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Abstract

Deployments of game-theoretic solution concepts in the real
world have highlighted the necessity to consider human op-
ponents’ boundedly rational behavior. If subrationality is not
addressed, the system can face significant losses in terms
of expected utility. While there exist algorithms for com-
puting optimal strategies to commit to when facing subra-
tional decision-makers in one-shot interactions, these algo-
rithms cannot be generalized for solving sequential scenarios
because of the inherent curse of strategy-space dimensional-
ity in sequential games and because humans act subrationally
in each decision point separately. We study optimal strate-
gies to commit to against subrational opponents in sequential
games for the first time and make the following key contri-
butions: (1) we prove the problem is NP-hard in general; (2)
to enable further analysis, we introduce a non-fractional re-
formulation of the direct non-concave representation of the
equilibrium; (3) we identify conditions under which the prob-
lem can be approximated in polynomial time in the size of the
representation; (4) we show how an MILP can approximate
the reformulation with a guaranteed bounded error, and (5)
we experimentally demonstrate that our algorithm provides
higher quality results several orders of magnitude faster than
a baseline method for general non-linear optimization.

Introduction
In recent years, game theory has achieved many ground-
breaking advances both in large games (e.g., super-human
AI in poker (Moravčı́k et al. 2017; Brown and Sandholm
2018)), and practical applications (physical security (Sinha
et al. 2018), wildlife protection (Fang et al. 2017), AI for so-
cial good (Yadav et al. 2016)). In deployed two-player real-
world solutions, the aim is often to compute an optimal strat-
egy to commit to while assuming that the other player plays
the best response to this commitment – i.e., to find a Stack-
elberg Equilibrium (SE). While the traditional theory (e.g.,
the SE) assumes that all players behave entirely rationally,
the real world’s deployments proved that taking into account
the bounded rationality of the human players is necessary to
provide higher quality solutions (An et al. 2013; Fang et al.
2017). One of the most commonly used models of bounded
rationality is Quantal Response (QR), which assumes that
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players choose better actions more often than worse actions
instead of playing only the best action (McKelvey and Pal-
frey 1995). When facing a human opponent we aim to find
a strategy optimal against QR, termed Quantal Stackelberg
Equilibrium (QSE). Relying on SE is not advisable in such
situations as the committing player can suffer huge losses
when deploying rational strategies against boundedly ratio-
nal counterparts (Yang et al. 2011).

QSE was studied extensively in Stackelberg Security
Games (SSGs) (Sinha et al. 2018), and the developed al-
gorithms were used in many real-world applications. SSG
is a widely applicable game model, but it requires formulat-
ing the problem in terms of allocating limited resources to
a set of targets. To solve real-world problems beyond SSGs,
QSE was recently introduced also in a more general model
of normal-form games (NFGs) (Černý et al. 2020). How-
ever, even NFGs model only one-shot interactions. To the
best of our knowledge, QSE was never properly analyzed
for extensive-form (i.e., sequential) games (EFGs), despite
the fact that many real-world domains are sequential.

In this paper, we develop methods for finding QSE in
EFGs. There are two main challenges that prevent us from
using techniques from SSGs or NFGs directly. First, while
there is only one decision point for the boundedly ratio-
nal player in NFGs, any non-trivial EFG contains multiple
causally linked decision points where the same player acts.
The psychological studies show that humans prefer short-
term, delayed heuristic decisions (Gigerenzer and Gold-
stein 1996) rather than long-term, premeditated decisions.
This behavior arises especially in conflicts (Gray 1999) or
when facing information overload caused by large deci-
sion space (Malhotra 1982). Therefore, a natural assumption
is that a subrational player acts according to a QR model
in each decision point separately. This behavior cannot be
modeled by an equivalent NFG. Second, contrary to NFGs,
the number of rational player’s pure strategies in EFGs is
exponential in the game size. Therefore, even if the QSE
concepts would coincide in NFGs and EFGs, applying the
algorithms for NFGs directly would scale much worse. We
begin our analysis by showing that finding QSE is NP-hard,
and the straightforward formulation of QSE in EFGs is a
non-concave fractional problem that is difficult to optimize.
Therefore, we derive an equivalent Dinkelbach-type formu-
lation of QSE that does not contain any fraction, and rep-
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resents the rational player’s strategy linearly in the size of
the game. We use the Dinkelbach formulation to identify
sufficient condition for solving the problem in polynomial
time. If the conditions are satisfied, the optimal solution can
be found by gradient ascent. For other cases, we formulate
a mixed-integer linear program (MILP) approximating the
QSE through QR model’s linear relaxation. We provide the-
oretical guarantees on the solution quality, depending on the
number of segments used to linearize the QR function and
the arising bilinear terms. Full proofs and additional exam-
ples can be found in the appendix (Černý et al. 2021).

In the experiments, we compare the direct formulation
solved by an algorithm for general non-linear optimization
to our MILP reformulation. We show that in 3.5 hours, our
algorithm computes solutions that the baseline cannot reach
within three days. Moreover, for solvable instances the solu-
tions of our algorithm outperform the baseline’s solutions.

Related Solution Concepts. Several other solution con-
cepts study bounded rationality in EFGs. Perhaps the most
well-known one is the model of Quantal Response Equilib-
rium (QRE) (McKelvey and Palfrey 1998). In QRE, all play-
ers act boundedly rationally, and no player has the ability
to commit to a strategy. This is in contrast to QSE, where
the entirely-rational leader aims to exploit the boundedly
rational opponent. A similar approach for EFGs was taken
in (Basak et al. 2018), where only one of the players was
considered rational. However, their goal was to evaluate the
performance against human participants, and the approach
lacked theoretical foundations. The computed strategies did
not correspond to a well-defined solution concept and were
empirically suboptimal. We define and study this concept in
our concurrent paper (Milec et al. 2020). Besides rationality,
in QSE, the leader also benefits from the power of commit-
ment. It is well known that the ability to commit increases
the payoffs achievable by the leader (Von Stengel and Za-
mir 2010) and it trivially holds also against bounded rational
players. Mathematically, QRE is a fixed-point, while QSE
is a global optimization problem. Hence, the techniques for
computing QRE cannot be applied for finding QSE.

Background
Extensive-form games model sequential interactions be-
tween players and can be visually represented as game trees.
Formally, a two-player Stackelberg EFG is defined as a tu-
ple G = (N ,H,Z,A, u, C, I): N is a set of 2 players: a
leader (l) and a follower (f). We use i to refer to one of the
players, and −i to refer to his opponent. H denotes a finite
set of histories in the game tree, with h0 ∈ H being the
root. Hi denotes the set of histories in which player i acts.
We use pr(h) = (h′, a) to identify a pair of immediately
preceding h′ and action a connecting h′ with h. For h0 we
set pr(h0) = (∅, ∅). A denotes the set of all actions, with
Ai denoting the actions of player i. Z ⊆ H is the set of all
terminal histories of the game. We define for each player i
a utility function ui : Z → R. The chance player selects ac-
tions based on a fixed probability distribution known to all
players. Function C : A → [0, 1] denotes the probability of
taking an action by chance; we write C(h) for the product

of the probabilities of chance actions in history h. The set of
chance histories is denoted asHc.

Imperfect observation of player i is modeled via infor-
mation sets Ii that form a partition over h ∈ Hi. Player i
cannot distinguish between histories in any information set
I ∈ Ii. We overload the notation and use A(Ii) to denote
possible actions available in each history in an information
set Ii. Each action a uniquely identifies the information set
where it is available, referred as I(a). We assume perfect re-
call, which means that players remember the history of their
own actions and all information gained during the course of
the game. As a consequence, all histories in any information
set Ii have the same history of actions for player i.

Pure strategies Πi assign one action for each I ∈ Ii and
we assume the actions of a strategy π ∈ Πi can be enu-
merated as a ∈ π. We denote the set of leafs reachable
by a strategy π as Z(π). A behavioral strategy βi ∈ Bi
is one probability distribution over actions A(I) for each
I ∈ Ii. For any pair of strategies β ∈ B = (Bl, Bf ) we use
ui(β) = ui(βi, β−i) for the expected outcome of the game
for player i when players follow strategies β.

Strategies in EFGs with perfect recall can be also com-
pactly represented by using the sequence form (Koller,
Megiddo, and von Stengel 1996). A sequence σi ∈ Σi is
an ordered list of actions taken by a single player i in his-
tory h. ∅ stands for the empty sequence (i.e., a sequence
with no actions). A sequence σi ∈ Σi can be extended by
a valid action a taken by player i, written as σia = σ′i. We
say that σi is a prefix of σ′i (σi v σ′i) if σ′i is obtained by
finite number (possibly zero) of extensions of σi. We use
seq(h) to denote the sequence of actions of all players lead-
ing to h. By using a subscript seqi we refer to the subse-
quence of action of player i. Because of perfect recall we
write seqi(I) = seqi(h) for I ∈ Ii, h ∈ I . We use the func-
tion infi(σ′i) to denote the information set in which the last
action of the sequence σ′i is taken. For an empty sequence,
function infi(∅) returns the information set of the root. Us-
ing sequences, any behavioral strategy of a player can be
represented as a realization plan (ri : Σi → R). A realiza-
tion plan for a sequence σi is the probability that player i
will play σi under the assumption that the opponents play to
allow the actions specified in σi to be played. In other words,
for a behavioral strategy βi, ri(σ) =

∏
a∈σ βi(a). The set of

valid realization plans for player i can be represented using
a set of linear network-flow constraints of a size linear in the
number of information sets:

ri(∅) = 1, 0 ≤ ri(σ) ≤ 1 ∀σ ∈ Σi

ri(seqi(I)) =
∑

a∈A(I)

ri(seqi(I)a) ∀I ∈ Ii. (1)

For a given history h, we shorten the notation and write
ri(seqi(h)) as ri(h).

Quantal Stackelberg Equilibrium in EFGs
We follow the earlier works on boundedly rational Stack-
elberg equilibria and consider two possible causes of the
emergence of subrational behavior that combine into a for-
mal definition of quantal response: (i) a subjective percep-
tion of action values and (ii) a proneness to making mistakes

5261



f

l

f

(17,−12)

c

(−8, 11)

d

x

(12, 16)

y

a

(18, 14)

b

0 0.2 0.4 0.6 0.8 1

5

10

15

Probability of action y

L
ea

de
r’

s
ex

pe
ct

ed
ut

ili
ty

λ = 0.33
λ = 0.83

SE

Figure 1: (Left) An example of a general-sum EFG with
utilities in form (ul, uf ), and (Right) objective functions of
three equilibria: QSEs with a generator q = exp(λx), where
λ ∈ {0.33, 0.83}, and SE.

choosing an action to play. The first source of subrationality
is the (possibly) imperfect evaluation of the follower’s own
choices. We assume an evaluation model in the form of a
function e : Af × Bl → R that describes how the follower
values an action given the leader’s strategy. An entirely ra-
tional player uses expected utility of the best response as the
evaluation function. For boundedly rational players, many
examples of evaluation functions can be found in the lit-
erature: among others, the subjective utility (Nguyen et al.
2013), past-experience-based learning (Lejarraga, Dutt, and
Gonzalez 2012), risk assessment (Yechiam and Hochman
2013; Kahneman and Tversky 2013), preference in simple
strategies (Černý, Bošanský, and An 2020) or reasoning lev-
els in hierarchical models (Wright and Leyton-Brown 2020).
The second cause of subrationality relates to the ability of
the player to pick a correct action. Entirely rational play-
ers always select the utility-maximizing option. Relaxing
this assumption leads to a “statistical version” of the best
response, which considers the inevitable error-proneness
of humans and allows the players to make systematic er-
rors (McFadden 1976).
Definition 1. Let e be a follower’s evaluation function.
Function QR : Bl → Bf is a canonical quantal response
function if for each I ∈ If

QR(βl) =

(
q(e(a, βl))∑

a′∈A(I) q(e(a
′, βl))

)
a∈A(I),I∈If

(2)

for all βl ∈ Bl and some real-valued function q.
Note that whenever q is a strictly positive increasing func-

tion, the correspondingQR is a valid quantal response func-
tion, which gives rise to a valid behavioral strategy of the
follower. We call such functions q generators of canonical
quantal functions.
Definition 2. Given an extensive-form game G, a behav-
ioral strategy βQSl ∈ Bl and a quantal response function
QR of the follower form a Quantal Stackelberg Equilibrium
(QSE) if and only if

βQSl = arg max
βl∈Bl

ul(βl, QR(βl)). (3)

QSE of an EFG is not equivalent to QSE of a normal-
form representation of the EFG, because instead of picking a
pure strategy in the whole game according to a given model
of bounded rationality, we assume a more natural setting,
when a player acts quantally in every information set they
encounter separately.

Example 1. Consider an EFG depicted in Figure 1 and two
possible behavioral models of the follower. In both models,
the follower assumes they act fully rationally and uses an
expected utility of a best response as their evaluation func-
tion in both information sets. However, they are unaware
that when choosing an action to play, they will act quan-
tally according to a generator qU (x) = exp(λx). In the first
model, we set λ = 0.33, while in the second model λ is
equal to 0.83. On the right of the same figure we can find
the non-concave objective functions of both QSEs, and SE.
The choice of the behavioral model significantly affects the
solution. While with λ = 0.33 the leader commits to playing
action y, with λ = 0.83 her strategy is completely opposite:
to play the action x with probability 1. Furthermore, an op-
timal solution in SE is any strategy with probability of action
y lower than 0.6. However, if the leader deploys a strategy
close to this threshold against either of the two behavioral
models, her utility will be, in fact, close to global minimum
of the corresponding QSE. For λ = 0.33, the utility is low
for all SE strategies. An example with a fixed quantal func-
tion and different evaluation functions is in the appendix.

The example verifies the observations made in SSGs:
playing SE strategies against boundedly rational opponents
may inflict huge losses in utility for the leader (Yang et al.
2011). It is not difficult to design an EFG in which a unique
SE is a global minimum of a QSE with arbitrarily low utility.
The following straightforward mathematical program rep-
resents QSE using the direct definition of quantal response
from Eq. (2):

max
βl∈Bl

v(∅, ∅) (4a)

v(pr(h)) =
∑

a∈A(h)

v(h, a)C(a) ∀h ∈ Hc (4b)

v(pr(h)) =
∑

a∈A(h)

v(h, a)βl(a) ∀h ∈ Hl (4c)

v(pr(h)) =

∑
a∈A(h)

v(h, a)q(e(a, βl))∑
a∈A(h)

q(e(a, βl))
∀h ∈ Hf (4d)

v(pr(z)) = ul(z) ∀z ∈ Z. (4e)

The variable v is defined for every action interconnect-
ing two consecutive nodes in the game tree (i.e., an edge)
and it serves to propagate the leader’s utility from the leafs
up to the root through both the chance nodes and nodes of
the players. As Example 1 shows, this formulation using be-
havioral strategies is non-concave, might have multiple local
optima, and it contains fractional terms (Eq. (4d)). Unfortu-
nately, similarly to SE (Letchford and Conitzer 2010), also
computing QSE in EFGs is an NP-hard problem.
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Theorem 1. Let q be an exponential generator of a quan-
tal function of the follower. Computing optimal strategy of
a rational player against the quantal response opponent in
two-player imperfect-information EFGs with perfect recall
is an NP-hard problem.

Proof (Sketch). We reduce from the 3-SAT problem us-
ing the tree structure from (Letchford and Conitzer 2010).
We adapt the utilities because while the follower plays the
leader’s preferred action in case of indifference in SE, the
quantal response chooses all actions with the same utility
uniformly. We show there exists a threshold probability of
reaching a target subtree separating SAT from UNSAT. Full
proof is in the appendix.

Dinkelbach-Type Formulation of QSE
The non-concavity of formulation (4) makes it difficult to
optimize and guarantee global optimality. Therefore, we
search for an alternative representation of QSE that would
express the problem as a single fractional criterion, instead
of a set of equations. Such representation would allow us
to leverage reformulation methods from fractional program-
ming to eliminate the fraction. For this purpose we use the
realization plans. Note that in (4), the utility from each leaf
(Eq. (4e)) is propagated up through the variables v by mul-
tiplying it by the values of a behavioral strategy (Eqs. (4c)
and (4d)) and chance (Eq. (4b)) of all actions on the way to
the root. Because the product of behavioral probabilities of
a sequence is (by definition) equivalent to the realization of
the sequence, the criterion (4a) is expressed as

max
rl

∑
z∈Z

ul(z)C(z)rl(z)QR(rl, z), (5)

where

QR(rl, z) =
∏

a∈seqf (z)

q(e(a, rl))∑
a′∈A(I(a)

q(e(a′, rl))
.

Because realization plans are equivalent to behavioral strate-
gies, instead of e(a, βl) we write e(a, rl). The purpose of
this reformulation is that the criterion (3) can now be ex-
pressed as a single fraction, similarly to the representation of
QSE in mixed strategies in security games (Yang, Ordonez,
and Tambe 2012) and normal-form games (Černý et al.
2020).We can hence use the Dinkelbach’s method for solv-
ing nonlinear fractional programming problems (Dinkelbach
1967) and adapt it for finding the QSE. The key idea of
the Dinkelbach’s algorithm is to express a problem in a
form of maxx∈M f(x)/g(x), g(x) > 0 for some convex
set M and continuous, real-valued functions f and g as
an equivalent problem of finding a unique root of func-
tion D(p) = maxx∈M f(x) − pg(x), p ∈ R. It holds that
maxx∈M f(x)/g(x) = p∗ if and only if D(p∗) = 0. Be-
cause D is a maximum of functions affine in p, it is con-
vex. Finding the root is hence straightforward (e.g., a binary
search method can be used for this purpose) and it can be
done efficiently if and only if we are able to effectively deter-
minate the value of function D for any p. Most importantly,
D no longer contains any fractional term and is therefore
easier to optimize.

Theorem 2. Computing the maximum of the original for-
mulation of QSE (3) is equivalent to finding a unique root of
the following function D:

D(p) = max
rl

F (rl, p), (6)

where

F (rl, p) =
∑
π∈Πf

∏
a∈π

q(e(a, rl))(
∑

z∈Z(π)

ul(z)C(z)rl(z)− p).

Proof. We start from the representation of QSE in form of
Eq. (5). Because the follower acts quantally in every in-
formation set, the smallest common multiple over all leafs
is
∏
I∈If

∑
a∈A(I) q(e(a, rl)). The fractional representation

of the QSE is hence

max
rl

∑
z∈Z

ul(z)C(z)rl(z)Q(z, rl)∏
I∈If

∑
a∈A(I)

q(e(a, rl))
,

where

Q(z, rl) =
∏

a∈seqf (z)

q(e(a, rl))
∏
I∈If

seq(I) 6vseq(z)

∑
a∈A(I)

q(e(a, rl)).

Because Q(z, rl) is a sum of products of functions q ap-
plied to a fixed path from root to z and one action in each
information set outside this path, it iterates over pure strate-
gies enabling to reach z. Q(z, rl) is therefore equivalent
to
∑
π∈Πf :z∈Z(π)

∏
a∈π q(e(a, rl)). Applying the same idea

also for the denominator and swapping the sum over leafs
with the sum over pure strategies in the nominator we obtain

max
rl

∑
π∈Πf

∏
a∈π

q(e(a, rl))
∑

z∈Z(π)

ul(z)C(z)rl(seql(z))∑
π∈Πf

∏
a∈π

q(e(a, rl))
. (7)

By the Dinkelbach reformulation, maximizing this equation
is equivalent to finding a root of

max
rl

∑
π∈Πf

∏
a∈π

q(e(a, rl))
∑

z∈Z(π)

ul(z)C(z)rl(z)

− p
∑
π∈Πf

∏
a∈π

q(e(a, rl)),

which is the desired equation.

Due to the leader’s strategy being represented using a re-
alization plan, the formulation (6) has |Σl| variables. The ex-
pression e(a, rl) is evaluated for every follower’s action in
the game tree, the number of evaluations is hence also linear
in |If |. The outer sum, however, enumerates the follower’s
pure strategies and is thus exponential in |If |. In many real-
world applications this fact might not be critical, as the fol-
lower’s strategy space (i.e., choosing a target to attack) is
often much smaller than a combinatorial strategy space of
the leader (i.e., deploying/moving multiple units to different
locations).

5263



Algorithm 1: Dinkelbach-Type Algorithm for QSE
UB ← maxz∈Z ul(z), LB ← minz∈Z ul(z)
r∗l ← argmaxrl

F (rl, LB)

repeat
p← (UB − LB)/2
v ← maxrl F (rl, p)
rpl ← argmaxrl

F (rl, p)

if v < 0 then LB ← p, r∗l ← rpl else UB ← p
until UB − LB < ε
return r∗l

Because function D is convex, its root can be found us-
ing a binary search method, as described in Algorithm 1. We
refer to formulation (6) as to the Dinkelbach subproblem of
the Dinkelbach formulation of QSE. Algorithm 1 iteratively
updates the upper bound (UB) and lower bound (LB) on the
value of QSE according to a binary search method for find-
ing a root of a function. For running the binary search it is
essential to solve the Dinkelbach subproblems (i.e., evaluate
D(p) for any p). The following proposition presents condi-
tions under which the subproblem can be efficiently approx-
imated.
Proposition 3. Let q be a twice differentiable generator
of a quantal response and e be twice differentiable evalu-
ation function of the follower. The Dinkelbach subproblem
for p ∈ [minz∈Z ul(z),maxz∈Z ul(z)] is concave if for any
π ∈ Πf , a ∈ π and realization plan rl

δ(π, a) = q′(ea)(urle
′T
a + e′au

T
rl

) + (uTrlrl − p)
(
e′′aq
′(ea)+

+e′a
2
q′′(ea) +

∑
a′ 6=a∈π

e′ae
′
a′q
′(ea)q′(ea′)

∏
a′′ 6=a′ 6=a∈π

q(ea′′)
)

is negative semidefinite, where ea = e(a, rl), e′a = e′(a, rl),
e′′a = e′′(a, rl), and uTrlrl =

∑
z∈Z(π)ul(z)C(z)rl(z).

Proof. The formulation of the subproblem from
Eq. (6) is concave when its Hessian matrix is negative
semidefinite (NSD). The Hessian matrix is of a form∑
π∈Πf

∑
a∈π δ(π, a)

∏
a′ 6=a∈π q(ea′). Because a sum of

NSD matrices is NSD, the generator is always positive
and the definiteness is preserved under multiplication by a
positive number, Eq. (6) is concave if δ(π, a) is NSD.

In case the conditions are met, local-optimization al-
gorithms (e.g., projected gradient ascent (Nesterov 2004),
given Eq. (6) is L-smooth) are guaranteed to reach optimum.
We discuss how useful Proposition 3 is in the appendix.

Approximating the Dinkelbach Subproblem
In case a game does not satisfy the conditions in Proposi-
tion 3, the guarantee of convergence is lost. A solution com-
monly suggested in the literature is then to linearize the cri-
terion (6) and transform the problem into an (MI)LP that can
be solved using standard methods. For linearizing the crite-
rion we need to approximate both functions of the behavioral
model from Definition 1: (i) the quantal function q and (ii)
the utility evaluation function e.

We begin by approximating the quantal generator q. We
focus on logit QR, which is the most commonly studied
quantal response in the literature. In case of logit QR, func-
tion q is defined as q(x) = exp(λx), λ ∈ R+. The player
becomes more rational as λ approaches infinity. We can
express the product of generator functions from Eq. (6)
through a substitutional variable xπ as∏

a∈π
exp(λe(a, rl)) = exp(λ

∑
a∈π

e(a, rl))→ xπ.

The exp function is linearizable into K segments as

exp(λ
∑
a∈π

e(a, rl)) =
K∑
k=0

αktkπ + exp(e)→ xπ, (8)

where (αk)k∈[K], α
k ∈ R is a slope of the k-th segment,

subjected to constraints
K∑
k=0

tkπ + e =
∑
a∈π

e(a, rl)

tkπ ≤ zkπ(e− e)/K
tk+1
π ≥ zkπ(e− e)/K

0 ≤ tkπ ≤ (e− e)/K, zkπ ∈ {0, 1},

(9)

where binary variables z indicate whether the linear segment
is used and real variables t define what portion of the seg-
ment is active. We set e = λ|If |mina∈Af ,rl e(a, rl) and
e = λ|If |maxa∈Af ,rl e(a, rl). Using the bound from (Yano
et al. 2013), the maximum difference in values of exp and
its linearization exp using K segments on interval [e, e] can
be bounded as

|exp(x)− exp(x)| ≤ exp(e) (e− e)2

8K2
, x ∈ [e, e]. (10)

With linearized logit generator, the Dinkelbach subprob-
lem (6) is expressed as

D(p) = max
rl

 ∑
z∈Z(π)

ul(z)C(z)rl(z)− p

xπ.

Clearly, the criterion contains multiple bilinear terms
xπrl(z). For linearizing the bilinear terms, we use the MDT
technique (Kolodziej, Castro, and Grossmann 2013). MDT
is a parametrizable method which enables controlling the er-
ror in exchange of introducing binary variables. The product
c(π, z) = xπrl(z) is expressed using linear equations

c(π, z) =

b−1∑
i=0

∑
j∈E

ibjri,j , xEπ =
b−1∑
i=0

∑
j∈E

ibjsi,j

1 =
b−1∑
i=0

si,j , rl(z) =
b−1∑
i=0

ri,j ∀j ∈ I

si,j ∈ {0, 1}, 0 ≤ ri,j ≤ si,j∀j ∈ E , ∀i ∈ [b− 1],

(11)

where E ⊂ Z is a finite subset controlling the error of the
approximation with basis b. xEπ is a representation of xπ in
MDT over E . The following lemma identifies the approxi-
mation error introduced by the selection of K and E .

5264



Lemma 4. Let |E|=L and xπ be linearized with K segments.

|xπrl(z)− xEπrl(z)| ≤ εK + εE , (12)

where εK = exp(e) (e−e)2
8K2 , εE = max(N, exp(e)− bM+1 +

N,N − exp(e)), M = blogb(exp(e))c and N = bM−L+1.

Proof. Let E = {M−L+1,M−L+2, . . . ,M}. E hence defines
a discretization of variable xπ on interval [N, bM+1 − N ]
with a step of size N . Because xπ is defined on interval
[exp(e), exp(e)], the maximum difference between xπ and
xEπ is εE . As rl(z) is (by definition) always at most 1, we
have

|xπrl(z)− xEπrl(z)| ≤ |xπ − xπ|+ |xπ − xEπ|.
By Eq. (10), |xπ − xπ| ≤ εK , concluding the proof.

Now we move to the second part of the QR definition:
the evaluation function e. We present a domain-independent
formulation of a common situation when the follower is not
aware of their subrationality and evaluate the actions in the
current information set on the basis of acting rationally in the
subsequent information sets, weighted by the probability of
reaching the current set. In that case, the evaluation function
e can be expressed as

e(a, r) = v(I(a))− s(seqf (I(a))a)

v(inff (σf )) = s(σf ) +
∑

I:seqf (I)=σf

v(I)+

+
∑

z:seqf (z)=σf

ul(z)C(z)rl(z) ∀σf ∈ Σf

0 ≤ s(σ) ≤M(1− rf (σ)) ∀σ ∈ Σf ,

(13)

where rf is the binary best-response realization plan of the
follower, v is the optimal expected utility contribution in an
information set and s is a slack variable compensating the
deficiency in action’s suboptimal utility. Now, we can finally
state the approximation error for computing the QSE.
Proposition 5. Consider a linear formulation of the Dinkel-
bach subproblem in form

D(p) = max
rl

∑
z∈Z(π)

ul(z)C(z)c(π, z)− pxEπ,

with constraints (1), (9), (11), and (13) with K segments,
|E| = L and substitution (8). Let r∗l be a realization plan
computed by Algorithm 1 with precision εB , and rQSl be a
realization plan of the leader in QSE. Then for the utility dif-
ference d = |ul(r∗l , QR(r∗l ))−ul(rQSl , QR(rQSl ))| it holds

d ≤ εB +
ul|Πf |εK + |Πf |maxz∈Z |ul(z)|(εK + εE)

exp(e)
,

where εK and εE are defined as in Lemma 4.

Proof (Sketch). We derive specific bounds for the Dinkel-
bach representation of QSE based on Lemma 4 and com-
bine them with bounds on the difference between linearized
and non-linearized nominator and denominator introduced
in (Černý et al. 2020), adapted for QSE in form of Eq. (7).
Full proof can be found in the appendix.

Experimental Evaluation
We compare the Dinkelbach-type algorithm (DTA) to
the standard benchmark for nonlinear optimization: the
COBYLA algorithm (Powell 2007), implemented in the
open-source NLOPT library. COBYLA is a gradient-free al-
gorithm capable of handling linear equality constraints in-
duced by realization plans. We opted for COBYLA because
the follower’s evaluation function is non-differentiable, pos-
sibly in infinitely many points. We apply COBYLA directly
to formulation (5). For evaluating the algorithms, we used
two domains: a variant of search game commonly used to
evaluate algorithms for SE (Marchesi et al. 2019; Kroer, Fa-
rina, and Sandholm 2018; Čermák et al. 2016) and a network
game, handcrafted to be difficult for QSE.

Search Game. The game is played on a directed graph,
depicted in the middle of Figure 2. The attacker’s goal is to
reach one of the destination nodes (D0 – D7) from the start-
ing node (S), while the defender aims to catch the attacker
with one of the two units operating in the marked areas of
the graph (P0 and P1). The attacker receives a different re-
ward for reaching a different destination node (the reward is
selected randomly from interval [0, 2]). While the defender
can move freely with unit P1, unit P0 is static – placed by
the defender at the beginning of the game. If the attacker
evades unit P0, the defender is given N steps to set unit P1.
The defender receives a signal if P1 is within 1 step from the
attacker. In case the defender captures the attacker, she gets
a positive reward of 1−n/(N + 1), where n ≤ N is a num-
ber of taken steps, and the attacker receives 0. We consider a
version of the game in which the attacker perceives no infor-
mation about the whereabouts of the defender’s units, and
unit P1 starts above D0.

Network Game. The network game is played on a di-
rected graph too. Some nodes in the graph are grouped to-
gether into mutually disjunctive areas. In the beginning, the
attacker observes their areas of possible infiltration and the
area the defender uses to enter the network, and selects one
area for further probing. The defender then picks a node
from the entering area, while the attacker chooses a node
from their area to compromise. The defender is given a max-
imum number of steps N to survey the network and dis-
cover the attacker. There is binary information: if the at-
tacker is located within γ steps from the defender, the de-
fender observes it. If she captures the attacker in n ≤ N
steps she receives a utility 1− n/(N + 1), 0 otherwise. The
attacker is given a reward associated with the compromised
node if not found (the reward is chosen randomly from in-
terval [−2.5, 2.5]–the negative utility represents nodes with
compromising costs higher than the data’s price or a pos-
sible honeypot), -3 otherwise. We designed three networks,
shown on the left in Figure 2. Attacker’s areas are depicted
in thin-lined rectangles. The defender’s entering area is de-
picted in a thick-lined rectangle in game 03 and selected ran-
domly (4 nodes per seed) in other games. We set γ = 0
for game 01, 1 otherwise. It is a type of coordination game;
hence, the vast majority of the attacker’s strategies can be
best responses to the defender’s strategy, which makes com-
puting Stackelberg strategies particularly difficult.
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Figure 2: (Left) Graphs for network games, (Middle) Graph for search game, (Right) Mean runtimes in search game.
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Figure 3: Mean runtimes of COBYLA and DTA in network games. Every point shows also a standard error.

Experimental Setting. We assume the defender acts as
a leader, while the attacker assumes the follower’s role.
We consider three exponential generators of canonical logit
functions, λ ∈ {0.4, 0.7, 1.0}. The tolerance parameter for
the COBYLA algorithm in NLOPT was set to 10−2 and
εB = 1% of the leader’s utility range for the DTA’s binary
search. The linearization uses K = 3, the basis of MDT is
set to b = 3 and the size of the precision interval E is L = 4.
For each combination of game size× generator function, we
constructed 20 instances. All implementations were done in
C++17. We used NLOPT 2.6.1, and a single-threaded IBM
CPLEX 12.8 carried all MILP computations. The experi-
ments were performed on a 3.2GHz CPU with 16GB RAM.

Runtimes. In Figures 2 (right) and 3, the x-axis varies the
game size, while the y-axis shows the runtimes of the algo-
rithms. Every point in the graphs corresponds to the mean
over the sampled instances and shows the achieved stan-
dard error. We terminated all running seeds after 24h and
depict them in the graphs with this lower bound on run-
time if the computation was still ongoing. As the figures
show, despite the overhead of the DTA algorithm on smaller
instances, it scales significantly better than COBYLA. For
6 steps, we ran longer jobs, and COBYLA computed no
game within 3 days. Interestingly, as in some other NP-hard
problems (Cheeseman, Kanefsky, and Taylor 1991), increas-
ing the search game’s strategy space enables finding better
strategies faster, and binary search terminates earlier.

Solution Quality. The relative errors of computed solu-
tions are presented in Table 1. The values correspond to the
mean ratio of the difference in the defender’s expected util-
ity computed using COBYLA and the DTA to the length
of the defender’s utility range in the game. Due to linear ap-
proximations used by COBYLA, it can find close-to-optimal

2 steps 3 steps 4 steps
Networ Game 01
λ = 0.4 0.23% ± 0.03% 1.27% ± 0.20% 2.83% ± 0.46%
λ = 0.7 -1.99% ± 0.38% 0.42% ± 0.38% 3.84% ± 0.74%
λ = 1.0 -3.82% ± 0.51% 0.50% ± 0.50% 2.32% ± 0.92%
Network Game 02
λ = 0.4 1.17% ± 0.27% 1.16% ± 0.44% 13.32% ± 7.35%
λ = 0.7 0.20% ± 0.21% 1.80% ± 0.42% 8.87% ± 3.47%
λ = 1.0 -2.35% ± 0.35% -0.22% ± 0.49% 3.74% ± 4.05%
Network Game 03
λ = 0.4 1.09% ± 0.27% 1.30% ± 0.42% -
λ = 0.7 1.02% ± 0.45% 5.73% ± 1.85% -
λ = 1.0 0.25% ± 0.68% 8.33% ± 4.94% -
Search Game
λ = 0.4 -2.13% ± 0.29% -0.20% ± 0.42% 16.23% ± 3.77%
λ = 0.7 -7.24% ± 1.00% -4.75% ± 0.79% 18.24% ± 3.14%
λ = 1.0 -21.24% ± 1.81% -10.99% ± 1.64% -1.98% ± 4.91%

Table 1: Comparison of solution quality. A positive value
indicates that DTA returned better solution than COBYLA.

solutions in smaller instances. In some cases, the solution is
even better than the DTA because of the DTA’s approxima-
tion parameters. However, as the Table reveals, the quality
of COBYLA’s solutions degrades with increasing game size,
reaching error of 18.24% for 4 steps in the search game.

Conclusion
We study Quantal Stackelberg Equilibrium (QSE) – a strat-
egy the rational player should commit to against a subra-
tional player – in extensive-form games (EFGs). We show
that computing QSE is NP-hard; still, QSE is useful for eval-
uating scalable heuristics or improving the understanding of
human decision-making in experiments with human partici-
pants. We introduce the first practical algorithm for comput-
ing QSE in EFGs and show that contrary to direct formula-
tion, our algorithm solves larger games with smaller errors.
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Milec, D.; Černý, J.; Lisý, V.; and An, B. 2020. Complexity
and Algorithms for Exploiting Quantal Opponents in Large
Two-Player Games. In Thirty-Fifth AAAI Conference on Ar-
tificial Intelligence.
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