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Abstract

This paper considers a linear Fisher market with n buyers
and a continuum of items. In order to compute market equi-
libria, we introduce (infinite-dimensional) convex programs
over Banach spaces, thereby generalizing the Eisenberg-Gale
convex program and its dual. Regarding the new convex pro-
grams, we establish existence of optimal solutions, KKT con-
ditions, as well as strong duality. All these properties are es-
tablished via non-standard arguments, which circumvent the
limitations of duality theory in optimization over infinite-
dimensional vector spaces. Furthermore, we show that there
exists a pure equilibrium allocation, i.e., a division of the
item space. Similar to the finite-dimensional case, a market
equilibrium under the infinite-dimensional Fisher market is
Pareto optimal, envy-free and proportional. We also show
how to obtain the (a.e. unique) equilibrium prices and a pure
equilibrium allocation from the (unique) equilibrium utility
prices. When the item space is the unit interval [0, 1] and
buyers have piecewise linear utilities, we show that approxi-
mate equilibrium prices can be computed in polynomial time.
This is achieved by solving a finite-dimensional convex pro-
gram using the ellipsoid method. To this end, we give non-
trivial and efficient subgradient and separation oracles. For
general buyer valuations, we propose computing market equi-
librium using stochastic dual averaging, which finds approxi-
mate equilibrium prices with high probability.

Introduction
1 Market equilibrium (ME) is a classical concept from eco-
nomics, where the goal is to find an allocation of a set of
items to a set of buyers, as well as corresponding prices,
such that the market clears. One of the simplest equilibrium
models is the (finite-dimensional) linear Fisher market. A
Fisher market consists of a set of n buyers and m divisible
items, where the utility for a buyer is linear in their allo-
cation. Each buyer i has a budget Bi and valuation vij for
each item j. A ME consists of an allocation (of items to
buyers) and prices (of items) such that (i) each buyer re-
ceives a bundle of items that maximizes their utility sub-
ject to their budget constraints, and (ii) the market clears (all
items such that pj > 0 are exactly allocated). In spite of
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its simplicity, this model has several applications. Perhaps
the most well-known application is in the competitive equi-
librium from equal incomes (CEEI), where m items must be
fairly divided among n agents. By giving each agent one unit
of faux currency, the allocation from the resulting ME can be
used as the fair division. This approach guarantees several
fairness desiderata. Linear Fisher markets also have applica-
tions in large-scale ad markets (Conitzer et al. 2018, 2019)
and fair recommender systems (Kroer et al. 2019; Kroer and
Peysakhovich 2019).

For finite-dimensional linear Fisher markets, the
Eisenberg-Gale convex program computes a market
equilibrium via its optimal solution and Lagrange multi-
pliers (Eisenberg and Gale 1959; Eisenberg 1961; Jain and
Vazirani 2010; Nisan et al. 2007; Cole et al. 2017). However,
in settings like Internet ad markets and fair recommender
systems, the number of items is often huge (Kroer et al.
2019; Kroer and Peysakhovich 2019; Balseiro, Besbes, and
Weintraub 2015), if not infinite or even uncountable. For
example, each item can be characterized by a set of features,
where features come from a compact set in a Euclidean
space. This motivates our study on infinite-dimensional
Fisher markets and ME for a continuum of items.

A problem closely related to our infinite-dimensional
Fisher-market setting is the cake-cutting or fair division
problem. There, the goal is to efficiently partition a “cake” –
often modeled as a compact measurable space, or simply the
unit interval [0, 1] – among n agents so that certain fairness
and efficiency properties are satisfied (Weller 1985; Brams
and Taylor 1996; Cohler et al. 2011; Procaccia 2013; Cohler
et al. 2011; Brams et al. 2012; Chen et al. 2013; Aziz and
Ye 2014; Aziz and Mackenzie 2016; Legut 2017, 2020). See
(Procaccia 2016) for a survey for the various problem setups,
algorithms and complexity results. Weller (1985) shows the
existence of a fair allocation, that is, a measurable division
of a measurable space satisfying weak Pareto optimality and
envy freeness. As will be seen shortly, when all buyers have
the same budget, our definition of a pure ME, i.e., where
the allocation consist of indicator functions of a.e.-disjoint
measurable sets, is in fact equivalent to this notion of fair
division (Weller 1985). A subtly different notion is consid-
ered in (Cohler et al. 2011; Chen et al. 2013): there, Pareto
optimality is w.r.t. the envy-free divisions only. In addition,
we also give an explicit characterization of the unique equi-
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librium prices based on a pure equilibrium allocation under
arbitrary budgets, generalizing the result of Weller (1985)
which only hold for buyers with the same budgets.

Under piecewise constant valuations over the cake [0, 1],
the equivalence of fair division and market equilibrium in
certain setups has been discovered and utilized in the design
of cake-cutting algorithms (Brams et al. 2012; Aziz and Ye
2014). Here, we extend this connection to arbitrary valua-
tions in the L1 function space: we propose Eisenberg-Gale-
type convex programs that characterize all ME (and hence
all fair divisions). As a concrete example, we show that
we can efficiently compute approximate equilibrium utility
prices (of the buyers) and equilibrium prices (of the items)
under piecewise linear valuations.

Summary of contributions. First, we consider an
infinite-dimensional Fisher market with n buyers and a con-
tinuum of items Θ and generalize the concept of a mar-
ket equilibrium to this setting. We then give two infinite-
dimensional convex programs over Banach spaces of mea-
surable functions on Θ ((PEG) and (DEG)), generalizing the
EG convex program and its dual under finite dimensions. For
the new convex programs, we first establish existence of op-
timal solutions (Lemma 1 and 2). Due to the lack of a com-
patible constraint qualification, general duality theory does
not apply to these convex programs. Instead, we establish
various duality properties directly through nonstandard ar-
guments (Lemma 3). Based on these duality properties and
the existence of a minimizer in the “primal” convex program
(PEG), we show that an allocation and prices pair is a ME
if and only if they are optimal solutions of our convex pro-
grams (Theorem 1). Furthermore, since (PEG) has a pure
optimal solution (i.e., buyers get disjoint measurable item
subsets), there exists a pure equilibrium allocation, i.e., a di-
vision (module zero-value item) of the item space. Finally,
we show that a ME under the infinite-dimensional Fisher
market satisfies (budget-weighted) proportionality, Pareto
optimality and envy-freeness. Our results on the existence
of ME and its fairness properties can be viewed as gener-
alizations of those in (Weller 1985), in which every buyer
(agent) has the same budget. When the item space is the
unit interval [0, 1] and buyers have piecewise linear utili-
ties, we show that ε-approximate equilibrium prices can be
computed in time polynomial in the market size and log 1

ε
(Theorem 5). This is achieved by solving a reformulation of
our convex programs where the infinitely many items only
occur in the objective function, and showing that the ellip-
soid method can be applied. To this end, we give nontrivial,
polynomial-time first-order and separation oracles for the
seemingly intractable objective function. Finally, for more
general buyer valuations, we propose using the stochastic
dual averaging algorithm (SDA) on the same reformulated
convex program to compute approximate equilibrium prices
and establish convergence guarantees (Theorem 6).

Infinite-Dimensional Fisher Markets
Measure-theoretic preliminaries. First, we introduce the
measure-theoretic concepts that we will need. The follow-
ing paragraph can be skimmed and referred back to later.
The items will be represented by Θ, a compact subset of Rd.

Denote the Lebesgue measure on Rd as µ. LetM be the set
of real-valued (Borel) measurable functions on Θ. Since Θ
is compact, it is (Borel) measurable and µ(Θ) < ∞. Func-
tions that are equal a.e. on Θ form an equivalence class,
which are treated as the same function. In fact, any func-
tion f in this equivalence class give the same linear func-
tional g 7→

∫
fgdµ. The suffix a.e. will be omitted un-

less the emphasis is necessary. For any S ⊆ M, denote
S+ = {f ∈ S : f ≥ 0}. For f ∈ L1(Θ) and g ∈ L∞(Θ),
denote 〈f, g〉 =

∫
θ
fgdµ. This notation aligns with the usual

notation for bilinear form, i.e., applying a linear functional
to a function. Since L∞(Θ) is the dual space of L1(Θ), the
integration

∫
Θ
fgdµ is well-defined and is finite. Let 1 be

the constant function taking value 1 on Θ. For any measur-
able set A ⊆ Θ, 1A denotes the {0, 1}-indicator function
of A. For q ∈ [1,∞], let Lq(Θ) be the Banach space of Lq
(integrable) functions on Θ with the usual Lq norm, i.e, for
f ∈ Lq(Θ),

‖f‖ =

{∫
Θ
|f |qdµ if q <∞,

inf{M > 0 : |f | < M a.e.} if q =∞.
Any τ ∈ L1(Θ)+ can also be viewed as a measure on Θ via
µτ (A) :=

∫
A
τdµ for any measurable A ⊆ Θ. Here, τ is in

fact the Radon–Nikodym derivative of µτ w.r.t. µ. We will
denote µτ (A) simply as τ(A) for a measurable set A ⊆ Θ
whenever there is no confusion. In this work, unless other-
wise stated, any measurem used or constructed is absolutely
continuous w.r.t. the Lebesgue measure µ and hence atom-
less. In other words, for any measurable setA ⊆ Θ such that
m(A) > 0 and any 0 < c < m(A), there exists a measur-
able subset B ⊆ A such that m(B) = c. Two measurable
sets A,B ⊆ Θ are said to be a.e.-disjoint if µ(A ∩ B) =
0. We use equations and inequalities involving measurable
functions to denote the corresponding (measurable) preim-
ages in Θ. For example, {f ≤ 0} := {θ ∈ Θ : f(θ) ≤ 0}
and {f ≤ g} := {θ ∈ Θ : f(θ) ≤ g(θ)}.

Fisher market. Here, we formally describe the infinite-
dimensional Fisher market setup that we use throughout our
work. There are n buyers and an item space Θ, which is a
compact subset of Rd. Each buyer has a valuation over the
item space vi ∈ L1(Θ)+ (nonnegative L1 functions on Θ).
The items’ prices p ∈ L1(Θ)+ live in the same space as
valuations. An allocation of items to a buyer i is denoted
by xi ∈ L∞(Θ)+. Use x = (x1, . . . , xn) ∈ (L∞(Θ)+)n

to denote the aggregate allocation. An allocation x is said
to be a pure allocation (or a pure solution, when viewed as
variables of a convex program) if for all i, xi = 1Θi for a.e.-
disjoint measurable sets Θi ⊆ Θ (where leftover is possible,
i.e., Θ\(∪iΘi) 6= ∅). When x is a pure allocation (solution),
we also denote x as {Θi}. An allocation is mixed if it is not
pure, or equivalently, the set {0 < xi < 1} ⊆ Θ has pos-
itive measure for some i. Each buyer has a budget Bi > 0
and all items have unit supply, i.e., x is supply-feasible if∑
i xi ≤ 1. Without loss of generality, we also assume that

vi(Θ) = ‖vi‖ > 0 for all i (otherwise buyer i can be re-
moved). Given prices p ∈ L1(Θ)+, the demand set of buyer
i is the set of utility-maximizing allocations subject to its
budget constraint:
Di(p) = arg max {〈vi, xi〉 : x ∈ L∞(Θ)+, 〈p, xi〉 ≤ Bi} .

5433



Generalizing its finite-dimensional counterpart (Eisenberg
and Gale 1959; Eisenberg 1961; Jain and Vazirani 2007,
2010; Nisan et al. 2007), a market equilibrium is defined
as a pair (x∗, p∗) ∈ (L∞(Θ)+)n × L1(Θ)+ satisfying the
following.
• Buyer optimality: for every i ∈ [n], x∗i ∈ Di(p

∗).
• Market clearance (up to zero-price items):

∑
i x
∗
i ≤ 1 and

〈p∗,1−
∑
i x
∗
i 〉 = 0.

We say that x∗ ∈ (L∞(Θ)+)n is an equilibrium alloca-
tion if (x∗, p∗) is a ME for some p∗ ∈ L1(Θ)+. A pair
(x∗, p∗) is called a pure ME if it is a ME and x∗ is a
pure allocation. From the definition of market equilibrium,
we can assume the following normalizations w.l.o.g. First,
vi(Θ) = ‖vi‖ = 1 for all i, since Di(p) is invariant under
scaling of vi. Second, ‖B‖1 = 1 since if (x∗, p∗) is a ME
under B = (Bi), then (x∗, p∗/‖B‖1) is a ME under nor-
malized budgets (Bi/‖B‖1). Finally, The total supply of all
items is µ(Θ) = ‖1‖ = 1 (by either scaling the item space
Θ via θ 7→ αθ for some constant α or scaling the measure
µ), since this scales all prices 〈p, xi〉 and utilities 〈vi, xi〉 by
the same constant.

Equilibrium and Duality
Due to intrinsic limitations of general infinite-dimensional
convex optimization duality theory, in this case, we cannot
start with a convex program and then derive its Lagrange
dual (the reason will be explained in more detail later). In-
stead, we directly propose two infinite-dimensional convex
programs, and then proceed to show from first principles that
they exhibit optimal solutions and a strong-duality-like rela-
tionship. First, we propose a generalization of the (finite-
dimensional) Eisengerg-Gale convex program (Eisenberg
1961; Nisan et al. 2007):

z∗ = sup
x∈(L∞(Θ)+)n

∑
i

Bi log〈vi, xi〉 s.t.
∑
i

xi ≤ 1.

(PEG)

Motivated by the dual of the finite-dimensional EG convex
program (Cole et al. 2017, Lemma 3), we also consider the
following convex program:

w∗ = inf
p∈L1(Θ)+, β∈Rn+

[
〈p,1〉 −

∑
i

Bi log βi

]
s.t. p ≥ βivi a.e., ∀ i.

(DEG)

Remark. If we view (DEG) as the primal, then it can be
shown that its Lagrange dual is (PEG) and weak duality fol-
lows (see, e.g., (Ponstein 2004, §3)). However, we cannot
conclude strong duality, or even primal or dual optimum at-
tainment, since L1(Θ)+ has an empty interior (Luenberger
1997, §8.8 Problem 1) and hence Slater’s condition does not
hold. If we choose L1(Θ)+ = L∞(Θ) instead of L1(Θ)
for the space of allocations xi (i.e., the underlying Banach
space of (PEG)), then (DEG), with p ∈ L∞(Θ)+ instead of
L1(Θ)+, does satisfy Slater’s condition (Luenberger 1997,
§8.8 Problem 2). However, its dual is (PEG) but with the
nonnegative cone L∞(Θ)+ (in which each xi lies) replaced

by the (much larger) cone {g ∈ L∞(Θ)∗ : 〈f, g〉 ≥ 0, ∀ f ∈
L∞(Θ)+} ⊆ L∞(Θ)∗. In this case, not every bounded lin-
ear functional g ∈ L∞(Θ) can be represented by a measur-
able function g̃ such that 〈f, g〉 =

∫
g̃fdµ (see, e.g., (Day

1973)). Therefore, we still cannot conclude that (PEG) has
an optimal solution in (L1(Θ)+)n satisfying strong duality.
Similar dilemmas occur when (PEG) is viewed as the primal
instead.

Nevertheless, through derivations based on first princi-
ples, we can establish optimum attainment of the convex
programs, weak duality, necessary and sufficient conditions
for optimality (strong duality). First, we show that the op-
tima of (PEG) is attained. All proofs can be found in the
extended version (see footnote 1).
Lemma 1 The supremum z∗ of (PEG) is attained via a pure
optimal solution x∗, that is, x∗ = (x∗i ) and x∗i = 1Θi for
a.e.-disjoint measurable subsets Θi ⊆ Θ.
Unlike the finite-dimensional case, the feasible region of
(PEG) here, although being closed and bounded in the Ba-
nach space L∞(Θ), is not compact (since an infinite se-
quence of feasible x(k) without a converging subsequence
can be easily constructed). However, optimum attainment
still holds thanks to the fact that the set of feasible utilities

U =

{
u ∈ Rn+ :

ui = 〈vi, xi〉,∑
i xi ≤ 1, xi ∈ L∞(Θ)+, i ∈ [n]

}
is convex and compact.

Next, we show optimum attainment for (DEG) by refor-
mulating it into a finite-dimensional convex program in β.
For a fixed β > 0, setting p = maxi βivi clearly mini-
mizes the objective of (DEG) subject to its constraints. Since
β ≥ 0, vi ∈ L1(Θ)+, we have (where ‖f‖ =

∫
Θ
fdµ is the

L1-norm)
0 ≤ max

i
βivi ≤ ‖β‖1

∑
i

vi,

where the right-hand side is L1-integrable since each vi is.
Hence, maxi βivi ∈ L1(Θ)+ as well. Thus, we can elim-
inate p in (DEG) and reformulate it into following finite-
dimensional convex program:

inf
β∈Rn+

[〈
max
i
βivi,1

〉
−
∑
i

Bi log βi

]
. (1)

Lemma 2 The infimum of (1) is attained via a unique min-
imizer β∗ > 0. The optimal solution (p∗, β∗) of (DEG) has
a unique β∗ and satisfies p∗ = maxi β

∗
i vi a.e.

Later, we will see that, for piecewise linear vi, the finite-
dimensional convex program (1) exhibits efficient first-order
(subgradient) oracles and therefore can be solved efficiently
using well-known optimization algorithms.

Due to the lack of general duality results in infinite di-
mensions, we first establish weak duality and KKT condi-
tions (necessary and sufficient for optimality) in the follow-
ing lemma. These conditions parallel those in nonlinear opti-
mization in Euclidean spaces (see, e.g., (Nocedal and Wright
2006, §12.3) and (Bertsekas 1999, §3.3.1)).
Lemma 3 Let C = ‖B‖1 −

∑
iBi logBi. We have
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(a) Weak duality: C + z∗ ≤ w∗.
(b) KKT conditions: For x∗ feasible to (PEG) and (p∗, β∗)

feasible to (DEG), they are both optimal (i.e., attaining
the optima z∗ and w∗ respectively) if and only if〈

p∗,1−
∑
i

x∗i

〉
= 0, (2)

〈vi, x∗i 〉 = u∗i :=
Bi
β∗i
, ∀ i, (3)

〈p∗ − β∗i vi, x∗i 〉 = 0, ∀ i. (4)

Thus, we see that in spite of the general difficulties with
duality theory in infinite dimensions, we have shown that
(PEG) and (DEG) behave like duals of each other: strong
duality holds, and KKT conditions hold if and only if a pair
of feasible solutions are both optimal (see, e.g., (Nisan et al.
2007, §5.2) for the finite-dimensional counterparts). Using
Lemma 3, we can establish the equivalence of market equi-
librium and optimality w.r.t. the convex programs.
Theorem 1 Assume x∗ and (p∗, β∗) are optimal solutions
of (PEG) and (DEG), respectively. Then (x∗, p∗) is a ME,
〈p∗, x∗i 〉 = Bi for all i and the equilibrium utility of buyer
i is u∗i = 〈vi, x∗i 〉 = Bi

β∗i
. Conversely, if (x∗, p∗) is a ME,

then x∗ is an optimal solution of (PEG) and (p∗, β∗), where
β∗i := Bi

〈vi,x∗i 〉
, is an optimal solution of (DEG).

We list some direct consequences of the results we have
obtained so far. Below is a direct consequence of Theorem 1
and Part (a) of Lemma 3 on the structural properties of a
market equilibrium.
Corollary 1 Let (x∗, p∗) be a ME. Then, x∗ and (p∗, β∗),
where β∗i := Bi

〈vi,x∗i 〉
, satisfy (2)-(4). In particular, (4) shows

that a buyer’s equilibrium allocation x∗i must be zero a.e.
outside its “winning” set of items {p∗ = β∗i vi}.
Remark. The equilibrium β∗, or equivalently, the second
part of the unique optimal solution (p∗, β∗) of (DEG)), is of-
ten known as the (equilibrium) utility price, that is, β∗i = Bi

u∗i
is the price each buyer i pays for a unit of utility. The above
corollary shows that, at equilibrium, each buyer i only gets
items where its β∗i vi is the maximum among all buyers, that
is, where p∗ = β∗i vi. In other words, buyer i only pays for
items with the lowest price per unit utility, or equivalently,
the most utility per unit price. Since p∗ ≥ β∗i vi, under prices
p∗, buyer i must pay at least β∗i for each unit of utility. From
a pure optimal solution of (PEG), we can construct the (a.e.-
unique) optimal solution of (DEG). In particular, such a con-
struction ensures feasibility to (DEG).
Corollary 2 Let {Θi} be a pure optimal solution of (PEG),
u∗i = vi(Θi) and β∗i = Bi

u∗i
.

(a) On each Θi, β∗i vi ≥ β∗j vj a.e. for all j 6= i.
(b) Let p∗ := maxi β

∗
i vi. Then, p∗(A) =

∑
i β
∗
i vi(A ∩ Θi)

for any measurable set A ⊆ Θ.
(c) The constructed (p∗, β∗) is an optimal solution of (DEG)

and satisfies (2)-(4).

Given a pure allocation, we can also verify whether it is an
equilibrium allocation using the following corollary.
Corollary 3 A pure allocation {Θi} is an equilibrium allo-
cation (with equilibrium prices p∗) if and only if the follow-
ing conditions hold with β∗i := Bi

vi(Θi)
and p∗ := maxi β

∗
i vi.

1. Prices of items in Θi are given by β∗i vi: p
∗ = β∗i vi on

each Θi, i ∈ [n].
2. Prices of leftover is zero: p∗(Θ \ (∪iΘi)) = 0.

Fairness and efficiency properties of ME. Let x ∈
(L∞(Θ)+)n,

∑
i xi ≤ 1 be an allocation. It is (strongly)

Pareto optimal if there does not exist x̃ ∈ (L∞(Θ)+)n,∑
i x̃i ≤ 1 such that 〈vi, x̃i〉 ≥ 〈vi, xi〉 for all i and the

inequality is strict for at least one i (Cohler et al. 2011). It is
envy-free (in a budget-weighted sense) if

1

Bi
〈vi, xi〉 ≥

1

Bj
〈vi, xj〉

for any j 6= i (Nisan et al. 2007; Kroer et al. 2019). When all
Bi = 1, this is sometimes referred to as being “equitable”
(Weller 1985). It is proportional if 〈vi, xi〉 ≥ Bi

‖B‖1 vi(Θ) for
all i, that is, each buyer gets at least the utility of its propor-
tional share allocation, xPS := Bi

‖B‖11. Similar to the finite-
dimensional case (Jain and Vazirani 2010; Nisan and Ronen
2001), market equilibria in infinite-dimensional Fisher mar-
kets also exhibit these properties.
Theorem 2 Let (x∗, p∗) be a ME. Then, x∗ is Pareto opti-
mal, envy-free and proportional.

ME as generalized fair division. By Corollary 3 and
Theorem 1, we can see that a pure ME {Θi} under uniform
budgets (Bi = 1/n) is a fair division in the sense of Weller
(1985), that is, a Pareto optimal and envy-free division (into
a.e.-disjoint measurable subsets) of Θ. Furthermore, (Weller
1985, §3) shows that, there exist equilibrium prices p∗ such
that
• p∗(Θi) = 1/n for all i.
• vi(Θi) ≥ vi(A) for any measurable set A ⊆ Θ such that
p∗(A) ≤ 1/n.

• For any measurable set A ⊆ Θ, p∗(A) = 1
n

∑
i
vi(A∩Θi)
vi(Θi)

.

Utilizing our results, when Bi = 1/n, and {Θi} is a pure
ME, the first property above is a special case of 〈p∗, x∗i 〉 =
Bi in Theorem 1 (with x∗i = 1Θi ); the second property can
be easily derived from the ME property x∗i ∈ Di(p

∗); the
third property is a special case of Part (b) in Corollary 2,
since β∗i = Bi

u∗i
= 1

n ·
1

vi(Θ) . Hence, ME under a continuum
of items can be viewed as generalized fair division, while
our results extend those of Weller (1985).

Bounds on equilibrium quantities. We can establish
upper and lower bounds on equilibrium quantities. These
bounds will be useful in subsequent convergence analysis
of stochastic optimization. Similar bounds hold in the finite-
dimensional case (Gao and Kroer 2020). Recall that we as-
sume vi(Θ) = 1 for all i and ‖B‖1 = 1 w.l.o.g.
Lemma 4 For any ME (x∗, p∗), we have p∗(Θ) = 1. Fur-
thermore, Bi ≤ u∗i = 〈vi, x∗i 〉 ≤ 1 and hence

¯
βi := Bi ≤

β∗i := Bi
u∗i
≤ β̄i := 1 for all i.

5435



Efficient Optimization of (1)
In the rest of the paper, unless otherwise stated, we always
use x∗ or {Θi} to denote a pure equilibrium allocation. We
also use β∗ to denote the unique optimal solution of (1) (the
equilibrium utility prices) and p∗ the a.e. unique equilibrium
prices which satisfy p∗ = maxi β

∗
i vi and (2)-(4) together

with x∗ (Lemma 3 and Theorem 1).
The convex program (1) is finite-dimensional and has

a real-valued, convex and continuous objective function
(Lemma 2). By Lemma 4, we can also add the constraint
β ∈ [

¯
β, β̄] without affecting the optimal solution. This

makes the “dual” (1) more computationally tractable than
its “primal” (PEG).

Ellipsoid method for piecewise linear vi.2 Assume that
each vi is Ki-piecewise linear (possibly discontinuous).
There are in total K =

∑
iKi pieces. We show that, for

piecewise linear (p.w.l.) vi over Θ = [0, 1], we can compute
a solution β̃ such that ‖β̃ − β∗‖ ≤ ε (all norms for finite-
dimensional vectors are Euclidean 2-norms unless otherwise
specified) in time polynomial in log 1

ε , n and K =
∑
iKi.

This is achieved via solving (1) using the ellipsoid method.
Consider the following generic convex program (Ben-Tal
and Nemirovski 2019, §4.1.4):

f∗ := min
x
f(x) s.t. x ∈ X (5)

where f is convex and continuous (and hence subdifferen-
tiable) on a convex compact X ⊆ Rn. Assume we have
access to the following oracles:
• The separation oracle S: given any x ∈ Rn, either report
x ∈ intX or return a g 6= 0 (representing a separating
hyperplane) such that 〈g, x〉 ≥ 〈g, y〉 for any y ∈ X .

• The first-order or subgradient oracle G: given x ∈ intX
(the interior of X), return a subgradient f ′(x) of f at x,
that is, f(y) ≥ f(x) + 〈f ′(x), y − x〉 for any y.

The time complexity of the ellipsoid method is as follows.
Theorem 3 (Ben-Tal and Nemirovski 2019, Theorem 4.1.2)
Let V = maxx∈X f(x) − f∗, R = supx∈X ‖x‖, and
r > 0 be the radius of a Euclidean ball contained in X .
For any ε > 0, it is possible to find an ε-solution xε (i.e.,
f(xε) ≤ f∗ + ε) with no more than N(ε) calls to S and
G, followed by no more than O(1)n2N(ε) arithmetic oper-
ations to process the answer of the oracles, where N(ε) =
O(1)n2 log

(
2 + V R

εr

)
.

In order to make use of the ellipsoid method for (DEG) for
p.w.l. vi, we need to derive efficient oracles S and G. To
this end, we need some elementary lemmas regarding p.w.l.
linear functions.
Lemma 5 For any β ∈ Rn+, the function θ 7→ maxi βivi(θ)
is piecewise linear with at most n(K − n+ 1) pieces.

Lemma 6 Suppose fi(θ) = ciθ+di ≥ 0, for all θ ∈ [l, u] ⊆
[0, 1], i ∈ [n]. Then, hn(θ) = maxi fi(θ) is piecewise linear
on [l, u] with at most n pieces. Furthermore, the breakpoints

2In the extended version (see the previous footnote), we give a
compact finite-dimensional convex conic reformulation of (PEG)
which can be solved using off-the-shelf optimization software.

of hn, l = a0 < a1 < · · · < an′ = u (n′ ≤ n) can be found
in O(n2) time.

Denote φ(β) = 〈maxi βivi,1〉, which can be easily seen to
be finite, convex and continuous on Rn+. Hence, it is subdif-
ferentiable on Rn++ (Ben-Tal and Nemirovski 2019, Propo-
sition C.6.5). First, we show that, if all vi are linear on a
common interval and zero otherwise, a subgradient of φ(β)
can be constructed inO(n2) time. This utilizes the additivity
(in terms of integration or expectation) property of subgra-
dients, as formalized in the following lemma. Here, Θ ⊆ Rd
can be a general compact set and e(i) is the ith unit vector in
Rd.
Lemma 7 Let f(β, θ) = maxi βivi(θ). For any θ ∈ Θ,
a subgradient of f(·, θ) at β is g(β, θ) = vi∗(θ)e

(i∗),
where i∗ ∈ arg maxi βivi(θ) (taking the smallest index if
there is a tie). Hence, a subgradient of φ(β) is φ′(β) =∫

Θ
g(β, θ)dθ = µ(Θ) · Eθg(β, θ), where the expectation is

over θ ∼ Unif(Θ).
Using Lemma 7 and the p.w.l. structure of vi, we have the

following for computing a subgradient of φ.
Lemma 8 For each i, assume that vi(θ) = ciθ + di ≥ 0 on
an interval [l, u] ⊆ [0, 1].
• The function θ 7→ maxi βivi(θ) has at most n linear

pieces on [l, u], with breakpoints l = a0 < a1 < · · · <
an′ = · · · = an = u, n′ ≤ n (depending on β).

• We can construct φ′(β) ∈ ∂φ(β) for any β > 0 as fol-
lows: the ith component of φ′(β) is∑

k∈[n′]: i∗k=i

(ci∗k
2

(a2
k − a2

k−1) + di∗k(ak − ak−1)
)
,

where i∗k is the (unique) winner (with the smallest index
among ties) on [ak−1, ak].

• The above construction of φ′(β) takes O(n2) time.

When vi are Ki-piecewise linear on [0, 1], using Lemma 8,
we can compute a subgradient φ′(β) by summing up the
above construction over the intervals given by the break-
points of all vi, and there are at most K such intervals.
Theorem 4 For any β > 0, a subgradient φ′(β) can be
computed in O(n2K) time.
Combining the above results, we have the following over-
all time complexity. Again, we assume that vi(Θ) = 1 and
‖B‖1 = 1 (w.l.o.g.). For general vi and Bi that do not sat-
isfy this, we can normalize them in O(nK) time.
Theorem 5 Let Θ = [0, 1], vi(Θ) = 1 for all i, ‖B‖1 =

1 and ε > 0. A solution β̃ such that ‖β̃ − β∗‖ ≤ ε

can be computed in O
(
n4K log n·maxi Bi

ε·mini Bi

)
time, which is

O
(
n4K log n

ε

)
when Bi = 1/n for all i.

The ellipsoid method can be applied to (1) more generally
than for the case of p.w.l. vi. As long as we can compute
φ′(β) in time polynomial in nK, it finds a solution β that
is ε-close to β∗ in time log 1

ε via the same ellipsoid method
framework. By Lemma 7, since a “pointwise” subgradient
g(β, θ) of f(β, θ) is much easier to compute, as long as the
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Algorithm 1: Stochastic dual averaging (SDA)

Initialize: Choose β1 ∈ dom Ψ and ḡ0 = 0
for t = 1, 2, . . . do

Sample θt ∼ D and compute gt ∈ ∂βf(β, θt)
ḡt = t−1

t ḡ
t−1 + 1

t gt
βt+1 = arg minβ {〈ḡt, β〉+ Ψ(β)} (∗)

integral
∫

Θ
g(β, θ)dθ can be evaluated efficiently, we can

compute a “full” subgradient φ′(β) efficiently.
Stochastic optimization for general Θ and vi . When a

full subgradient φ′(β) is difficult to compute, we can still
utilize the expectation characterization in Lemma 7 to use
a stochastic optimization algorithm to solve (1). The prob-
lem structure is particularly suitable for the stochastic dual
averaging (SDA) algorithm (Xiao 2010; Nesterov 2009). It
solves problems of the following form:

min
β

Eθf(β, θ) + Ψ(β), (6)

where Ψ is a strongly convex regularization function such
that dom Ψ = {β : Ψ(β) < ∞} is closed. Let θ ∼ D be
a random variable with distribution D and f(·, θ) be convex
and subdifferentiable on dom Ψ for all θ ∈ Θ. The algo-
rithm works as follows (Xiao 2010, Algorithm 1) (where we
assume µ(Θ) = 1 w.l.o.g.).

To solve (1), we set f(β, θ) = maxi βivi(θ) and D =
Unif(Θ). By Lemma 7, we can choose gt = g(β, θt) ∈
∂βf(β, θt). Let Ψ(β) = −

∑
iBi log βi if β ∈ [

¯
β, β̄] and

= ∞ o.w. (that is, dom Ψ = [
¯
β, β̄]). Given these specifica-

tions, in Algorithm 1, the step (∗) yields a simple, explicit
update: at iteration t, compute βt+1

i = Π[
¯
βi,β̄i]

(
Bi
ḡti

)
for all

i, where Π[a,b](c) = min{max{a, c}, b} is the projection
onto a closed interval. It can be derived easily from its first-
order optimality condition. Using the convergence results in
(Xiao 2010) for strongly convex Ψ, we can show that the
uniform average of all βt generated by SDA converges to
β∗ both in mean square error (MSE) and with high proba-
bility, with mild finiteness assumptions on vi.
Theorem 6 Assume vi ∈ L2(Θ), that is, 〈v2

i ,1〉 =
Eθ[vi(θ)2] < ∞ for all i. Let G2 := Eθ[maxi vi(θ)

2] < ∞
and σ = miniBi > 0. Let β̃t := 1

t

∑t
τ=1 β

τ . Then,

E‖β̃t − β∗‖2 ≤ 6(1+log t)+ 1
2 (log t)2

t × G2

σ2 .
Next, further assume that vi ≤ G a.e. for all i. Then, for
any δ > 0, with probability at least 1 − 4δ log t, we have
‖β̃t − β∗‖2 ≤ 2Mt

σ , where

Mt = ∆t

t + 4G
t

√
∆t log(1/δ)

σ + max
{

16G2

σ , 6V
}

log(1/δ)
t ,

∆t = G2

2σ (6 + log t) and V = 2n
mini Bi

.

Remark In the above theorem, the bound on E‖β̃t − β∗‖2

(MSE) is of order O
(

(log t)2

t

)
, where the constant degrades

upon buyer heterogeneity, i.e., a smaller miniBi leads to a
larger bound (recall that ‖B‖1 = 1 and therefore miniBi ≤
1
n ). For the second half regarding ‖β̃t − β∗‖2, substituting

δ = 1
tα (α ≥ 1) yields a bound of order O

(
log t
t

)
(also

depending inversely on miniBi), with probability at least
1− 4 log t

tα . In addition, the added assumptions Eθ[maxi v
2
i ] <

∞ and vi ≤ G a.e. for all i are always satisfied as long as
they are (a.e.) bounded (e.g., p.w.l. functions).

Deterministic optimization using φ′(β). When φ′(β)
can be computed, such as when vi are piecewise linear on
Θ = [0, 1] (Theorem 4), in Algorithm 1, we can replace gt
with a full subgradient φ′(βt). Then, ‖βt−β∗‖2 is determin-
istic and bounded by the same right hand side as the first half
of Theorem 6. In this case, if vi ≤ G a.e., then it can be eas-
ily verified that ‖φ′(β)‖2 ≤ nG2 <∞ for all β > 0. Then,
we can also use a projected subgradient descent method that
achieves ‖β̂t − β∗‖2 = O(n/t), where β̂t is a weighted av-
erage of β1, . . . , βt (see, e.g., (Lacoste-Julien, Schmidt, and
Bach 2012) and (Bubeck 2015, Theorem 3.9)).

Approximate equilibrium prices. Suppose we have ob-
tained an approximate solution β̃ such that ‖β̃ − β∗‖ ≤ ε.
Define p̃ = maxi β̃ivi ∈ L1(Θ)+, which satisfies

‖p̃− p∗‖ =

∫
Θ

∣∣∣max
i
β̃ivi(θ)−max

i
β∗i vi(θ)

∣∣∣ dθ
≤ ‖β̃ − β∗‖∞

∑
i

‖vi‖ ≤ nε.

Recall that for any β̃, the prices p̃ defined above is a p.w.l.
function with at most n(K − n + 1) pieces (Lemma 5).
By Lemma 6, finding its p.w.l. representation (breakpoints
and linear coefficients on each piece) takes O(n2K) time.
Therefore, under the same time complexity as in Theorem 5
(where the additional factor n is inside log and is absorbed
into the constant), we can compute an approximate equilib-
rium prices p̃ such that ‖p̃ − p∗‖ ≤ ε. Furthermore, under
prices p̃, an equilibrium allocation x∗ may (slightly) violate
buyers’ budget constraints:

〈p̃, x∗〉 = 〈p∗, x∗i 〉+〈p̃−p∗, x∗i 〉 ≤ Bi+‖p̃−p∗‖ = Bi+nε,

where the inequality uses Theorem 1 (budget of buyer i
depleted, i.e., 〈p∗, x∗i 〉 = 1) and x∗i ≤ 1 (x∗ is fea-
sible w.r.t. item supplies). Hence, consider the allocation
x̃i = Bi

Bi+nε
x∗i for all i. This allocation clearly satisfies∑

i x̃i ≤ 1 and, for each i, its budget constraint is satis-
fied: 〈p̃, x̃i〉 = Bi

Bi+nε
〈p̃, x∗〉 ≤ Bi. The utility of buyer i

from x̃i is ũi = 〈vi, x̃i〉 = Bi
Bi+nε

u∗i , which is close to the
equilibrium utility u∗i as long as nε� Bi.

Construction of an Equilibrium Allocation
Throughout this section, same as before, β∗ denotes the op-
timal solution of (1), p∗ = maxi β

∗
i vi is the equilibrium

prices and u∗i = Bi
β∗i

is the equilibrium utility. Given β∗, we
can construct a pure equilibrium allocation x∗ explicitly if
we allow arbitrary division of measurable subsets. This is
possible only if vi, and hence p∗, are atomless.
Theorem 7 For any S ⊆ [n], define

ΘS =

{
{p∗ = β∗i vi > β∗` v`, ∀ i ∈ S, ` /∈ S} if S 6= ∅,
{p∗ = β∗i vi = 0, ∀ i ∈ [n]} if S = ∅.
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• {ΘS}S⊆[n] is a measurable partition of Θ.

• There exits b = (bi,S) ≥ 0, i ∈ [n], S ⊆ [n] such that (i)
bi,S = 0 if i /∈ S, (ii)

∑
i bi,S = p∗(ΘS) for all S and

(iii)
∑
S bi,S = Bi for all i.

• We can partition each ΘS into measurable subsets Θi,S ,
i ∈ S such that p∗(Θi,S) = bi,S (meanwhile, Θi,S :=
∅ if i /∈ S). Let Θi = ∪SΘi,S (the leftover Θ∅ can be
assigned arbitrarily). The resulting pure allocation {Θi}
is an optimal solution of (PEG) and hence, by Theorem
1, a pure equilibrium allocation.

The above construction of x∗ requires constructing ΘS ,
S ⊆ [n] via partitioning measurable sets and solving a large
linear system of size 2n. In some cases, an equilibrium allo-
cation (or even a pure one) can be constructed easily.

Finite item space Θ. In this case, simply solve a system
of linear equations

∑
θ∈Θ vi(θ)xi(θ) = u∗i , i ∈ [n] and∑

i xi(θ) ≤ 1, θ ∈ Θ to obtain an equilibrium allocation.
It has a solution since an equilibrium allocation exists.

P.w.l. valuations. For the case of p.w.l. vi, p∗ can have
at most n(K − n + 1) linear pieces with breakpoints 0 =
a0 < a1 < · · · < aN = 1, where N ≤ n(K − n + 1).
These breakpoints consist of (i) the “static” breakpoints of
all vi and (ii) the intersections of the linear pieces of β∗i vi be-
tween these breakpoints. Each interval between two break-
points, on which every vi is linear, is further divided into
at most n small subintervals (Lemma 6), leading to the
subintervals [ak−1, ak], k ∈ [N ] above. On each [ak−1, ak],
for i 6= j, the line segments β∗i vi and β∗j vj either sep-
arate completely or overlapping completely, except possi-
bly at endpoints. For k ∈ [N ], let Ik 6= ∅ be the set of
“winners” on [ak−1, ak], that is, for i ∈ Ik and j /∈ Ik,
p∗ = β∗i vi > β∗j vj on (ak−1, ak). In the language of The-
orem 7, we only need to consider Θi,k, i ∈ [n], k ∈ [N ]
such that i ∈ Ik. This is because x∗i must not allocate any-
thing on [ak−1, ak] such that p∗ > β∗i vi (i.e., x∗i = 0 on
[ak−1, ak] if i /∈ Ik) (see (4) in Lemma 3). Therefore, we
only need to solve for b = (bi,k) ∈ Rn×N+ . Meanwhile,
p∗([ak−1, ak]) = β∗i vi([ak−1, ak]) (for some i ∈ Ik) can
be easily computed, since vi is linear on [ak−1, ak]. Split-
ting each Θk := [ak−1, ak] into Θi,k, i ∈ Ik according to
each winner’s bi,k is also trivial: since p∗ = β∗i vi (i ∈ Ik)
is linear on [ak−1, ak], we can partition [ak−1, ak] into con-
secutive intervals Θi,k, each having p∗(Θi,k) = bi,k, i ∈ Ik.

An illustrative example. Consider n buyers with distinct
linear valuations vi on the item space Θ = [0, 1] such that
vi(Θ) = 1 for all i. In this case, p∗ = maxi β

∗
i vi is piece-

wise linear with exactly n pieces, since (i) it has at most n
pieces by Lemma 6 and (ii) each buyer i “wins” at least one
piece, i.e., p∗ = β∗i vi on a nonempty closed interval (oth-
erwise, by (4) in Lemma 3, buyer i has x∗i = 0 and gets
u∗i = 0, contradicting to Lemma 4). We construct a small
instance with n = 4 and solve its convex program (1) us-
ing Algorithm 1 (SDA) to obtain an approximate solution
β̃ ≈ β∗. Then, we construct an approximate equilibrium
allocation, which is given by the 4 intervals as well as the
(unique) winners of each interval, as shown in Figure 1. The
n = 4 intervals are, from left to right, allocated to buyers 3,

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

β1v1 : [0.79, 1.00]
β2v2 : [0.32, 0.56]
β3v3 : [0.00, 0.32]
β4v4 : [0.56, 0.79]
p : =max

i
βivi

Figure 1: A division of [0, 1] given by β̃, where each buyer i
gets the interval shown in the legend, on which p̃ = β̃ivi

2, 4, 1, respectively.

Discussion and Conclusions
Motivated by applications in ad auctions and fair recom-
mender systems, we considered infinite-dimensional Fisher
markets with a continuum of items and the concept of a
market equilibrium in this setting. We proposed infinite-
dimensional Eisenberg-Gale-type convex programs whose
optimal solutions are ME, and vice versa. We established ex-
istence of optimal solutions (and hence existence of ME) and
optimality conditions of the convex programs that parallel
various structural properties of ME. We also showed that a
ME exhibits various efficiency and fairness guarantees. Uti-
lizing a finite-dimensional reformulation of a convex pro-
gram, we proposed efficient optimization algorithms for
computing approximate equilibrium utility prices. Lastly,
we discussed the construction of an equilibrium allocation
from the optimal solution and gave an illustrative example.
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