.; Klein, K.; and Verschae, J. 2016. Closing
the Gap for Makespan Scheduling via Sparsification Tech-
niques. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP, volume 55, 72:1–72:13.

Johnson, D. S. 1982. The NP-completeness column: An on-
going guide. Journal of Algorithms 3(4): 381–395.

Karmarkar, N.; and Karp, R. M. 1982. An efficient approx-
imation scheme for the one-dimensional bin-packing prob-
lem. In 23rd Annual Symposium on Foundations of Com-
puter Science (sfcs 1982), 312–320. IEEE.

Kulkarni, R.; Mehta, R.; and Taki, S. 2020a. Approximating
Maximin Shares with Mixed Manna. CoRR abs/2007.09133.
URL https://arxiv.org/abs/2007.09133.

Kulkarni, R.; Mehta, R.; and Taki, S. 2020b. On the PTAS
for Maximin Shares in an Indivisible Mixed Manna URL
http://ruchark2.web.engr.illinois.edu/MMS mixed id.pdf.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2016. When
Can the Maximin Share Guarantee Be Guaranteed? In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, 523–529. AAAI Press.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018. Fair
Enough: Guaranteeing Approximate Maximin Shares. J.
ACM 65(2): 8:1–8:27.

Lenstra Jr, H. W. 1983. Integer programming with a fixed
number of variables. Mathematics of operations research
8(4): 538–548.

Moulin, H. 2004. Fair division and collective welfare. MIT
press.

Procaccia, A. D.; and Wang, J. 2014. Fair enough: Guaran-
teeing approximate maximin shares. In Proceedings of the
fifteenth ACM conference on Economics and computation,
675–692. ACM.

Robertson, J.; and Webb, W. 1998. Cake-cutting algorithms:
Be fair if you can. CRC Press.

Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16: 101–104.

Vossen, T. 2002. Fair allocation concepts in air traffic man-
agement. Ph.D. thesis, Supervisor: MO Ball, University of
Martyland, College Park, Md.

Woeginger, G. J. 1997. A polynomial-time approximation
scheme for maximizing the minimum machine completion
time. Operations Research Letters 20(4): 149–154.

5530

