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Abstract

We study approval-based committee elections for the case
where the voters’ preferences come from a 2D-Euclidean
model. We consider two main issues: First, we ask for the
complexity of computing election results. Second, we eval-
uate election outcomes experimentally, following the visual-
ization technique of Elkind et al. (2017). Regarding the first
issue, we find that many NP-hard rules remain intractable for
2D-Euclidean elections. For the second one, we observe that
the behavior and nature of many rules strongly depend on the
exact protocol for choosing the approved candidates.

Introduction

The idea of committee elections is that a group of agents
(typically referred to as the voters) wants to choose a fixed-
sized subset of candidates (typically referred to as a com-
mittee). For example, the voters may be choosing the final-
ists of some competition, the members of some governing
body, or the products to offer in an online store (see, e.g., the
overview of Faliszewski et al. (2017) for a discussion of var-
ious types of committee elections). The committee should
reflect the preferences of the voters, and its selection should
follow the principles underlying its purpose (for example,
the finalists of a competition should be individually excel-
lent, members of a governing body should represent the vot-
ers proportionally, and a store’s portfolio should be diverse).

We consider the approval preference model, i.e., we as-
sume that each voter specifies a subset of candidates that
he or she finds suitable for the committee, and we focus on
the case where these approval sets are derived from some
(two dimensional) Euclidean model. We do so for two rea-
sons. First, the results of 2D-Euclidean elections can be eas-
ily interpreted and we want to verify if various approval-
based committee rules (ABC rules, for short) indeed imple-
ment the desired principles in choosing the committees. To
this end, we use the visualization technique of Elkind et al.
(2017). Second, for many prominent ABC rules it is known
that computing their results is NP-hard in general, but be-
comes tractable if the preferences are, in some sense, one-
dimensional (for example, all the domain restrictions con-
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sidered by Flkind and Lackner (2015) are one-dimensional).
We check if these polynomial-time results can be extended
to the two-dimensional case.

We consider voting rules that seek committees of different
types. In particular, we consider Multiwinner Approval Vot-
ing (AV), which focuses on individual excellence, Propor-
tional Approval Voting (PAV), Phragmén’s Sequential rule
(Phr), and Rule X, which focus on proportionality, and Ap-
proval Chamberlin—Courant (CC), which focuses on diver-
sity. Additionally, we also consider Minimax Approval Vot-
ing (MAV), which is based on the egalitarian principle.

Approval-Based Euclidean Elections. Briefly put, in a
Euclidean model each candidate and each voter is repre-
sented as his or her ideal point, i.e., a point in some Eu-
clidean space R, whose coordinates are interpreted as a
given candidate’s or voter’s positions on some ¢ issues (for
example, in a two-dimensional model these two issues may
correspond to the extents to which an individual supports
personal and economic freedom). To derive the voters’ ap-
proval sets, we use the following two principles:

1. In the voter-range model, if a voter approves some candi-
date then he or she also approves all the closer ones.

In the candidate-range model, if a candidate is approved
by a voter, all the voters closer to this candidate also ap-
prove him or her.

For the one-dimensional case, these models correspond to
the candidate interval and voter interval models of Elkind
and Lackner (2015). We also consider what we call a
voter/candidate range model, which generalizes both ap-
proaches, and using it we generalize/strengthen some results
from the literature.

Main Contributions. We seek to understand the struc-
ture of the committees produced by the considered rules and
whether these committees can be computed efficiently.

In our first set of results, we show that all our rules that are
NP-hard in the general approval setting (e.g., MAV, CC, and
PAV) remain NP-hard for 2D-Eucludiean elections, both for
the voter and candidate range models. Our proofs hold under
the assumption that we are given the ideal points and radii
of the candidates and voters; this is important as otherwise
even recognizing if an election comes from a 2D-Euclidean



domain may be hard (indeed, Peters (2017) has shown it for
the ordinal case; we expect the same for the approval one).

In the second set of results, we present visualizations of
our ABC rules under several distributions of the ideal points
and several strategies for choosing the voters’ or candidates’
radii (we employ the technique of Elkind et al. (2017), which
shows how frequently committee members are selected from
given areas of the preference space). We obtain several high-
level conclusions. For example, we find that forcing the vot-
ers to approve a given number of candidates leads to unap-
pealing results, or that AV might have some deficiencies as
a rule to choose individually excellent candidates.

Preliminaries

For an integer p, by [p] we mean the set {1,...,p}. We use
the Iverson bracket notation, i.e., for a logical formula F', by
[F'] we mean 1 if F' is true and O otherwise.

Approval Elections.  An approval-based election (in
short, an election) is a pair E (C,V), where C =
{c1,...,em}t and V. = {uvy1,...,v,} are, respectively, the
set of candidates and the set of voters. For each voterv € V,
by A(v) we denote the approval set of v, i.e., the set of those
candidates that voter v finds acceptable. Conversely, by V' (¢)
we denote the set of voters who approve candidate c, i.e.,
V(c) ={v € V| c € A(v)}. To make the notation lighter,
we assume that the approval sets of the voters are implicitly
included in the elections.

Elkind and Lackner (2015) introduced a number of do-
main restrictions regarding the voters’ preferences. For ex-
ample, if it is possible to order the candidates so that each
voter approves their contiguous subset, then we say that the
voters have candidate interval (CI) preferences. Similarly,
if it is possible to order the voters so that each candidate is
approved by a contiguous group of voters, then we speak of
voter interval (VI) preferences. We focus on Euclidean pref-
erences, which we discuss in Section .

ABC Rules. An approval-based committee rule—in short
an ABC rule—is a function that given an election (C, V') and
a positive integer k£ € N, returns a nonempty family of size-k
subsets of C, referred to as the winning committees. For a
general overview of ABC rules, we point the reader to the
recent survey by Lackner and Skowron (2020). Below we
describe the rules that we focus on (we let £ = (C, V) be
an election and £ be the desired committee size).

Thiele Methods. Fix a non-decreasing function w: N —
R. The w-score of a committee W is defined as:

w-score(W) = >, w(|W N A(v)]).

The w-Thiele rule returns the committees with the maxi-
mal w-scores. Rules of this type (often referred to as Thiele
methods) were introduced by Thiele (1895). Notable exam-
ples of Thiele rules include Multiwinner Approval Voting
(AV), Approval Chamberlin-Courant rule (CC), and Propor-
tional Approval Voting (PAV), defined, respectively, through
the following w-functions:

way () = t; wee(t) = [t > 1]; weav(t) = S0, Y.
AV is focused on individual excellence, CC gives diverse
committees, and PAV seeks proportional representation.
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Phragmén’s Sequential Rule. The rule starts with an
empty committee and extends it until £ candidates are found:
Each candidate costs one dollar, the voters earn virtual
money at some fixed rate, e.g., one dollar per second (the
time is continuous), and as soon as some voters can buy a
not-yet-selected candidate c that they all approve, the rule in-
cludes c in the committee and resets their budgets to 0. This
rule was introduced by Phragmén (1894) and seeks propor-
tional representation of the voters.
Rule X. This is a two-phase rule, where both phases re-
semble the Phragmén’s Sequential Rule, but in the first one
the voters get their money upfront, and in the second one
they earn it as in Phragmén’s Sequential Rule, but their start-
ing budgets depend on the first phase. For a formal defini-
tion of the rule, we refer to the paper of Peters and Skowron
(2020), where the rule is introduced.! In this paper we only
consider the first phase of the rule, which can return com-
mittees of size strictly smaller than k.
Minimax Approval Voting (MAV). Given two subsets
of candidates, A, B C (, their Hamming distance is
duam(A,B) = |A\ B| + |B \ A]l. MAY, introduced by
Brams, Kilgour, and Sanver (2007), selects committees that
minimize the Hamming distance to the farthest vote, i.e.,
the committees W that minimize max,cy dgam (A(v), W).
Thus the rule implements the egalitarian principle; for other
such rules, see, e.g., the works of Betzler et al. (2013) and
Aziz et al. (2018).
Complexity of Winner Determination. The outcomes
of AV, Phragmén’s Sequential Rule, and Rule X are com-
putable in polynomial time, provided that we break ties ac-
cording to some simple rule (e.g., lexicographically). For
MAV and all w-Thiele rules with non-linear, concave w
functions it is NP-hard to decide if there is a committee that
achieves at least a given score (see the works of LeGrand
(2004), Procaccia et al. (2008), and Aziz et al. (2015) for the
cases of MAV, CC, and PAV, respectively, and the work of
Skowron et al. (2016) for a general result regarding Thiele
rules). Yet, for MAV there are polynomial-time algorithms
for the candidate and voter interval cases (Liu and Guo
2016), and for Thiele rules defined by concave w-functions
there are polynomial-time algorithms for the candidate in-
terval case (Peters and Lackner 2020); the problem is open
for the other Thiele rules and for the voter interval case.
Our rules have also been studied with respect to approxi-
mation and parameterized complexity; we point the reader to
the survey of Lackner and Skowron (2020) for these results.

Euclidean Preferences

In this section we describe our model of Euclidean-based ap-
proval preferences. While such models have been studied for
over half a century (see, e.g., the works of Davis and Hinich
(1966), Plott (1967), Enelow and Hinich (1984, 1990) for
some early discussions), researchers mostly focused on or-
dinal preferences, and when they considered the approval

"We omit the definition due to restricted space. To appreciate
our results, it suffices to know that Rule X is similar to Phragmén’s
Sequential Rule but provides stronger proportionality guarantees.



setting, they usually analyzed probabilistic models (see, e.g.,
the work of Laslier (2006)).

Given an election E = (C, V), we say that the voters
have tD-Euclidean preferences (¢ € N) if for each agent
a € C UV (e., for each candidate and each voter) there
exists a point 4 = (24,1, ..., %q,) in R" and a nonnegative
real value r, € R such that:

c€ Alv) = \/22:1(9564' — Ly )% < e+ 1y

Intuitively, for a € C' UV the point z,, describes a’s ideal
position in a t-dimensional space of opinions. For a candi-
date ¢ € C, . can be seen as ¢’s charisma: It specifies which
positions surrounding his or her ideal one the candidate can
accommodate credibly. For a voter v € V, r, specifies v’s
willingness to compromise, i.e., the positions around his or
her ideal one that the voter still accepts. Two special cases
of Euclidean Preferences are:

1. The voter range model (VR), where we require that all the
candidates have radii equal to zero.

2. The candidate range model (CR), where all the voters
have radii equal to zero.

We refer to the full model as the voter/candidate range model
(VCR). Elkind and Lackner (2015) argued that the candidate
interval model is equivalent to our 1D-VR model (although
they used a different name, of course). It turns out that the
voter interval model is equivalent to our 1D-CR one.?

Proposition 1. The sets of voter interval and 1D-CR elec-
tions are equal.

The VCR model is strictly more powerful than the VR
and CR ones. For example, election with candidate set
C = {a,b, c,d} and voters with approval sets {a, b}, {b, c},
{b,d}, and {a, b, ¢, d} is VCR, but neither VR nor CR.

Computing Winning Committees

The main goal in this section is to show that our NP-hard
rules remain intractable even in the 2D-Euclidean setting.
Yet, first we briefly consider 1D-Euclidean elections.

One-Dimensional Euclidean Preferences

Elkind and Lackner (2015) have shown polynomial-time al-
gorithms for computing CC winning committees in 1D-VR
and 1D-CR elections. We unify this result into a single al-
gorithm for 1D-VCR elections (the main idea is remarkably
close to that for the 1D-VR case).

Proposition 2. There is an algorithm that given a 1D-VCR
election and committee size, computes some winning CC
committee in polynomial time.

A natural question is whether it is possible to extend the
above result to PAV, other Thiele methods. We leave this
question open. It is also interesting to consider MAV as in
this case 1D-VR and 1D-CR algorithms do exist (Liu and
Guo 2016).

2t is a bit confusing that the voter range corresponds to the
candidate interval model and candidate range corresponds to voter
interval. This crossing is due to the fact that our terminology re-
gards the reason for approval, and the terminology of Elkind and
Lackner (2015) regards the shape of approval sets.
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Figure 1: Construction of a penny graph.

Two-Dimensional Euclidean Preferences

In our NP-hardness proofs for the 2D Euclidean elections
we use penny graphs. A penny graph is defined by a set of
unit disks, i.e., balls of diameter one in R?, such that no two
disks overlap (but they can touch). Each disk corresponds to
a vertex and two vertices are connected by an edge if their
disks touch (i.e., if their centers are exactly at distance 1). A
graph is a penny graph if it has such a representation by unit
disks (the name comes from the analogy between the disks
and pennies laying on a flat surface). All penny graphs are
planar. We will need the following algorithm of Valiant.

Lemma 1. (Valiant 1981). There is a polynomial-time al-
gorithm that given a planar graph with maximum degree at
most 4 computes its embedding on the plane so that its ver-
tices are at integer coordinates and its edges are drawn with
vertical and horizontal line segments.

Recall that in the Independent Set problem (IS) we are
given a graph G = (X, F) and a positive integer . We ask
if there exists an independent set of G—i.e., a subset of ver-
tices U C X such that no two vertices in U are adjacent—of
size at least r. It is known that the problem is NP-hard for
cubic planar graphs (Mohar 2001, Theorem 4.1(a)). Given
an instance (G,r) of IS, where G is a cubic planar graph,
we construct an instance of IS for penny graphs, as follows
(we use the construction of Cerioli et al. (2011, Theorem
1.2); we repeat it here as we need its specific properties).

First, we use Lemma 1 to obtain a planar representation
of GG, where the vertices are at integer coordinates and the
edges consist of vertical and horizontal line segments (see
the left-hand side of Figure 1; note that in this figure the ver-
tices have degrees at most three, and not exactly three). Sec-
ond, we multiply vertex coordinates by four, ensuring that
the lengths of the line segments forming the edges also are
multiples of four. Third, for each vertex v we put a unit disk
centered at the position of v, and we replace all the line seg-
ments forming the edges by sequences of consecutive unit
disks (located on the integral points within these lines; see
the center of Figure 1). This way, each edge becomes a se-
quence of 4¢ — 1 disks, where ¢ is an integer (possibly differ-
ent for each edge). Finally, for each edge we introduce a sin-
gle local displacement, which consists of replacing the sec-
ond disc that lies on the edge with two tangent disks (it does
not matter from which end we start counting the disks); these
two disks are also tangent to the disks on the two sides of the
disk that we replaced (see the right-hand side of Figure 1).
Local displacements ensure that disks on the edges come in
multiples of four. All in all, we obtain a penny graph.

Let G’ be the penny graph that we constructed. Each



vertex of G’ has either two or three adjacent vertices. The
vertices with two neighbors correspond to disks put on the
edges and we refer to them as intermediate. We call a vertex
locally displaced if it corresponds to a disk that was intro-
duced as a result of a local displacement. Let L be the total
number of intermediate vertices. One can easily verify that
G has an independent set of size r if and only if G’ has an
independent set of size v’ = r + L/2 (this follows from the
work of Cerioli et al. (2011)). We refer to the penny graphs
obtained by this construction as almost integral and we use
the fact that IS is NP-hard for them.

We are ready to show that for a large class of Thiele rules,
computing the results is intractable even for 2D elections.

Theorem 1. For each non-linear concave function w: N —
R, deciding if there is a committee of a given size with at
least a given w-Thiele score is NP-hard for 2D-VR elec-
tions, even if the voters have the same approval radii.

Proof. Let p be the largest integer such that for each p’ € [p]
we have that w(p’) = p’ - w(1). Since w is non-linear, p is
well-defined. Since w is concave, w(p+1) < (p+1)-w(1).
Further, we fix € to be a small positive constant—the upper-
bound on the value of € will be clear from the construction.
We reduce from the Independent Set problem for almost
integral penny graphs (where the graph is given by its geo-
metric representation). Let (G, r) be an instance of IS, where
G is an almost integral penny graph and r is an integer (these
are G’ and 7’ from the construction above). Let n denote the
number of edges in G. We distinguish the following points
in R? (we will use them as the ideal points of the agents):

Vertex Points: For each vertex z;, we have a vertex point
located in the center of x;’s disk; we overload the notation
and also refer to this point as ;.

Edge Points: For each edge e = {z;,z;} in G, we have a
point in the middle of e, to which we refer as ¢;; (we view
edges in G as straight, unit-length line segments).

Bisector Points: For each edge {z;,z;} in G, we take the
bisector of the line segment z;Z; and let g;; be a point
on its bisector (on an arbitrary side) such that its distance
from the line segment is €.

Given (G, r), we construct an election E = (C, V) with
the following candidates and voters:

1. The set of candidates consists of vertex candidates and
bisector candidates: In each vertex point x; we put one
vertex candidate, called c;, and in each bisector point we
put p — 1 bisector candidates, called b}j, ceey bf;l. We
write Cy, to denote the set of all bisector candidates.

2. We have the following three groups of voters (we argue
that the approval sets are specified correctly a bit later):

(a) The edge voters: For each edge e = {x;,x;} we have
a voter located in point e;;, who approves c;, ¢;, and
p — 1 bisector candidates located in g;;;.

(b) The vertex voters: For each intermediate vertex x;, we
have one voter, v;, who is located in point x; and ap-
proves only c;.
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(b) Case 2: Disks at ; and x, form a local displacement.

Figure 2: Two cases for estimating the distance between
points ¢;; and g;, in the proof of Theorem 1.

(c) The bisector voters: In each bisector point g;; we put

three voters, u;, u7;, us;, who all approve the p — 1

. . gy "ige Y . .
bisector candidates that are in their location.

We set the committee size to be k = r + (p — 1)n. We ask
if there exists a committee with w-score greater or equal to
s = (3r+4n(p — 1)) w(1). This ends the construction.
Let us now show that if all the voters have approval radius
1/2 then they approve exactly the candidates indicated above.
First, observe that for each vertex x; of the penny graph,
the distance between point z; and each bisector point of the
form ¢;; (i.e., each bisector point associated with an edge

incident to x;) is \/1/4 + €2 > 1/2. Thus the distances be-
tween the vertex voters and the bisector candidates, as well
as between the vertex candidates and the bisector voters, are
strictly greater than 1/2, and the respective approval ballots
do not interfere with each other. Further, it is clear that if €
is sufficiently small, then for each ¢;;, its distance from each
xp is also strictly greater than 1/2.

It remains to consider balls of diameter 1, centered at
some bisector points, ¢;; and g;¢. There are two cases to an-
alyze. The first one occurs when the line segments 7;7; and
T;xy are orthogonal (see Figure 2a). In such a case the dis-
tance between g;; and ¢ is (1/2 — €)+/2, which is more than

Yafore < /2-(1— ?) ~ 0.14 (so we require € < 0.14).
The second case occurs when the disks centered at z; and
x, constitute a local displacement (see Figure 2b, two plots
on the left). Then the points z;, z;, z,, and x; form a paral-
lelogram, where the lengths of sides 7;7; and Ty are 1, and



the lengths of sides 7;7; and ;7 are a = 1/a. V6. To see
why this is the case, note that the lengths of the diagonals of
the parallelogram are 1 (the diagonal Z;Z¢) and 2 (the diago-
nal 7;7;), and let o be the magnitude of the angle Zx;x;x,.
By the law of cosines we have. 12+a?—2a cos(a) = 12, and
12+ a? —2a cos(m — ) = 22. After adding these two equal-
ities and simple calculations we obtain that a = 1/2 - \/6.
Now observe that the points v;;,v;¢, g;5, and g;e form an
isosceles trapezoid (see the right plot in Figure 2b). If € <

/2. (% - %) , then clearly the distance between g;; and g,

is greater than 1/2. This completes the proof that the voters’
approval sets are indeed as indicated in the construction.

It remains to show that the reduction is correct. Let us as-
sume that G is a “yes” instance of IS. Take any independent
set U of size r and define the corresponding committee to be
Su ={¢ | & € Uy UGy, ie., let Sy consist of the vertex
candidates corresponding to the members of U and all the
bisector candidates. Let us calculate the w-score of Sy :

1. Each bisector candidate bfj contributes exactly 4w(1)
points to the committee. This is because he or she is ap-
proved by three bisector voters ullj ufj and u3; at her
location (and each of these voters approves exactfy p—1
bisector candidates), and by the edge voter at point e;;
(who in total approves at most p committee members; the
p — 1 bisector candidates and, as U is an independent set,
at most one vertex candidate). Each of these voters con-

tribues w(1) points for each bisector candidate.

. Each vertex candidate from the committee contributes
3w(1) points. Indeed, each of them is approved by three
voters (either three edge voters or two edge voters and one
vertex voter). Each vertex voter approves exactly one can-
didate and, by the argument from the previous point, each
edge voter approves at most p committee members. Thus
each vertex candidate from the committee brings in w(1)
points for each voter that approves him or her.

So the w-score of Sy is (37 + 4n(p — 1))w(1), as required.

For the other direction, assume that there is a size-k com-
mittee S with score at least s = (3r+4n(p—1))w(1). Since
each vertex candidate is approved by exactly three voters
and, thus, can contribute at most 3w(1) points to the score
of the committee, if S has score s then it must include all
the bisector candidates and each of these bisector candidates
has to contribute 4w(1) points to the committee. The lat-
ter happens exactly if all the edge voters approve at most
p committee members, which happens exactly if the vertex
candidates from S form an independent set. O

The above proof also holds for the 2D-CR model (it suf-
fices to assume that the candidates have radii 1/2 and the vot-
ers have radii 0). An analogous result also holds for MAV.

Theorem 2. Deciding if there is a MAV committee of a given
size and with at most a given score is NP-hard for 2D-
VR elections (2D-CR elections) even if all voters (all can-
didates) have the same approval radius and each voter ap-
proves the same number of candidates.

Theorems 1 and 2 also hold for higher dimensions.
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(b) The asymmetric  (c) The overlapping
Gaussians model squares model

(a) The uniform
square model

Figure 3: Density functions for our models of generating
ideal points (red areas correspond to candidates, green areas
correspond to voters, and olive areas correspond to both).

Visualization

The visualization idea of Elkind et al. (2017) is to generate
a large number of elections, where the agents’ ideal points
come from some distributions, compute their results, and
draw 2D histograms indicating how many winners appear
in each area of the space. We adopt their methodology to the
approval-based setting.

Generating the Histograms

We consider three ways to generate the points representing
the candidates and voters (illustrated in Figure 3):

1. The uniform square model, where the points are selected
uniformly at random from the [—3, 3] x [—3, 3] square.
This is a “baseline” distribution that was also considered
by Elkind et al. (2017).

The asymmetric Gaussians model, where 70% of the
points are generated from a two-dimensional Gaussian
distribution with center (—1,0) and standard deviation
0.8, and 30% come from a Gaussian with center (1,0)
and the same standard deviation. This model simulates a
society where a large majority has views centered in one
area and a significant minority has views centered in some
distance from them. This model is intended to highlight
rules’ abilities to choose proportional results.

The overlapping squares model, where the points of the
voters are selected uniformly at random from square
[—1.5,3] x [-1.5, 3] and the points of the candidates are
selected uniformly at random from square [—3,1.5] x
[—3, 1.5]. This model captures a setting where the pop-
ulations of the candidates and voters represent different
opinions (it is quite extreme in this respect, which makes
the differences between the rules more visible).

In most settings we focus on the voter range model, where
the candidates have radii set to zero and voters’ radii are gen-
erated using models from one of the following two groups:

1. In the first group, we either fix the number of approved
candidates or the approval radius. Specifically, in the 10-
nearest model, each voter’s radius is such that he or she
approves the 10 closest candidates. In the radius-0.7 and
radius-1 models, the radii are fixed to, respectively, 0.7
and 1. We refer to these three models as the fixed ones.

In the second group, we choose the number of approved
candidates or the approval radius from a uniform distribu-
tion. Specifically, in the [1, 100]-nearest model, for each



voter we choose number ¢ uniformly at random from the
set {1,...,100} and then select the radius so that the
voter approves exactly ¢ closest candidates. In the radius-
[0,3] model, for each voter we choose the radius uni-
formly at random from interval [0, 3]. We refer to these
two models as the uniform ones.

For the asymmetric Gaussians model, we also consider the
candidate range model, with the following candidate radii:

3. Inthe radius-{1, 1.5} model, the candidates from the left-
hand side Gaussian (the larger one) have radius 1 and the
other ones have radius 1.5. In the radius-{1.5, 1} model,
these values are swapped.

To draw a histogram for a given voting rule and models of
generating agents’ points and radii, we proceed as follows.
First, we generate 2000 elections with 100 candidates and
100 voters each. Then we compute their winning committees
of size 10.> Next, we consider the [—3,3] x [—3, 3] square
partitioned into cells of size 0.05 x 0.05 and for each cell
we count how many members of the winning committees
fall there. Finally, we plot the thus-obtained 2D histograms.
We map the numbers of committee members in each cell to
color intensities using the formula of Elkind et al. (2017);
the darker a cell, the more committee members it contains.

Discussion

We present the histograms for our voting rules, models of
generating agent’s points, and models of generating the radii
in Figure 4. Below we analyze the obtained results.

Choosing Radii Matters. The most obvious—but, per-
haps, the most important—observation from Figure 4 is that
depending how we choose the voters’ radii, the results can
vary greatly for all our rules. There are several reasons for
this. Foremost, it is natural that the results for the fixed mod-
els are different than those for the uniform ones. For ex-
ample, Bredereck et al. (2020, Lemma 9) show how to use
Thiele rules to simulate corresponding committee scoring
rules (Skowron, Faliszewski, and Slinko 2019; Faliszewski
et al. 2019) with Borda as the underlying scoring func-
tion. The nearest-[1, 100] radius model is a randomized vari-
ant of their construction. As a consequence, in this model
AV behaves like the classic k-Borda rule and PAV behaves
like the HarmonicBorda rule (indeed, for these cases their
histograms are identical to those obtained by Elkind et al.
(2017) for k-Borda and HarmonicBorda). On the other hand,
for the nearest-10 radii model, AV is known as the Bloc rule
and is known to behave very differently from k-Borda.

Fixed Models. It is intriguing to compare the histograms
for the nearest-10 model and the radius-0.7 and radius-1
models. In the former, each voter has to approve 10 closest
candidates, even if they are quite far away from him or her,

3We used implementations from the abcvoting library
(https://github.com/martinlackner/abcvoting) in irresolute mode
(except Rule X) and broke ties uniformly at random. This library
uses integer linear programming formulations of the respective
NP-hard rules; by Theorems 1 and 2 we know that this approach is
as reasonable in the 2D Euclidean setting as in the general one.
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whereas in the two latter ones, the voters only approve can-
didates that are close (we chose radii 0.7 and 1 because in the
uniform square model the latter leads to approving close to
8 candidates on average, and in the asymmetric Gaussians
model the former leads to approving under 12 candidates
on average; we view these values as close enough to 10 so
that the models are comparable to nearest-10, and as suffi-
ciently different from each other to be interesting). In most
cases, the histograms for the nearest-10 model have very
pronounced artifacts, which seem to go against the spirit of
the respective rules. E.g., in the uniform square model all
rules have darker areas in the corners, even though there is
no reason to consider the candidates there as more appeal-
ing than the other ones. Similarly, in the asymmetric Gaus-
sians model, PAV and Phragmén choose fewer candidates
from the center of the larger Gaussian, even though many
agents have ideal points in this area, and one would expect
a proportional rule to choose more candidates from there.
These artifacts either disappear or are less pronounced in the
radius-0.7 and radius-1 models. This suggests that if one is
using approval-based voting rules, then there should be no
fixed number of candidates that the voters should approve.

Elkind et al. (2017) also observed such artifacts for the
Bloc rule, which is equivalent to the AV rule in the nearest-
10 model (or, more specifically, in the nearest-k model,
where k is the committee size). Our results suggest that these
artifacts appear due to requiring the voters to approve can-
didates that are located far away from them (which happens
when the number of to-be-approved candidates is fixed).

Uniform Models. The differences between the [1, 100]-
nearests and radius-[0, 3] models are less worrisome than
those between the fixed models, even if sometimes quite vis-
ible; see, e.g., PAV and Phragmén in the overlapping squares
model. Yet, the results for radius-[0, 3] are more appealing
as more candidates in the top-right corner of the candidate
square are selected, closer to a large group of voters.

PAV Versus Phragmén.  One striking observation is that
the histograms for PAV and Phragmén are, in essence, in-
distinguishable for all our settings. One could argue that
this is natural because both rules aim at achieving propor-
tional representation. However, axiomatic studies suggest
that they understand proportionality in quite different ways
(Peters and Skowron 2020). Our histograms suggest that in
the 2D Euclidean models these two ways coincide.

CC, MAV, and Diversity. Generally, the histograms for
CC show fairly uniform coverage of the candidates’ and
voters’ views. This is good behavior for a rule that aims at
choosing diverse committees. The MAV rule often behaves
quite similarly (especially in the uniform square model) but
can also follow AV’s behavior. The similarity to CC—and,
more generally, tendency to select diverse committees—can
be explained by its egalitarian nature: If all the voters ap-
prove a similar number of candidates, then MAV seeks a
committee that maximizes the number of its members ap-
proved by the worst-off voter (i.e., the voter who approves
fewest of them). The similarity to AV appears in settings
where there is a large group of voters who approve many
more candidates than the remaining voters (as in the asym-
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(a) The uniform square model

(b) The asymmetric Gaussians model

(c) The overlapping squares model

Figure 4: Histograms for our rules and ways of generating elections. The numbers in parentheses over each column provide the

average number of candidates approved by a single voter.

metric Gaussians with radius-0.7 or 1): If a voter approves
many candidates, then MAV has to put many of them in the
committee, and if there are many voters like this (approving
many common candidates), the result is similar to using AV.

AV And Individual Excellence. AV is typically seen as a
rule for choosing individually excellent candidates. Our his-
tograms indicate that, at least in some settings, it might not
do well in this task (or, in a different interpretation, approval
sets might be insufficient for it). To this end, let us focus on
the uniform square model. Faliszewski et al. (2017) argue
that in the individual excellence setting, similar candidates
should be treated similarly (two similar candidates should
either both be in the committee or both be out, up to bound-
ary cases). If we take geometric proximity of candidates’
ideal points as a measure of similarity, then an individu-
ally excellent committee should consist of candidates lo-
cated in the center (by the given argument, the selected can-
didates should be close to each other; center location follows
from symmetry). Yet, AV achieves such histograms only for
nearest-[1, 100] and radius-[0, 3] models. Since these mod-
els, effectively, act as if the voters ranked the candidates,” it
is an argument that in some settings ordinal models are bet-
ter suited for individual excellence than the approval ones.

Rule X And Proportionality. =~ We note that the his-
tograms for Rule X (or, rather, its first part; recall Sec-
tion ) are between those for Phragmén and AV. (see, e.g.,
the asymmetric Gaussians case). This is surprising as Pe-
ters and Skowron (2020) have shown that even the first part
of Rule X alone has strong proportionality guarantees (Pe-

*Consider, e.g., the nearest-[1, 100] model and a group of voters
located close to each other. The candidates approved by all of them
are the closest to the group, and, generally, the fewer voters approve
a given candidate, the farther he or she is. This way AV gets similar
information as if the voters ranked the candidates.
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ters and Skowron 2020) and one would not expect increased
similarity to AV.

Candidate Range Models. Finally, let us consider the
asymmetric Gaussian model and candidate range models,
i.e., radius-{1, 1.5} and radius-{1.5, 1} models. As expected
for a diversity-oriented rule, CC behaves fairly similarly in
both cases. PAV and Phragmén, on the other hand, are quite
asymmetric. For the former model there is a visible area be-
tween the centers of the Gaussians from which no candidates
are selected. For the latter model, no such phenomenon oc-
curs. One explanation is that in the radius-{1, 1.5} model,
the more charismatic candidates from the smaller Gaussian
are too few to satisfy the voters from the left-hand extreme
of the larger Gaussian, and these voters are sufficiently nu-
merous to elect the less charismatic, but closer, candidates
(to some extent, this is supported by the shape of the his-
togram for AV in this model).

Conclusions

We have shown that many NP-hard approval-based commit-
tee rules remain NP-hard in the 2D Euclidean setting, even
if in 1D settings they can by computed in polynomial time.
We have also computed visualizations of our rules and made
multiple observations, the crucial one being that one should
not force the voters to approve a fixed number of candidates.
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