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Abstract

Machine learning techniques can be useful in applications
such as credit approval and college admission. However, to
be classified more favorably in such contexts, an agent may
decide to strategically withhold some of her features, such as
bad test scores. This is a missing data problem with a twist:
which data is missing depends on the chosen classifier, be-
cause the specific classifier is what may create the incentive
to withhold certain feature values. We address the problem of
training classifiers that are robust to this behavior.
We design three classification methods: MINCUT, HILL-
CLIMBING (HC) and Incentive-Compatible Logistic Regres-
sion (IC-LR). We show that MINCUT is optimal when the
true distribution of data is fully known. However, it can pro-
duce complex decision boundaries, and hence be prone to
overfitting in some cases. Based on a characterization of
truthful classifiers (i.e., those that give no incentive to strate-
gically hide features), we devise a simpler alternative called
HC which consists of a hierarchical ensemble of out-of-the-
box classifiers, trained using a specialized hill-climbing pro-
cedure which we show to be convergent. For several reasons,
MINCUT and HC are not effective in utilizing a large num-
ber of complementarily informative features. To this end, we
present IC-LR, a modification of Logistic Regression that re-
moves the incentive to strategically drop features. We also
show that our algorithms perform well in experiments on real-
world data sets, and present insights into their relative perfor-
mance in different settings.

1 Introduction
Applicants to most colleges in the US are required to sub-
mit their scores for at least one of the SAT and the ACT.
Both tests are more or less equally popular, with close to
two million taking each in 2016 (Adams 2017). Applicants
usually take one of these two tests – whichever works to their
advantage.1 However, given the growing competitiveness of
college admissions, many applicants now take both tests and
then strategically decide whether to drop one of the scores (if

∗A version of the paper including the Supplement is available
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1https://www.princetonreview.com/college/sat-act

they think it will hurt their application) or report both.2 The
key issue here is that it is impossible to distinguish between
an applicant who takes both tests but reports only one, and
an applicant that takes only one test—for example because
the applicant simply took the one required by her school, the
dates for the other test did not work with her schedule, or for
other reasons that are not strategic in nature.3

Say a college wants to take a principled machine learn-
ing approach to making admission decisions based on the
scores from these two tests. For simplicity, assume no other
information is available. Assume that the college has enough
historical examples that contain the scores of individuals (on
whichever tests are taken, truthfully reported) along with the
corresponding ideal (binary) admission decisions.4 Based
on this data, the college has to choose a decision function
that determines which future applicants are accepted. If this
function is known to the applicants, they are bound to strate-
gize and use their knowledge of the decision function to de-
cide the scores they report.4 How can the classifier be trained
to handle strategic reporting of scores at prediction time?

To see the intricacies of this problem, let us consider a
simple example.

Example 1. Say the scores for each of the two tests (SAT and
ACT) take one of two values: h (for high) or l (for low). Let ∗
denote a missing value. Then there are eight possible inputs
(excluding (∗, ∗) since at least one score is required): (h, h),
(h, l), (l, h), (l, l), (h, ∗), (∗, h), (l, ∗) and (∗, l). Assume
the natural distribution (without any withholding) over these
inputs is known, and so are the conditional probabilities of
the label Y ∈ {0, 1}, as shown below:

X (h, h) (h, l) (l, h) (l, l) (h, ∗) (∗, h) (l, ∗) (∗, l)
Pr(X) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Pr(Y = 1 | X) 0.9 0.7 0.3 0.1 0.6 0.6 0.2 0.2
Pr(Y = 0 | X) 0.1 0.3 0.7 0.9 0.4 0.4 0.8 0.8

Table 1: True distribution of inputs and targets:

2https://blog.collegevine.com/should-you-submit-your-sat-
act-scores/

3https://blog.prepscholar.com/do-you-need-to-take-both-the-
act-and-sat

4We make these assumptions more generally throughout the pa-
per.
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Assume Y = 1 is the more desirable ”accept” decision.
Then, ideally, we would like to predict Ŷ = 1 whenever
X ∈ {(h, h), (h, l), (h, ∗), (∗, h)}. However, the strategic
reporting of scores at prediction time effectively means, for
example, that an input (∗, h) cannot be assigned the accept
decision of Ŷ = 1 unless the same is done for (l, h) as well;
otherwise, someone with (l, h) would simply not report the
first test, thereby misreporting (∗, h) and being accepted.
Taking this into account, the classifier with minimum error
is given by Ŷ = 1 whenever X ∈ {(h, h), (h, l), (h, ∗)}.

There are many other settings where a similar problem
arises. Many law schools now allow applicants to choose
between the GRE and the traditional LSAT.5 Recently, as
a result of the COVID-19 pandemic, universities have im-
plemented optional pass/fail policies, where students can
choose to take some or all of their courses for pass/fail credit,
as opposed to a standard letter grade that influences their
GPA. They are often able to decide the status after already
knowing their performance in the course. For credit scoring,
some individuals might not report some of their information,
especially if it is not mandatory by law (Florez-Lopez 2010).

The ability of strategic agents to withhold some of their
features at prediction time poses a challenge only when the
data used to train the classifier has some naturally missing
components to begin with. For if not, the principal – e.g.,
the entity deciding on admissions – can reject all agents that
withhold any of their features, thereby forcing them to re-
veal all features. We focus on how a principal can best train
classifiers that are robust even when there is strategic with-
holding of data by agents. Our methods produce classifiers
that eliminate the incentive for agents to withhold data.

Our contributions We now describe the key questions we
are facing, and how we answer them. Our model is described
formally in Section 2. All proofs are in the Supplement.

If the true input distribution is known, can we compute
the optimal classifier? (Section 3) We answer this question
in the affirmative by showing that the problem of comput-
ing the optimal classifier (Theorem 1) in this setting reduces
to the classical Min-cut problem (Cormen et al. 2009). This
analysis gives us the MINCUT classifier, which can be com-
puted on the empirical distribution, estimated using what-
ever data is available. However, since it can potentially give
complex decision boundaries, it might not generalize well.

Are there simpler classifiers that are robust to strategic
withholding of features? (Section 4) We first characterize
the structure of classifiers that are “truthful”, i.e., give no
incentive to strategically hide features at prediction time
(Theorem 2). Using this characterization, we devise a hill-
climbing procedure (HC) to train a hierarchical ensemble of
out-of-the-box classifiers and show that the procedure con-
verges (Theorem 4) as long as we have black-box access to
an agnostic learning oracle. We also analytically bound the
generalization error of HC (Theorem 3). The ensemble of
HC can be populated with any of the commonly used clas-
sifiers such as logistic regression, ANNs, etc.

5https://www.ets.org/gre/revised general/about/law/

Another truthful classifier we present is a modification
of Logistic Regression. This method, called IC-LR (Incen-
tive Compatible Logistic Regression), works by encoding all
features with positive values, and using positive regression
coefficients – whereby it is in every agent’s best interest to
report all features truthfully. IC-LR uses Projected Gradient
Descent for its training. The advantage of this method is that
it can be directly to a large number of features.

How do our methods perform on real data sets? (Section
6) We conduct experiments on several real-world data sets
to test the performance of our methods, comparing them to
each other, as well as to other methods that handle missing
data but ignore the strategic aspect of the problem. We see
that our methods perform well overall, and uncover some
interesting insights on their relative performance:

1. When the number of features is small, HC is the most
reliable across the board.

2. When the number of features is small, and many of them
are discrete/categorical (or suitably discretized), MIN-
CUT and IC-LR perform better.

3. If a large number of features must be used, IC-LR gives
the best performance, although HC performs reasonably
well with some simple feature selection techniques.

Related work Our work falls broadly in the area of strate-
gic machine learning, wherein a common assumption is that
strategic agents can modify their features (i.e., misreport)
in certain ways (normally at some cost), either to improve
outcomes based on the classifier chosen by the principal
(Hardt et al. 2016) or to influence which classifier is cho-
sen in the first place (Dekel, Fischer, and Procaccia 2010).
The main challenge in strategic machine learning, as in this
paper, is the potential misalignment between the interests
of the agents and the principal. Existing results in this line
of work (Chen et al. 2018; Kleinberg and Raghavan 2019;
Haghtalab et al. 2020), often mainly theoretical, consider
classifiers of a specific form, say linear, and ways of mis-
reporting or modifying features in that context. Our results
are different in that we focus on a specific type of strategic
misreporting, i.e., withholding parts of the data, and devise
general methods that are robust to this behavior that, in ad-
dition to having theoretical guarantees, can be tested practi-
cally. Some experimental results (Hardt et al. 2016) do exist
– but our work is quite different; for instance, we do not
need to invent a cost function (as in Hardt et al. (2016)). An-
other major difference is that we consider generalization in
the presence of strategic behavior, while most previous work
does not (except for a concurrent paper (Zhang and Conitzer
2021)), which studies the sample complexity of PAC learn-
ing in the presence of strategic behavior).

Our problem can also be viewed as an instance of au-
tomated mechanism design with partial verification (Green
and Laffont 1986; Yu 2011; Kephart and Conitzer 2015,
2016) where it is typically assumed that the feature space
(usually called type space in mechanism design) is discrete
and has reasonably small cardinality, and a prior distribu-
tion is known over the feature space. In contrast, the feature
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spaces considered in this paper consist of all possible combi-
nations of potentially continuous feature values. Moreover,
the population distribution can only be accessed by observ-
ing examples. Thus, common methodologies in automated
mechanism design do not suffice for our setting.

A set of closely related (in particular, to Theorem 1) the-
oretical results are those of Zhang, Cheng, and Conitzer
(2019b,a, 2021b) on the problem of distinguishing “good”
agents from “bad” (where each produces a different distri-
bution over a sample space, and the agent can misreport the
set of n samples that she has drawn). However, our work is
different in that we consider the standard classification prob-
lem, we focus more on practical aspects, and we do not rely
on the full knowledge of the input distribution.

Our work also finds a happy intersection between strate-
gic machine learning and the literature on classification with
missing data (Marlin 2008). The problem we study is also
connected to adversarial classification (Dalvi et al. 2004;
Dekel, Shamir, and Xiao 2010). We discuss these connec-
tions in more detail in the Supplement.

2 Preliminaries
Model with strategically withheld features: We have an
input space X , a label space Y = {0, 1}, and a distribution
D over X × Y which models the population. A classifier
f : X → Y maps a combination of features to a label. Let
F = [k] = {1, . . . , k} be the set of features, each of which
a data point may or may not have. For x ∈ X , let xi denote
the value of its i-th feature (xi = ∗ if x does not have feature
i ∈ [k]). For any S ⊆ [k], define x|S to be the projection of
x onto S (i.e., retain features in S and drop those not in S):

(x|S)i =

{
xi, if i ∈ S
∗, otherwise.

We assume that data can be strategically manipulated at
prediction (test) time in the following way: an agent whose
true data point is x can report any other data point x′ such
that x|S = x′ for some S ⊆ [k]. We use→ to denote the re-
lation between any such pair x, x′ (x → x′ ⇐⇒ ∃S ⊆
[k] : x|S = x′). Note that → is transitive, i.e., for any
x1, x2, x3 ∈ X , x1 → x2 and x2 → x3 =⇒ x1 → x3.

We assume agents prefer label 1 to 0: in response to a
classifier f , an agent with data point x will always with-
hold 6 features to receive label 1 if possible, i.e., the agent
will report x′ ∈ argmaxx′′:x→x′′ f(x′′). Incorporating such
strategic behavior into the loss of a classifier f , we get

`D(f) = Pr
(x,y)∼D

[
y 6= max

x′:x→x′
f(x′)

]
.

Truthful classifiers We will also be interested in truth-
ful classifiers, which provably eliminate incentives for such
strategic manipulation. A classifier f is truthful if for any

6In practice, f might not be perfectly known, and agents might
not be able to best respond. This problem does not arise for our
methods, since they are truthul. For other classifiers, their accuracy
may go up or down if agents fail to best-respond; but the assump-
tion that agents best-respond is common in many such contexts.

x, x′ ∈ X where x → x′, f(x) ≥ f(x′). In other words,
not withholding any features is always an optimal way to re-
spond to a truthful classifier. As a result, the loss of any truth-
ful classifier f in the presence of strategically withheld fea-
tures has the standard form: `D(f) = Pr(x,y)∼D[f(x) 6= y].

Note that the so-called Revelation Principle – which states
that in the presence of strategic behavior, any classifier
f is equivalent to a truthful classifier f ′ – holds in this
case because the reporting structure is transitive.7 In other
words, we are guaranteed that, for any classifier f , there
exists a truthful classifier f ′, such that for any x ∈ X ,
maxx′:x→x′ f(x′) = f ′(x). Therefore, we focus on truth-
ful classifiers in our model, without loss of generality.

3 The MINCUT Classifier
We first present a method for computing an optimal classi-
fier when the input distribution is fully known.8 Assuming
X is finite, our goal is to characterize a classifier f∗ which
minimizes the loss `D(.), for a known input distribution D.
As shorthand, define, for all x ∈ X ,

Definition 1. D+(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ = 1],

D−(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ = 0].

The basic idea here is simple: to partition X into two
sides, one labeled 1 and the other 0, where the error accrued
for each x ∈ X is given by D−(x) or D+(x), according as
x is labeled 1 or 0. Such a partition should crucially respect
the constraints imposed by the strategic behavior of agents :
if x→ x′, then either x is labeled 1 or x′ is labeled 0.

Definition 2. Given X and D, let G(D,X ) be a directed
capacitated graph with vertices V = X ∪ {s, t}, where the
edges E and edge capacities u are defined as follows:

• For each x ∈ X , there are edges (s, x) and (x, t) in E,
with capacities u(s, x) = D−(x) and u(x, t) = D+(x).
• For all pairs x, x′ ∈ X such that x→ x′, there is an edge

(x, x′) ∈ E with capacity u(x, x′) =∞.

In terms of the graph defined above, computing the opti-
mal classifier f∗ we seek is equivalent to finding a minimum
s-t cut on G(D,X ). The intuition is that the edges from s
and to t reflect the value gained from labeling an example
0 or 1, respectively; one of the edges must be cut, reflecting
the loss of not assigning it to the corresponding side. More-
over, if x → x′, then the corresponding edge with infinite
capacity prevents the assigning of 0 to x and 1 to x′.

Theorem 1. If (S, S̄) is a minimum s-t cut of G(D,X )
(where S is on the same side as s), then for the classifier
f∗(x) := 1(x ∈ S̄), we have `D(f∗) = minf `D(f).

7More details, including a formal proof, are in the Supplement.
8A theoretical companion paper (Zhang, Cheng, and Conitzer

2021a) contains a more general version of the mincut-based al-
gorithm. There, the goal is to compute an optimal classifier with
possibly more than 2 outcomes given perfect knowledge of the en-
tire population distribution. In this paper, we investigate the special
case with only 2 outcomes (i.e., accept and reject), but do not as-
sume prior knowledge about the population distribution.
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We note that, consequently, the optimal classifier can be
computed in poly(|X |) time. In practice, it is natural to ex-
pect that we do not knowD exactly, but have a finite number
of samples from it. A more practical option is to apply The-
orem 1 to the empirical distribution induced by the samples
observed, and hope for the classifier computed from that to
generalize to the true population distribution D.

Implementing MINCUT Given a set X̂ of m i.i.d. sam-
ples from D, let D̂ be the corresponding empirical distri-
bution over X̂ , and X̄ := X̂ ∪ {x′ : x′ → x, ∃x ∈ X̂}.
The MINCUT classifier is then obtained by applying Theo-
rem 1 to G(D̂, X̂ ), and extending it to X̄ as and when re-
quired. Here, note that MINCUT runs in time poly(m) (and
not poly(|X |)), since G(D̂, X̂ ) has m nodes, and checking
if a test point is in X̄ takes poly(m) time.

In light of traditional wisdom, the smaller m is relative
to X , the larger the generalization error will be. While not
attempting a theoretical analysis in this regard, we note that
when X is large, the generalization error can be extremely
large (see Example 2 in the Supplement). The reason for this
is two-fold:
1. MINCUT can give complicated decision boundaries.
2. MINCUT is indecisive on samples not in X̄ .9

Therefore, a suitable discretization of features is sometimes
useful (see Section 6). Note that MINCUT is truthful, by
virtue of the infinite capacity edges in Definition 2.

4 Truthful Classifiers and HILL-CLIMBING
The other drawback of MINCUT, related to the issue of gen-
eralization just discussed, is that it can be hard to interpret
meaningfully in a practical setting. In this section, we de-
vise a simpler alternative called HILL-CLIMBING. To help
introduce this algorithm, we first present a characterization
of truthful classifiers in our setting, since we can limit our
focus to them without loss of generality (as discussed in Sec-
tion 2). For shorthand, we use the following definition:
Definition 3 (F ′-classifier). For a subset of features F ′ ⊆
F , a classifier f is said to be an F ′-classifier if for all x ∈ X ,
we have f(x) = f(x|F ′), and if there exists i ∈ F ′ such that
xi = ∗, then f(x) = 0.

In other words, an F ′-classifier depends only on the fea-
tures in F ′, rejecting all x where any of these is empty. We
collect many such classifiers into an ensemble as follows:
Definition 4 (MAX Ensemble). For a collection of classi-
fiers C = {fj}, its MAX Ensemble classifier is given by
MAXC(.) := maxj fj(.).

This is equivalent to getting each agent to pick the most
favorable classifier from among those in {fj}. Now we have
the following characterization of truthful classifiers:
Theorem 2. A classifier f is truthful iff f(.) = MAXC(.)
for a collection of classifiers C = {fj} such that, for some
{Fj} ⊆ 2F , each fj is an Fj-classifier .

9This is more likely to happen when using a large number of
features.

For any truthful classifier f , we seek to bound the gap
between its population loss `D(f) and its empirical loss on
samples in X̂ defined by `X̂ (f) := 1

m

∑
i∈[m] |f(xi) − yi|.

Before stating a theorem to this end, we define the following
entities: Let H be a base hypothesis space over X , and n ∈
{1, . . . , 2k} be a parameter. Define d := dVC(H), the VC
dimension ofH, and H̄ is the set of all classifiers that can be
written as the MAX Ensemble of n classifiers inH.
Theorem 3. Let X̂ = {(xi, yi)}i∈[m] be m i.i.d. sam-
ples from D. For any f ∈ H̄, for any δ > 0, with
probability at least 1 − δ, we have `D(f) ≤ `X̂ (f) +

O

(√
dn·log dn·logm+log(1/δ)

m

)
.

It is easy to see that for any of the commonly used hy-
pothesis spaces – say H consists of linear hypotheses – if a
truthful classifier f is in H, then so are the components of
the MAX Ensemble version of f as in Theorem 2. We have,
however, stated Theorem 3 in slightly more general terms.

The HILL-CLIMBING classifier We now present a hill-
climbing approach with provable convergence and general-
ization guarantees. The HILL-CLIMBING classifier (hence-
forth HC) is of the same form as given by the characteri-
zation of truthful classifiers in Theorem 2.10 Intuitively, the
approach works by considering a hierarchy of classifiers, or-
ganized by the features involved. For example, consider a
setting with k = 3 features. We make a choice as to what
classifiers we use — say f1 for input of the form (x1, ∗, ∗),
f2 for input of the form (x1, x2, ∗), and f3 for input of the
form (x1, x2, x3). Any agent with features 1 and 2 (but not
3), for example, should be able to report both features so
as to be classified by f2, or feature 2 to be classified by f1
instead. So in effect, assuming full knowledge of the classi-
fiers, each agent can check all of the classifiers and choose
the most favorable one. Without loss of generality, we as-
sume that when a data point does not have all the features
required by a classifier, it is automatically rejected.

Algorithm 1 HILL-CLIMBING (HC) Classifier

Input: data set X̂ = {(xi, yi)}i∈[m], n subsets
F1, F2, . . . , Fn of F.
Initialize: t← 0, {f01 , . . . , f0

n}.
while ∆ > 0 do

for i = 1, 2, . . . , n do
Si ← {(x, y) ∈ X̂ : f tj (x|Fj

) = 0, ∀j 6= i}.
f t+1
i = argminf∈H

∑
(x,y)∈Si

|f(x|Fi)− y|.
end for
f∗ ← MAX{ft+1

1 ,...,ft+1
n }; `t = `X̂ (f∗)

∆← `t − `t−1; t← t+ 1
end while
Return: f∗.

In short, HC (defined formally in Algorithm 1) works as
follows: first choose a hypothesis spaceH, in order for The-

10And, therefore, is truthful, and inherits Theorem 3.
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orem 3 to apply. Then select n subsets of F (where n is a
parameter), say F1, F2, . . . , Fn. For each Fj , we learn a Fj-
classifier, say fj , from among those in H . Start by initial-
izing these classifiers to any suitable {f01 , . . . , f0

n}. In each
iterative step, each of the subclassifiers is updated to mini-
mize the empirical loss on the samples that are rejected by
all other classifiers. We next show that such an update pro-
cedure always converges. To do so, as far as our theoreti-
cal analysis goes, we assume we have black-box access to
an agnostic learning oracle (Line 6 in Algorithm 1). After
convergence, the HC classifier is obtained as the MAX En-
semble of these classifiers. The generalization guarantee of
Theorem 3 applies directly to the HC classifier.

Theorem 4. Algorithm 1 converges.

Connection with MINCUT The HC formulation given
above can be thought of as a less complicated version of
MINCUT: some of the edge constraints are ignored with re-
spect to learning the individual classifiers, and are instead
factored in via the MAX function. Say F1 ⊂ F2. For some
x, it is possible that f1(x|F1

) = 1 and f2(x|F1
) = 0.

In other words, the individual classifiers could violate the
MINCUT constraints, in order to learn classification func-
tions that generalize well individually, and also collectively
thanks to the combined HC training procedure.

Implementation The set of classifiers {f1, f2, . . . , fn}
in HC can be populated with any standard out-of-the-box
methods such as logistic regression or neural networks, the
choice of which can influence the performance of f . In Sec-
tion 6, we test HC with a few such options. The assumption
of having access to an agnostic learning oracle does not play
a crucial role in practice, with standard training methods per-
forming well enough to ensure convergence.

Also, HC will converge in at most m (number of training
examples) iterations, because in each iteration the number
of correctly classified examples increases by at least one.
(An iteration may need to train n individual classifiers.) This
also means there is no difference between checking whether
∆ > 0 or ∆ ≥ 1/m. In our experiments, we run HC using
∆ ≥ 10−4, and convergence is achieved pretty quickly (see
the Supplement for exact details).

Choosing subsets Note that we are free to choose any
F1, F2, . . . , Fn to define HC. Its generalization (via Theo-
rem 3), will depend on the choice of n. As more and more
subsets of features are included (and further binning them
based on their values), HC starts behaving more and more
like MINCUT. In addition, using a large number of subsets
increases the computational complexity of HC. In practice,
therefore, the number of subsets must be limited somehow –
we find that some simple strategies like the following work
reasonably well: (a) selecting a few valuable features and
taking all subsets of those features, (b) taking all subsets of
size smaller than a fixed number k, say k = 2. In many prac-
tical situations, a few features (possibly putting their values
in just a few bins) are often enough to get close to optimal

accuracy, also improving interpretability (e.g., see Wang and
Rudin (2015) or Jung et al. (2017)) The question of devising
a more nuanced algorithm for selecting these subsets merits
a separate investigation, and we leave this to future work.

5 Incentive-Compatible Logistic Regression
As we just mentioned, it is challenging to directly apply HC
and MINCUT to a large number of features. As we will see,
we can address this challenge in various ways to still get very
strong performance with HC. Moreover, HC enjoys remark-
able generality, generalization and convergence guarantees.
Nevertheless, we would like to have an algorithm that tries to
make use of all the available features, while still being truth-
ful. In this section, we present such an approach, which, as
we show later in Section 6, indeed performs comparably to
– and in some cases better than – MINCUT and HC.

Below we present a simple and truthful learning algo-
rithm, Incentive-Compatible Logistic Regression (IC-LR),
which is a truthful variant of classical gradient-based algo-
rithms for logistic regression. Recall that in logistic regres-
sion, the goal is to learn a set of coefficients {βi}, one for
each feature i ∈ F , as well as an intercept β0, such that for
each data point (x, y), the predicted label ŷ given by

ŷ = 1

[
σ(β0 +

∑
i∈F

xi · βi) ≥ 0.5

]
fits y as well as possible, where σ(t) = 1/(1 + e−t) is the
logistic function. Roughly speaking, IC-LR. (formally de-
fined in Algorithm 2) works by restricting the coefficients
{βi} in such a way that dropping a feature (i.e., setting xi to
0) can never make the predicted label larger. If, without loss
of generality, all feature values xi are nonnegative (or suit-
ably translated), then this is equivalent to: for each feature
i ∈ F , the coefficient βi ≥ 0. IC-LR. enforces this non-
negativity constraint throughout the training procedure, by
requiring a projection step after each gradient step, which
projects the coefficients to the feasible nonnegative region
by setting any negative coefficient to 0 (equivalently, an `1
projection).

One potential issue with IC-LR is the following: if a cer-
tain feature xi ≥ 0 is negatively correlated with the pos-
itive classification label, then IC-LR is forced to ignore it
(since it is constrained to use positive coefficients). To make
good use of this feature, we can include an inverted copy
x′i = λ − xi (where λ is chosen such that x′i ≥ 0). We
could also choose an apt discretization of such features (us-
ing cross-validation) and translate the discretized bins into
separate binary variables. Such a discretization can account
for more complex forms of correlation, e.g., a certain fea-
ture’s being too high or too low me makes the positive la-
bel likelier. In practice, we find that the latter method does
better. If such transformations are undesirable, perhaps for
reasons of complexity or interpretability, HC methods are a
safer bet.

6 Evaluation
In this section, we show that, when strategic withholding is
at play, MINCUT, HC and IC-LR perform well and provide
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Algorithm 2 Incentive-Compatible Logistic Regression

Input: data set X̂ = {(x, y)}, learning rate {ηt}, δ ≥ 0.
Initialize: t← 0, {β0, β1, . . . , βk}.
while ∆ > δ do
gi ← 0 for all i ∈ {0, 1, . . . , k}
for (x, y) ∈ X̂ do
g0 ← g0 + σ

(
β0 +

∑
i∈F xi · βi

)
− y

for i ∈ F do
gi ← gi + (σ

(
β0 +

∑
i∈F xi · βi

)
− y) · xi

end for
end for
∀i ∈ {0, 1, . . . , k}, βi ← max{βi − ηt · gi, 0}
f∗(x) := 1

(
σ
(
β0 +

∑
i∈F βi · xi

)
≥ 0.5

)
`t = `X̂ (f∗); ∆← `t − `t−1; t← t+ 1

end while
Return: f∗.

Data set Size Total # of
features

Size after
balancing

Features after
restriction

Australia 690 15 614 2 num., 2 cat.
Germany 1000 20 600 1 num., 3 cat.
Poland 5910 64 820 4 num.
Taiwan 30,000 23 13,272 4 ordinal

Table 2: Data set summary statistics (num. = numerical, cat.
= categorical)

a significant advantage over several out-of-the-box counter-
parts (that do not account for strategic behavior).

Datasets Four credit approval datasets are obtained from
the UCI repository (Dua and Graff 2017), one each from
Australia, Germany, Poland and Taiwan. As is common for
credit approval datasets, they are imbalanced to various de-
grees. In order to demonstrate the performance of classifiers
in a standard, controlled setting, we balance them by random
undersampling. There is a dedicated community (Chawla,
Japkowicz, and Kotcz 2004) that looks at the issue of imbal-
anced learning. We do not delve into these issues in our pa-
per, and evaluate our methods on both balanced and imbal-
anced datasets (see the Supplement for the latter). In addi-
tion, to demonstrate the challenge of high-dimensional data
imposed on some of the classification methods, the experi-
ments are run on the datasets (a) restricted to 4 features,11

and (b) with all available features. The basic characteristics
of the datasets are summarized in Table 2 – note that there is
enough variation in terms of the types of features present.
We then randomly remove a fraction ε = 0, 0.1, . . . , 0.5
of all feature values in each dataset to simulate data that is
missing “naturally” – i.e., not due to strategic withholding.

Testing We test all methods under two ways of reporting:
“truthful”, i.e., all features are reported as is, and “strate-

11According to ANOVA F-value evaluated before dropping any
feature values.

gic”, i.e., some features might be withheld if it leads to a
better outcome. We measure the test accuracy of each clas-
sifier, averaged over N=100 runs, with randomness over the
undersampling and the data that is randomly chosen to be
missing, to simulate data missing for non-strategic reasons.
Other metrics, and details about implementing and training
the classifiers, are discussed in the Supplement. It is impor-
tant to note that for testing any method, we have to, in ef-
fect, compute the best response of each data point toward the
classifier. Since the methods we propose are truthful, this is
a trivial task. But for other methods, this might not be easy,
thereby limiting what baselines can be used.

Classifiers We evaluate our proposed methods, MINCUT,
HC with logistic regression (HC (LR)) and neural networks
(HC (ANN)) as subclassifiers, and incentive-compatible lo-
gistic regression (IC-LR), against several baseline methods.

First, they will be compared against three out-of-the-box
baseline classifiers: logistic regression (LR), neural net-
works (ANN) and random forest (RF). We select LR for its
popularity in credit approval applications; we select ANN
for it being the best-performing individual classifier on some
credit approval datasets (Lessmann et al. 2015); we select
RF for it being the best-performing homogeneous ensemble
on some credit approval datasets (Lessmann et al. 2015), as
HC can be viewed as a homogeneous ensemble method. For
the sake of exposition, we present numbers just for baselines
based on LR, as they perform relatively better.

Second, for the purposes of comparison, we include MAJ
– predict the majority label if examples with the exact same
feature values appeared in the training set, and reject if not
– which can be thought of as a non-strategic counterpart of
MINCUT. We also include k-nearest neighbors (KNN) as a
baseline, since it is closely related to MAJ.

These out-of-the-box classifiers need help dealing with
missing data, whether they are missing naturally at train-
ing and test time or strategically at test time, and to this
end, we employ (a) IMP: mean/mode imputation (Lessmann
et al. 2015), and (b) R-F: reduced-feature modeling (Saar-T-
sechansky and Provost 2007), for each of them.

When the dataset has a large number of features, MINCUT
and IC-LR can be directly applied. For HC, we assist it in
two ways: (a) by selecting 4 features based on the training
data, denoted by FS (feature selection),12 and (b) by choos-
ing a limited number of small subsets (30 with 1 feature and
30 with 2 features), denoted by APP (approximation). Note
that since our proposed methods are truthful, we can assume
that features are reported as is. However, for all out-of-the-
box classifiers, except IMP(LR), it is infeasible to simulate
strategic withholding of feature values, due to the enormous
number of combinations of features.

Last but not least, we test all methods with the discretiza-
tion of continuous features (into categorical ones) (Fayyad
and Irani 1993), for reasons given in earlier sections.

12Such a technique can be applied to other methods too – the
results (see the Supplement) are not very different from those in
Tables 4.
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Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .792 .792 .639 .639 .659 .659 .648 .648
MINCUT .770 .770 .580 .580 .501 .501 .652 .652
IC-LR .788 .788 .654 .654 .639 .639 .499 .499
IMP(LR) .796 .791 .663 .580 .714 .660 .670 .618
R-F(LR) .808 .545 .631 .508 .670 .511 .665 .590

Table 3: Our methods vs. the rest: mean classifier accuracy
for ε = 0.2, balanced datasets, 4 features

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) w/ disc. .794 .794 .641 .641 .692 .692 .650 .650
MINCUT w/ disc. .789 .789 .629 .629 .692 .692 .649 .649
IC-LR w/ disc. .800 .800 .651 .651 .698 .698 .646 .646
IMP(LR) w/ disc. .799 .762 .652 .577 .719 .631 .686 .541
R-F(LR) w/ disc. .796 .542 .633 .516 .708 .522 .684 .587

Table 4: Our methods vs. the rest: mean classifier accuracy
for ε = 0.2, balanced datasets, 4 features (“w/ disc.” stands
for “with discretization of features”)

Results For want of space, we report results only for ε =
0.2. We also limit our exposition of HC, IMP and R-F meth-
ods to those based on logistic regression, as these perform
better than their ANN/RF/KNN counterparts. For a com-
prehensive compilation of all results, along with standard
deviation numbers, please refer to the Supplement.

With a small number of features (Table 3): As expected,
the out-of-the-box baselines perform well under truthful re-
porting, but not with strategic reporting. Our methods are ro-
bust to strategic withholding, and in line with the earlier dis-
cussion on the potential issues faced by MINCUT and IC-LR
(in Sections 3 and 5), we see that (a) HC(LR) performs most
consistently, and (b) in some cases, MINCUT (e.g., Poland)
and IC-LR (e.g., Taiwan) do not do well.

With discretization (Table 4): As expected, discretization
of numerical features into binary categories improves the
performance of MINCUT and IC-LR, for reasons explained
in Sections 3 and 5 respectively. We also see some bene-
fit from discretization for HC(LR) when the features are
mostly continuous (e.g., Poland), and less so when they are
already discrete (e.g., Taiwan).

With a large number of features (Table 5): We see
broadly similar trends here, except that in the case with dis-
cretization, IC-LR performs much better than before (e.g.,
Poland). The reason for this is that IC-LR is able to use
all the available features once they are discretized into bi-
nary categories. However, without discretization, HC meth-
ods are more reliable (e.g., Poland and Taiwan).

On the out-of-the-box baselines: • Imputation-based
methods are sensitive vis-á-vis the mean/mode values used.
There is incentive to drop a certain feature if the imputed
value is a positive signal. If there are many such features,
then these methods perform poorly, as seen in Table 5 (cf.
Table 3, Australia). If the imputed values do not give a clear
signal (e.g., when the distribution of each feature value is not

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCFS(LR) .795 .795 .625 .625 .678 .678 .648 .648
HCAPP(LR) .777 .777 .617 .617 .658 .658 .638 .638
MINCUT .496 .496 .499 .499 .499 .499 .499 .499
IC-LR .798 .798 .654 .654 .607 .607 .588 .588
HCFS(LR) w/ disc. .794 .794 .632 .632 .694 .694 .649 .649
HCAPP(LR) w/ disc. .782 .782 .620 .620 .724 .724 .644 .644
MINCUT w/ disc. .534 .534 .503 .503 .499 .499 .550 .550
IC-LR w/ disc. .805 .805 .653 .653 .773 .773 .667 .667
IMP(LR) .802 .701 .663 .523 .729 .507 .657 .501
IMP(LR) w/ disc. .809 .723 .659 .554 .783 .503 .697 .501

Table 5: Our methods vs. the rest: mean classifier accuracy
for ε = 0.2, balanced datasets, all features

skewed), there is a high variance in the performance of these
methods (see the Supplement). In some cases, the bench-
marks perform as well as, or slightly better than, our incen-
tive-compatible classifiers. For example, in Table 3, for the
Australia and Poland data sets, the accuracy of IMP(LR) and
that of HC(LR) are within 0.001 of each other. This happens
because the imputed values are, in these cases (but not in
most of our other cases), negative indicators of the positive
label, and therefore there is generally no incentive to strate-
gically drop features. • Reduced-Feature modeling, despite
performing well under truthful reporting, allows too many
examples to be accepted under strategic reporting, which
hurts its performance. This is true especially for smaller ε,
as each subclassifier has fewer examples to train on, giving
several viable options for strategic withholding.

We note here that the variance (in the accuracy achieved)
produced by our methods, since they are robust to strategic
withholding, is much smaller than that of the baseline meth-
ods (exact numbers are deferred to the Supplement).

7 Conclusion

In this paper, we studied the problem of classification when
each agent at prediction time can strategically withhold
some of its features to obtain a more favorable outcome. We
devised classification methods (MINCUT, HC and IC-LR)
that are robust to this behavior, and in addition, character-
ized the space of all possible truthful classifiers in our set-
ting. We tested our methods on real-world data sets, showing
that they outperform out-of-the-box methods that do not ac-
count for the aforementioned strategic behavior.

An immediate question that follows is relaxing the as-
sumption of having access to truthful training data – for
example, one could ask what the best incentive-compatible
classifier is given that the training data consists of best re-
sponses to a known classifier f ; or, one could consider an
online learning model where the goal is to bound the over-
all loss over time. A much broader question for future work
is to develop a more general theory of robustness to missing
data that naturally includes the case of strategic withholding.
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Ethics Statement
The methods presented in this paper are geared towards
preventing the strategic withholding of data when machine
learning methods are used in real-world applications. This
will increase the robustness of ML techniques in these con-
texts: without taking this issue into account, deployment of
these techniques will generally result in a rapid change in
the distribution of submitted data due to the new incen-
tives faced, causing techniques to work much more poorly
than expected at training time. Thus, there is an AI safety
(Amodei et al. 2016) benefit to our work. The lack of strate-
gic withholding also enables the collection of (truthful) qual-
ity data. Of course, there can be a downside to this as well if
the data is not used responsibly, which could be the case es-
pecially if the features that (without our techniques) would
have been withheld are sensitive or private in nature.

The other issues to consider in our context are those of
transparency and fairness. We assume that the classifier is
public knowledge, and therefore, agents can appropriately
best-respond. In practice, this might not be the case; how-
ever, agents may learn how to best-respond over time if sim-
ilar decisions are made repeatedly (e.g., in the case of col-
lege admissions or loan applications). While US college ad-
mission is often a black box, it need not be; many coun-
tries have transparent public criteria for university admis-
sions (e.g., the Indian IIT admission system), and the same is
true in many other contexts (e.g., Canadian immigration). Of
course, transparency goes hand in hand with interpretabil-
ity, i.e., the classifier must be easily explainable as well, and
there could be a trade-off, in principle, between how easy
the classifier is to interpret and the accuracy it can achieve.
It is also possible that our methods hurt the chances of those
with more missing data (similarly to how immigrants with-
out credit history may not be able to get a credit card). This is
to some extent inevitable, because if one can get in without
any feature, everyone could get in by dropping all features.
Therefore, the issue of fairness might arise in the case where
some groups systematically tend to have more missing data.
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