
Almost Envy-freeness, Envy-rank, and Nash Social Welfare Matchings

Alireza Farhadi,1 MohammadTaghi Hajiaghayi, 1 Mohamad Latifian, 2 Masoud Seddighin, 3 Hadi
Yami 4

1 University of Maryland
2 University of Toronto

3 Institute for Research in Fundamental Sciences (IPM)
4 Microsoft

farhadi@cs.umd.edu, Hajiagha@cs.umd.edu, latifian@cs.toronto.edu, seddighin.masood@gmail.com,
hayami@microsoft.com

Abstract

Envy-freeness up to one good (EF1) and envy-freeness up
to any good (EFX) are two well-known extensions of envy-
freeness for the case of indivisible items. It is shown that EF1
can always be guaranteed for agents with subadditive valu-
ations (Lipton et al. 2004). In sharp contrast, it is unknown
whether or not an EFX allocation always exists, even for four
agents and additive valuations. In addition, the best approxi-
mation guarantee for EFX is (φ − 1) ' 0.61 by Amanatidis
et al. (Amanatidis, Markakis, and Ntokos 2020).
In order to find a middle ground to bridge this gap, in this
paper we suggest another fairness criterion, namely envy-
freeness up to a random good or EFR, which is weaker
than EFX, yet stronger than EF1. For this notion, we pro-
vide a polynomial-time 0.73-approximation allocation algo-
rithm. For our algorithm we use Nash Social Welfare Match-
ing which makes a new connection between Nash Social Wel-
fare and envy freeness.

Introduction
Fair division is a fundamental and interdisciplinary problem
that has been extensively studied in economics, mathemat-
ics, political science, and computer science. Generally, the
goal is to find an allocation of a resource to n agents, which
is agreeable to all the agents according to their preferences.
The first formal treatment of this problem was in 1948 by
Steinhaus (Steinhaus 1948). Following his work, a vast liter-
ature has been developed and several notions for measuring
fairness have been suggested (Steinhaus 1948; Foley 1967;
Budish 2011; Lipton et al. 2004; Caragiannis et al. 2019).
One of the most prominent and well-established fairness no-
tions, introduced by Foley (Foley 1967), is envy-freeness,
which requires that each agent prefers his share over that of
any other agent.

Traditionally, envy-freeness has been studied for both di-
visible and indivisible resources. When the resource is a sin-
gle heterogeneous divisible item (i.e, can be fractionally al-
located), envy-freeness admits strong theoretical guarantees.
However, beyond divisibility, when dealing with a set of in-
divisible goods, envy-freeness is too strong to be attained;
for example, for two agents and a single indivisible good,
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the agent that receives no good envies the other party. There-
fore, several relaxations of envy-freeness are introduced for
the case of indivisible items (Lipton et al. 2004; Budish
2011; Caragiannis et al. 2019). One of these relaxations,
suggested by Budish (Budish 2011), is envy-freeness up to
one good (EF1)1. An allocation of indivisible goods is EF1
if any possible envy of an agent for the share of another can
be resolved by removing some good from the envied share.
In contrast to envy-freeness, EF1 allocation always exists.
Indeed, a simple round-robin algorithm always guarantees
EF1 for additive valuations, and a standard envy-graph based
allocation guarantees EF1 for more general (sub-additive)
valuations. Furthermore, it is shown that any Nash welfare
maximizing allocation (allocation that maximizes the prod-
uct of the agents’ utilities) is both Pareto efficient and EF1.

Recently, Caragiannis et al. (Caragiannis et al. 2019)
suggested another intriguing relaxation of envy-freeness,
namely envy-free up to any good (EFX), which attracted
great deal of attention. An allocation is said to be EFX, if
no agent envies another agent after the removal of any item
from the other agent’s bundle. Theoretically, this notion is
strictly stronger than EF1 and is strictly weaker than EF. In
contrast to EF1, questions related to the EFX notion are rel-
atively unexplored. As an example, despite significant effort
(Caragiannis et al. 2019), the existence of such allocations
is still unknown. The most impressive breakthrough in this
area is the recent work of Chaudhury, Garg, and Mehlhorn
(Chaudhury, Garg, and Mehlhorn 2020), which shows that
for the case of 3 agents with additive valuations an EFX al-
location always exists. Furthermore, unlike EF1, Nash so-
cial welfare maximizing allocations are not necessarily EFX
(Caragiannis et al. 2019).

Given this impenetrability of EFX, a growing strand of
research started considering its relaxations. For example,
Plaut and Roughgarden (Plaut and Roughgarden 2020), con-
sider an approximate version of EFX2 and provide a 1/2

1It is worth mentioning that before the work of Budish (Budish
2011) EF1 was implicitly addressed by Lipton et. al (Lipton et al.
2004).

2An allocation isα-approximate EFX, if for every pair of agents
i and j, agent i believes that the share allocated to him is worth at
least α fraction of the share allocated to agent j, after removal of
agent j’s least valued item (according to agent i’s preference).
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approximation solution for agents with sub-additive valua-
tion functions. For additive valuations, this factor has been
recently improved to 0.618 by Amanatidis et al. (Amana-
tidis, Markakis, and Ntokos 2020). Another interesting re-
laxation is EFX-with-charity. Such allocations donate a bun-
dle of items to charity and guarantee EFX for the rest of
the items. The less valuable the donated items are, the more
desirable the allocation is. Caragiannis et al.(Caragiannis,
Gravin, and Huang 2019) show that there always exists an
EFX-with-charity allocation where every agent receives half
the value of his bundle in the optimal Nash social welfare al-
location. Recently, Chaudhury et al. (Chaudhury et al. 2020)
have proposed an EFX-with-charity allocation such that no
agent values the donated items more than his bundle and the
number of donated items is less than the number of agents.

Considering the huge discrepancy between EFX and EF1,
in this paper we wish to find a middle ground to bridge this
gap. We therefore suggest another fairness criterion, namely
envy-freeness up to a random item or EFR, which is weaker
than EFX, yet stronger than EF1. For this notion, we pro-
vide a polynomial time 0.73-approximation algorithm, i.e.,
an algorithm that constructs 0.73-EFR allocations in poly-
nomial time. Our allocation method is based on a special
type of matching, namely Nash Social Welfare Matching. In
Section , we briefly discuss our techniques to obtain these
results.

Our Results and Techniques
Envy-freeness up to a random item. We suggest a new
fairness notion, namely envy-free up to a random good
(EFR). Roughly speaking, in an EFR allocation, no agent i
envies another agent j (in expectation), if we remove a ran-
dom good from the bundle of agent j. In other words, the
expected value of agent i for the bundle allocated to agent
j, after removing a random item from it is at most as much
as the value of his own bundle. Obviously, EFR is a weaker
notion than EFX, yet stronger than EF1.

The intuition behind EFR is to use randomness to reduce
the severe impact of small items. To see what we mean by
this term, consider the following scenario: suppose that the
value of agent i for his share is 1000. In addition, assume
that the bundle allocated to an agent j contains two items,
each with value 600 to agent i. Even though the allocation is
currently EFX with respect to agent i, allocating even a very
small item (say, with value close to 0 to agent i) to agent j
violates EFX condition for agent i. This is counter-intuitive
in the sense that the last item allocated to agent j was to-
tally worthless to agent i. On the other hand, allocating any
item with value less than 300 to agent j preserves EFR con-
dition for agent i. This property makes EFR more flexible,
especially when the number of items is not very large. On
the other hand, as the number of items allocated to an agent
grows larger, we expect EFX and EFR to be more and more
aligned.

Similar to EFX, we provide a counter example which
shows that a Nash Social Welfare allocation is not neces-
sarily EFR (see Example 4). This separates EFR from EF1
given the fact that a Nash Social welfare allocation is al-
ways EF1(Caragiannis et al. 2019). It is worth mentioning
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Figure 1: Flowchart of the 0.73-EFR allocation algorithm

that Caragiannis et al. (Caragiannis et al. 2019) presented an
example to show that Nash Social welfare allocation is not
necessarily EFX. However, their example is still EFR. The
difference between these two examples can be seen as an
evidence for the distinction between EFR and EFX.

As noted, the best approximation guarantee for EFX
is 0.61 by Amanatidis et al. (Amanatidis, Markakis, and
Ntokos 2020). Since every EFX allocation is also EFR,
this result also provides a 0.61-approximation algorithm for
EFR. In this paper, we improve this ratio to 0.73.
Theorem 1. There exists an algorithm that finds a 0.73-EFR
allocation. In addition, such an allocation can be found in
polynomial time.

In order to prove Theorem 1, we propose a three-step al-
gorithm that finds a 0.73-EFR allocation in polynomial time.
Roughly speaking, in the first two steps, we allocate valuable
(i.e., large) items while preserving the 0.73-EFR property.
Next, we use an envy-cycle based procedure to allocate the
rest of the items. Figure 1 shows a flowchart of our method.

The first challenge to address is the method by which we
must allocate large items in the first step. Interestingly, we
introduce a special type of matching allocation with intrigu-
ing properties which makes it ideal for our algorithm. We
call such an allocation a Nash Social Welfare Matching.

Nash Social Welfare Matching. In the first step of the al-
gorithm, we allocate one item to each agent such that the
product of the utilities of the agents is maximized. The idea
of Nash social welfare matching has been used in (Cole and
Gkatzelis 2018; Nguyen and Rothe 2014; Garg, Kulkarni,
and Kulkarni 2020) previously. The interesting fact about
this allocation is that, not only does it allocate large items,
but it also provides very useful information about the value
of the rest of the items. In Section we broadly discuss such
allocations and their properties. However, to shed light on
their usefulness, assume that after a Nash Social Welfare
Matching, agent i envies agent j with a ratio α > 1, mean-
ing that he thinks the value of the good allocated to agent j
is α times greater than the value of his item. In that case, we
can immediately conclude that the item allocated to agent j
is α times more valuable to him (agent j) than any remain-
ing item; otherwise, we could improve the utility product
by allocating the most valuable remaining item to agent j
and giving his former item to agent i (and of course, freeing
agent i’s former item). In addition, we can express the same
proposition for the value of the item allocated to agent i for
agent j: the value of this item for agent j is at most 1/α
of the item allocated to agent j himself. The above state-
ment can be generalized to the arguments that include more
than two agents. With this aim, we introduce several new
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concepts, including envy-ratio graph (a complete weighted
graph that represents the envy-ratios between agents), im-
proving cycles, and envy-rank.

It is worth mentioning that the main challenge in many
fair allocation problems for different fairness criteria (e.g.,
MMS, EFX) is allocating valuable items. The structure of
such matchings makes them ideal for allocating these items.
We strongly believe that using Nash Social Welfare match-
ing is not only useful for our algorithm, but can also be seen
as a strong tool in the way of finding fair allocations related
to the other fairness notions, especially maximin-share. In
Appendix C we show how to use NSW matching to obtain
an algorithm with the approximation ratio of (φ−1) ' 0.61
for EFX. The approximation ratio of our algorithm matches
the state-of-the-art (φ− 1) approximation result by Amana-
tidis et al. (Amanatidis, Birmpas, and Markakis 2018).

Related Work
Fair allocation of a divisible resource (known as cake cut-
ting) was first introduced by Steinhaus(Steinhaus 1948) in
1948, and has been the subject of intensive studies ever
since. We refer the reader to (Brams and Taylor 1996) and
(Robertson and Webb 1998) for an overview of different
fairness notions and their related results. Proportionality and
Envy-freeness are among the most well-established notions
for cake cutting. As mentioned, the literature of cake cut-
ting admits strong positive results for these two notions (see
(Steinhaus 1948) for details).

Since neither EF nor proportionality or any approximation
of these notions can be guaranteed for indivisible goods, sev-
eral relaxations have been introduced for these two notions
in the past decade. These relaxations include EF1 and EFX
for envy-freeness and maximin-share (Budish 2011) for pro-
portionality. Nash Social Welfare (NSW) is also another im-
portant notion in allocation of indivisible goods which is a
good balance between fairness and optimality.

Apart from the results mentioned in the introduction for
EFX and EF1, there are other studies related to these no-
tions (Chan et al. 2019; Barman, Krishnamurthy, and Vaish
2018; Barman, KrishnaMurthy, and Vaish 2018; Barman,
Krishnamurthy, and Vaish 2018; Caragiannis, Gravin, and
Huang 2019; Caragiannis et al. 2019; Chaudhury et al.
2018). In particular, Barman et al. (Barman, Krishnamurthy,
and Vaish 2018) propose a pseudo-polynomial time algo-
rithm that finds an EF1 and Pareto efficient allocation. They
also show that any EF1 and Pareto efficient allocation ap-
proximates Nash Social Welfare with a factor of 1.45. In
contrast to EF1, our knowledge of EFX and NSW beyond
additive valuations is limited. For EFX, the only positive re-
sults for general valuations is the work of Plaut and Rough-
garden (Plaut and Roughgarden 2020) which provides a 1/2-
EFX allocation. For NSW, Grag et al. (Garg, Kulkarni, and
Kulkarni 2020) prove an O(n log n) approximation guaran-
tee for submodular valuations. Recently this factor is im-
proved to O(n)(Chaudhury, Garg, and Mehta 2020). In a
recent paper, Amanatidis et al. (Amanatidis et al. 2020) es-
tablish that a maximum Nash welfare allocation is always
EFX as long as there are two possible values for the goods.
They also prove that this implication is no longer true for

three or more distinct values.
Maximin-share is one of the most well-studied notions

in the recent years. In a pioneering study, Kurokawa et
al. (Kurokawa, Procaccia, and Wang 2018) provide an ap-
proximation algorithm with the factor of 2/3 for maximin-
share, which is improved to 3/4 by Ghodsi et al (Gh-
odsi et al. 2018). Beyond additivity, Barman et al. (Bar-
man and Krishna Murthy 2017) show that a simple round
robin algorihtm can guarantee 1/10-MMS for submodular
valuations, and Ghodsi et al. provide approximation guar-
antees for submodular (1/3), XOS (1/5) and subadditive
(1/ log n) valuations. In addition, several notions are ram-
ified from maximin-share, including weighted maximin-
share (WMMS) (Farhadi et al. 2019), pairwise maximin-
share (PMMS) (Caragiannis et al. 2019), and groupwise
maximin-share (GMMS) (Barman et al. 2018). Several stud-
ies consider the relation between these notions and seek
to find an allocation that guarantees a subset of them si-
multaneously. For example, Amanatidis et al. (Amanatidis,
Birmpas, and Markakis 2018) investigate the connections
between EF1, EFX, maximin share, and pairwise maximin
share. They show that any EF1 allocation is also a 1/n-MMS
and a 1/2-PMMS allocation. They also prove that any EFX
allocation is a 4/7-MMS and a 2/3-PMMS allocation.

Preliminaries and Basic Observations
Fair allocation problem. An instance of a fair allocation
problem consists of a set of n agents, a setM of m goods,
and a valuation profile V = {v1, v2, . . . , vn}. Each vi is a
function of the form 2M → R≥0 which specifies the prefer-
ences of agent i ∈ [n] over the goods. Throughout the paper,
we assume that a valuation function vi satisfies the following
conditions.

• Normalization: vi(∅) = 0.

• Monotonicity: vi(S) ≤ vi(T ) whenever S ⊆ T .

• Additivity: vi(S) =
∑
b∈S vi({b}).

An allocation of a set S of goods is an n-partition A =
〈A1,A2, . . . ,An〉 of S, where Ai is the bundle allocated to
agent i. Allocation is complete, if S = M and is partial
otherwise. Since we are interested in the allocations that al-
locate the whole set of items, the final allocation must be
complete.

Fairness criteria. Given an instance of the fair division
problem and an allocationA, an agent i envies another agent
j, if he strictly prefers Aj over his bundle Ai. An alloca-
tion is then said to be envy-free (EF), if no agent envies
another, i.e., for every pair i, j ∈ [n] of agents we have
vi(Ai) ≥ vi(Aj). As mentioned, envy-freeness is too strong
to be guaranteed in an allocation of indivisible items. There-
fore, two relaxations of this notion are introduced, namely
envy-free up to one good (EF1) and envy-free up to any good
(EFX).

Definition 2. An allocation A is called

• envy-free up to one good (EF1) if for all i, j we have
vi(Ai) ≥ minb∈Aj vi(Aj \ {b}),
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• envy-free up to any good (EFX) if for all i, j we have
vi(Ai) ≥ maxb∈Aj vi(Aj \ {b}).
Even though these two notions seem to be somewhat re-

lated, there is a huge discrepancy between the current results
obtained for them. It is shown that even for instances with
general valuations, an EF1 allocation always exists, and can
be computed in polynomial time (Lipton et al. 2004). In con-
trast, whether or not an EFX allocation always exists is still
an open problem, even for additive valuations.

In this paper, we introduce another relaxation of envy-
freeness, namely envy-free up to a random good. Let Dj be
a uniform distribution over the items of Aj that selects each
item with probability 1/|Aj |.
Definition 3. AllocationA is envy-free up to a random good
(EFR) if for all i, j where Aj 6= ∅, we have

vi(Ai) ≥ E
b∼Dj

[
vi(Aj \ {b})

]
.

Clearly, EFR lies in between EFX and EF1: EFX is a
stronger notion of fairness than EFR, and EFR is stronger
than EF1. In Example 4, we show one structural difference
between EF1 and EFR: in contrast to EF1, EFR is not im-
plied by an allocation that maximizes Nash social welfare.

1 2 3 4 5
v1 3 3 1 1 1
v2 5 5 1 4 3

Figure 2: Agents’ valuations over items

Example 4. Consider an instance of the fair allocation prob-
lem with 5 items and 2 agents with the valuations repre-
sented in Figure 2. The unique allocation that maximizes
the NSW allocates the first 3 items to the first agent, and the
other 2 items to the second agent. Let A be this allocation.
Since there are 3 items in the first agent’s bundle, we have

E
b∼D1

[
v2(A1 \ {b})

]
=

1

3
·
(
v2(A1 \ {1})

+ v2(A1 \ {2}) + v2(A1 \ {3})
)

=
22

3
≥ v2(A2) = 7 .

Hence, this allocation is not EFR.
Finally, approximate versions of EFX and EFR are de-

fined as follows.
Definition 5. For a constant c ≤ 1, an allocationA is called
• c-approximate envy-free up to any good (c-EFX), if for all
i, j we have

vi(Ai) ≥ c ·max
b∈Aj

vi(Aj \ {b}) ,

• c-approximate envy-free up to a random good (c-EFR) if
for all i, j we have

vi(Ai) ≥ c · E
b∼Dj

[
vi(Aj \ {b})

]
.

Note that Example 4 also shows that the maximum NSW
allocation does not guarantee better than 21

22 approximation
of EFR.

Envy-ratio Graph. Envy-ratio graph is in fact a general-
ization of the envy-graph introduced by Lipton et al. (Lipton
et al. 2004). Suppose that at some stage of our algorithm we
have a partial allocation A. We define a graph called envy-
ratio graph to be a complete weighted digraph with the fol-
lowing construction: each vertex corresponds to an agent,
and for each ordered pair (i, j), there is a directed edge from
vertex i to vertex j with the weight wi,j = vi(Aj)/vi(Ai).

Assuming each agent has a non-zero value for each good,
for every i, j we have wi,j ∈ [0,∞). Note that wi,j ≤ 1
implies that agent i does not envy agent j, whereas wi,j >
1 indicates agent i envies agent j. The higher the value of
wi,j is, the more envious agent i is to the bundle of agent j.
Indeed, the well-known envy-graph is a subgraph of envy-
ratio graph containing only the edges with wi,j > 1.

Nash Social Welfare (NSW) Matching. Nash social wel-
fare, originally proposed by Nash (Nash Jr 1950), is defined
to be the geometric mean of the agents’ valuations. An al-
location that maximizes Nash social welfare is known to
have desirable properties. For example, such allocations are
proved to be EF1 and Pareto optimal. Roughly, Nash social
welfare maximizing allocations can be seen as a trade-off
between the egalitarian and the utilitarian.

In the first step of the algorithm, we allocate one item
to each agent such that the Nash social welfare of the
agents is maximized. More formally, define Nash Social
Welfare matching of [m] to be a partial allocation A =
〈A1,A2, . . . ,An〉, such that Πivi(Ai) is maximized and for
every i we have |Ai| = 1.

Similar to Nash social welfare allocations, Nash social
welfare matchings exhibit beautiful properties which greatly
help us in designing our algorithm. One simple property of
such allocations is shown in Observation 7. Before we state
Observation 7, we need to define concepts of improving and
strictly improving cycles.

Definition 6. Let c = i1 → i2 → . . .→ ik → i1 be a cycle
in the envy-ratio graph. Then, c is an improving cycle, if

wi1,i2 × wi2,i3 × . . .× wik−1,ik × wik,i1 > 1 .

Furthermore, we say a cycle c is a strictly improving cycle, if
c is an improving cycle and for every (i→ j) ∈ c, wi,j > 1
holds.

We note that strictly improving cycle is an essential con-
cept in all envy-cycle elimination methods (Lipton et al.
2004; Barman and Krishna Murthy 2017; Chaudhury et al.
2020; Amanatidis, Markakis, and Ntokos 2020). These
methods typically rotate the shares over strictly improving
cycles to enhance social welfare. However, to the best of our
knowledge, no previous work made use of improving cycles.

Observation 7. Suppose that we allocate one item to each
agent using Nash social welfare matching. Then, the envy-
ratio graph admits no improving cycle.

The proof of the mentioned observation is available in Ap-
pendix A. A particularly useful case of Observation 7 is for
the cycles of length 2, which we state in Corollary 8.
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Corollary 8 (of Observation 7). Suppose that for two agents
i, j we have vi(Aj) ≥ r · vi(Ai). Then, we have vj(Ai) ≤
vj(Aj)/r.
Definition 9. Suppose that we allocate one item to each
agent using Nash social welfare matching. We define the
envy-rank of an agent i, denoted by ri as

ri = max
j0,j1,...,jk

k∏
z=1

wjz,jz−1 ,

where j0 = i.
Roughly speaking, let p be a path leading to vertex i in

the envy-ratio graph such that the product of the weights of
the edges in p is maximum. Then, the envy-rank of agent i
equals the product of the weights of the edges in p. Note that
by Observation 7 we can assume w.l.o.g. that p is a simple
path (i.e., p includes no duplicate vertices).
Observation 10. p is a simple path.

Proof. Assume p is not simple and let c be a cycle in p. By
Observation 7 we know that c cannot be an improving cycle.
Therefore, the product of the weight of the edges of p \ c is
at least as large as that of p.

To get a better understanding of these definitions, take a
look at Example 11.
Example 11. Consider an instance of the fair allocation
problem with 4 items, 4 agents, and a valuation profile
V = {v1, v2, v3, v4} illustrated in Figure 3a. LetA be the al-
location that allocates item i to agent i. The envy-ratio graph
and the envy graph of A are shown in Figure 3b and Figure
3c respectively. This allocation is not envy-free. However,
it is both EFX and EFR since each agent receives only one
item.

As we mentioned before, the envy-rank of an agent can
be seen as the maximum product of the weights of the edges
in a path leading to that agent. For instance, consider agent
1. The envy-rank of this agent is 3 which is the product
of the weights of the edges in the path 3 → 2 → 1.
Also consider the cycle 1 → 3 → 2 → 1. This cycle is
an improving cycle. Therefore, allocation A is not a NSW
matching. The allocation can be improved by moving the
items alongside this cycle which leads to a new allocation
A′ = 〈{3}, {1}, {2}, {4}〉. The envy-ratio graph of A′ can
be seen in Figure 3d.

We finish our discussion in this section by mentioning
some properties of envy-rank values. The proofs of the fol-
lowing observations are available in Appendix A.
Observation 12. Suppose that allocation A allocates one
item to each agent using a Nash social welfare matching.
Then for every pair of agents i and j, we have

vi(Aj)
vi(Ai)

≤ min
{
rj ,

rj
ri

}
.

In addition to Observation 7, Nash social welfare match-
ings admit another important and elegant property, which
we state in Observation 13. This observation provides up-
per bounds on the value of remaining goods and can be of
independent interest for various fair allocation problems.

1 2 3 4
v1 8 2 4 3
v2 4 2 0 2
v3 0 3 2 2
v4 1 6 3 9

(a) Agents’ valuations over items
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(d) Envy-ratio graph after eliminating a cycle.

Figure 3: An example to illustrate envy-ratio graph.

5359



ALGORITHM 1: The outline of the 0.73-EFR algorithm.

Parameters : ϕ =
√
3 + 1.

// Step 1
Allocate NSW matching;
Let ri be envy-rank of an agent i. Divide the agents into

groups G1, G2, G3 as follows. Agent i belongs to G1 if
ri > ϕ, belongs to G2 if 2 < ri ≤ ϕ, and belongs to G3 if
ri ≤ 2;
// Step 2
Let O be a topological ordering of the agents with respect to

the envy-graph;
foreach i ∈ G3 ordered by O do

Ask agent i to pick his most valuable remaining item;
end
foreach i ∈ G3 ordered by O do

Ask agent i to pick his most valuable remaining item;
end
foreach i ∈ G2 ordered by O do

Ask agent i to pick his most valuable remaining item;
end
// Step 3
while the allocation is not complete do

Eliminate all directed cycles in the envy-graph;
Let s be an arbitrary source in the envy-graph;
Ask agent s to pick his most valuable remaining item;

end
return the allocation;

Observation 13. Suppose that we allocate one item to each
agent using a Nash social welfare matching. Then, for each
agent i and any unallocated item b we have

vi(b) ≤ min
{
vi(Ai),

vi(Ai)
ri

}
.

An Approximate EFR Allocation
In this section, we present our algorithm for finding a
0.73-EFR allocation. Our algorithm is divided into 3 steps,
namely NSW matching, allocation refinement, and envy-
graph based allocation. In the first step, we allocate to each
agent one item using a Nash social welfare matching and
accordingly divide the agents into three groups based on
their envy-rank. Next, in the second step we allocate a set
of goods to the agents in each group, and finally in the third
step we allocate the rest of the items using the classic envy-
cycle elimination method. The outline of our algorithm is
represented in Algorithm 1.

Step 1
In the first step, we allocate one item to each agent using a
NSW matching. We first show that this allocation can be
found in polynomial time. The proof is available in Ap-
pendix A.

Observation 14. NSW matching can be found in polyno-
mial time.

LetA be an NSW matching and fix a parameterϕ =
√

3+
1. Based on the envy-rank of the agents, we divide them into
three groups G1,G2, and G3 as follows.

• Agent i belongs to G1 if ri > ϕ.

• Agent i belongs to G2 if 2 < ri ≤ ϕ.

• Agent i belongs to G3 if ri ≤ 2.

Note that the envy-rank of an agent i which is ri can be
found in polynomial time. In order to find a path leading to
vertex i with the maximum product of the weights of the
edges, we can take the logarithm of the weights of edges,
and find a path leading to i with the maximum summation.
Since the envy-ratio graph does not have an improving cycle,
after taking the logarithm of the weights of the edges, the
resulting graph is without a positive cycle. Therefore, we
have to find a longest path leading to i in a directed graph
without a positive cycle which can be done in polynomial
time using Bellman-Ford algorithm.

Considering the envy-ranks of agents, by Observation 13,
we know that for every remaining item b the following prop-
erties hold.

• (Property 1): For every agent i ∈ G1 we have vi(b) <
vi(Ai)/ϕ.

• (Property 2): For every agent i ∈ G2 we have vi(b) <
vi(Ai)/2.

Intuitively, if each remaining item is worth less than
vi(Ai)/ϕ to every agent i, then we can guarantee the ap-
proximation factor of 1/(1 + 1/ϕ) in the third step. This
property holds for the agents in G1; however, this is not the
case for agents in G2 and G3. In the second step, we seek
to allocate a set of items to the agents in G2 and G3 so that
the same property holds for these agents. Note that along-
side this property, the final partial allocation after the second
step must be fair (i.e., 0.73-EFR).

Step 2
In the second step, we allocate one item to each agent in G2

and two items to each agent in G3. Algorithm 1 shows the
method by which we allocate these items to the agents in G2

and G3. Let O be a topological ordering of the agents with
respect to the envy-graph. We order the agents in G3 accord-
ing toO and ask them one by one to pick their most valuable
remaining good. We then again ask agents in G3 to pick one
more item according to the same topological orderingO. Af-
terwards, we order the agents in G2 according to O and ask
them one by one to add the most desirable remaining item to
their bundles.

We now show that at the end of Step 2 the following con-
ditions hold. The proof can be found in Appendix B.

Claim 15. At the end of Step 2 the following conditions
hold.

• The allocation is EFR with respect to the agents in G1.
• The allocation is (3/4)-EFR with respect to the agents in

G2.
• The allocation is (2/ϕ)-EFR with respect to the agents in
G3.

Since 2/ϕ < 3/4, the allocation by the end of Step 2 is
(2/ϕ)-EFR.
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Step 3
In the third step, we use the envy-graph to allocate the re-
maining unallocated items. We repeat the following steps
until all the goods are allocated.

• Find and eliminate all the directed cycles from the envy-
graph. In order to eliminate all cycles in the envy-graph,
we repeatedly find a directed cycle. Let i1 → i2 → · · · →
ik → i1 be a cycle in envy-graph. By definition, each
agent ij envies agent i(j mod k)+1, i.e.,

vij (Aij ) < vij
(
Ai(j mod k)+1

)
,

where A is the current allocation. We then exchange the
allocations of the agents that are in the cycle such that
each agent ij receives Ai(j mod k)+1

. Note that this ex-
changing does not change bundles. Furthermore, the util-
ity of each agent does not decrease. Hence, if the allo-
cation is α-EFR before the exchange, it remains α-EFR
after it (Lemma 6.1 in (Plaut and Roughgarden 2020)).
Also, exchanging these allocations decreases the number
of edges in the envy-graph. Thus, we eventually find an al-
location such that its corresponding envy-graph is acyclic.

• Give an item to an agent that no-one envies. In the previ-
ous step we showed that we can always find an allocation
such that its corresponding envy-graph is acyclic. There-
fore, there should be a vertex in the envy-graph with no
incoming edges. Let i be the agent corresponding to this
vertex. Since i has no incoming edges in the envy-graph,
no other agent envies i. At this step, we ask agent i to pick
his most valued item among all remaining goods.

The following Lemma shows the approximation guaran-
tee of our algorithm. The proof can be found in Appendix
A.

Lemma 16. Suppose that we are given a partial α-EFR al-
location A such that for every agent i and every remaining
item b, we have vi(b) ≤ α′·vi(Ai) for some constant α′ ≤ 1.
Then, the resulting allocation after performing the method
mentioned above is min{α, 1

1+α′ }-EFR.

We now show that at the beginning of Step 3, the valuation
of every remaining item is small for all agents. The proof is
available in Appendix A.

Observation 17. Let A be the allocation after Step 2. Then
for an agent i and every remaining item b we have

• If i ∈ G1, vi(b) ≤ vi(Ai)/ϕ.
• If i ∈ G2, vi(b) ≤ vi(Ai)/3.
• If i ∈ G3, vi(b) ≤ vi(Ai)/3.

It follows from the observation above that for every agent
i the valuation of every remaining item is at most vi(Ai)/ϕ
after the second step of our algorithm. Recall that our al-
location by the end of Step 2 is (2/ϕ)-EFR. Therefore,
using Lemma 16, the allocation at the end of Step 3 is
min

{
2
ϕ ,

1
1+1/ϕ

}
-EFR. Since ϕ =

√
3 + 1, we have

2

ϕ
=

1

1 + 1/ϕ
=
√

3− 1.

Therefore our final allocation is
√

3 − 1 ≈ 0.73-EFR. This,
coupled with the fact that all the steps can be implemented
in polynomial time follows Theorem 1.

Theorem 1. There exists an algorithm that finds a 0.73-EFR
allocation. In addition, such an allocation can be found in
polynomial time.

Conclusions and Future Directions
The envy-free relaxations recently have received significant
attention in the field of fair division. Numerous recent pa-
pers considered EFX as their fairness notion and provided
various results regarding this notion. However, the main
problem is still open, and it is unknown if the EFX allo-
cation always exists, while we can always guarantee EF1,
a weaker fairness notion, with a simple round-robin algo-
rithm. This difference motivated us to propose a new fair-
ness notion that lies somewhere in between EF1 and EFX.
We proposed the EFR notion and provided a polynomial-
time 0.72-approximation EFR algorithm. This approxima-
tion factor improves the best-known approximation factor
for EFX. The first future direction is to improve the approx-
imation guarantee of EFR and provide more properties for
further differentiating it from EFX. The next future direc-
tion is to consider the connection of EFR with other fairness
notions. Finally, it is also interesting to provide an algorithm
that guarantees both EFR approximation and efficiency at
the same time.
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